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It has been more than a decade since it was recognized that the nuclear factor of kappa
light polypeptide gene enhancer in B cells (NF-κB) transcription factor family was activated
by two distinct pathways: the canonical pathway involving NF-κB1 and the non-canonical
pathway involving NF-κB2. During this time a great deal of evidence has been amassed on
the ligands and receptors that activate these pathways, the cytoplasmic adapter molecules
involved in transducing the signals from receptors to nucleus, and the resulting physiolog-
ical outcomes within body tissues. In contrast to NF-κB1 signaling, which can be activated
by a wide variety of receptors, the NF-κB2 pathway is typically only activated by a subset
of receptor and ligand pairs belonging to the tumor necrosis factor (TNF) family. Amongst
these is B cell activating factor of the TNF family (BAFF) and its receptor BAFFR. Whilst
BAFF is produced by many cell types throughout the body, BAFFR expression appears to
be restricted to the hematopoietic lineage and B cells in particular. For this reason, the main
physiological outcomes of BAFF mediated NF-κB2 activation are confined to B cells. Indeed
BAFF mediated NF-κB2 signaling contributes to peripheral B cell survival and maturation
as well as playing a role in antibody responses and long term maintenance plasma cells.
Thus the importance BAFF and NF-κB2 permeates the entire B cell lifespan and impacts
on this important component of the immune system in a variety of ways.
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INTRODUCTION
In 2001 it was recognized that nuclear factor of kappa light
polypeptide gene enhancer in B cells (NF-κB) signaling actu-
ally consisted of two distinct pathways which have become
known as the canonical (classical/NF-κB1) and non-canonical
(alternative/NF-κB2) pathways (1). The canonical NF-κB pathway
involves the constitutive processing of full length NF-κB1 (p105)
to its active form p50, which readily forms dimers with RelA (also
known as p65) or c-Rel. These dimers are retained in the cytoplasm
by the actions of the inhibitors of NF-κB (Iκ-B proteins), which
mask their nuclear translocation signals. Signal-induced activa-
tion of this pathway leads to phosphorylation by the Iκ-B kinase
(IKK) complex (consisting of IKKα, IKKβ, and IKKγ) of the Iκ-B
proteins, subsequently leading to their degradation and allowing
nuclear translocation of p50 containing dimers [reviewed in Ref.
(2)]. In the non-canonical NF-κB pathway, NF-κB2 (p100) acts as
the Iκ-B by retaining itself and RelB in the cytoplasm. Processing
of NF-κB2 to its active form, p52 only occurs upon signal-induced
activation of the pathway (3) and it is the loss of the carboxy-
terminus of p100,which facilitates translocation of active p52/RelB
dimers to the nucleus. In both pathways the presence of NF-κB
dimers in the nucleus initiates specific transcription programs via
the binding of dimers to κB sequences in the promoters of various
genes. In this way the NF-κB signaling pathways are able to exert
a variety of effects on tissues throughout the body. Interestingly,
the non-canonical NF-κB pathway appears to activate a relatively
small number of downstream genes compared to the canonical

pathway (4), with the specific genes activated potentially varying
depending on the cell type involved.

The major class of ligand/receptors pairs responsible for acti-
vating NF-κB2 signaling are the receptors of the tumor necrosis
factor (TNF) family. Whilst the members of the TNFR superfam-
ily that carry cytoplasmic death domains do not typically trigger
non-canonical NF-κB signaling (e.g., TNFR1, Fas), those that lack
death domains are invariably found to stimulate this pathway to
some degree (5). Non-death domain members of the TNFR super-
family for which strong NF-κB2 activation has been demonstrated
include CD40 (also known as TNFRSF5), lymphotoxin beta recep-
tor (LT-βR also known as TNFRSF3), receptor activator of NF-κB
(RANK also known as TNFRSF11a), and B cell activating factor
of the TNF family receptor (BAFFR also known as TNFRSF13c).
This review focuses on NF-κB2 activation by BAFFR and its lig-
and BAFF and the specific outcomes for tissues which express
this receptor. The BAFF and BAFFR families of molecules will be
described as well as the proximal signaling events which have been
linked to this ligand/receptor pair. Finally, given the almost com-
plete confinement of BAFFR expression to B cells, the effects of
BAFF/BAFFR induced NF-κB2 on B cell survival, maturation, and
responses will be described.

INTRODUCING THE MAIN PLAYERS
THE LIGANDS: BAFF AND APRIL
B cell activating factor of the TNF family (BAFF, also known as
TNFSF13B) was identified simultaneously by several groups in
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1999, who variously named it BAFF, Blys, TALL-1, THANK, and
zTNF4 (6–10). BAFF was soon recognized to be a factor essen-
tial to the survival of mature, conventional B lymphocytes. Like
other members of the TNF ligand family, BAFF is type II trans-
membrane protein which forms a constitutive trimer. However,
it can be readily cleaved by furin to release as a soluble factor.
In soluble form BAFF can persist as a trimer or assemble into a
60mer, consisting of 20 trimers, which maintains receptor binding
capabilities and may indeed bind to more than one receptor at a
time (11, 12). Despite the crystallographic evidence for this mul-
timeric form, little is understood about its functional significance.
A splice variant of BAFF has also been identified, ∆BAFF, which
opposes the actions of BAFF by sequestering full length BAFF in
heteromultimers. Unlike full length BAFF, ∆BAFF is confined to
the membrane (13, 14).

A proliferation inducing ligand (APRIL, also known as
TNFSF13) is closely related to BAFF and they share some receptor
specificity. Cleavage of APRIL by furin convertase occurs at the
Golgi apparatus (15) and soluble trimeric APRIL is subsequently
secreted from the cell. As such, membrane bound forms of APRIL
are not observed at the cell surface. However a fusion protein
formed from trans-splicing of TNF-related weak inducer of apop-
tosis (TWEAK, also known as TNFSF12) and APRIL, known as
TWE-PRIL is membrane bound and displays the APRIL receptor
binding domain at the cell surface (16). TWE-PRIL is biologically
active, however its physiological role is yet to be identified. Solu-
ble APRIL trimers have been shown to interact via non-receptor
interacting sites with cell surface heparin sulfate proteoglycans
(HSPG), which is thought to create multimeric forms that are
more biologically active than cell-free APRIL trimers (17–19). Het-
erotrimers of BAFF and APRIL have also been identified (20) and
have been shown to be present in the sera of patients with various
autoimmune diseases, though their contribution to disease or any
physiological function has not yet been elucidated.

Cells of the innate immune system, including neutrophils,
macrophages, monocytes, and dendritic cells, are the main pro-
ducers of BAFF and APRIL. More recently a number of non-
hematopoietic cells have been identified which also produce BAFF
and/or APRIL, including osteoclasts, some epithelial cells, and
astrocytes to name a few. Many of these have been identified at sites
of disease and as such may be responsible for maintaining a local
B cell population in response to disease [reviewed in Ref. (21)].

THE RECEPTORS: TACI, BCMA, AND BAFFR
BAFF and APRIL share binding to two TNFR family members:
transmembrane activator and calcium modulator and cyclophilin
ligand interactor (TACI, also known as TNFRSF13B) and B cell
maturation antigen (BCMA, also known as TNFRSF17). Addi-
tionally BAFF, but not APRIL, is also able to interact with a
third receptor, BAFFR (TNFRSF13C). However a splice variant
of APRIL has been detected in mice which shows some affinity
for BAFFR (22). All three receptors display the trimeric structure
common to TNFR members and contain TNF receptor associ-
ated factor (TRAF) binding sites in their cytoplasmic domains
but lack death domains. Amino acid residues in BAFF that are
involved in TACI binding have been identified (23), although the
extent to which these are also required for binding to BAFFR and

BCMA is yet to be determined. The expression of all three recep-
tors is restricted mainly to B lymphocyte lineage cells. Both BAFFR
and TACI are widely expressed on all B cells, with BAFFR lev-
els increasing as the B cells mature. TACI is particularly high on
marginal zone (MZ) and B1 B cells in the mouse and CD27+ mem-
ory B cells in humans. BCMA expression is restricted to plasma
cells (PCs) in the mouse, though in humans it is also expressed
on some germinal center (GC) and memory B cells (24, 25).
On non-B cells, BAFFR is expressed on activated T cells and T
regulatory cells (26), whilst TACI is expressed on dendritic cells
and monocytes (27, 28). However in contrast to their roles in B
cell biology, little is known about their roles in these other cells
types.

TACI is able to recruit TRAFs 2, 5, and 6 to its cytoplasmic
domain (29) and has been shown to activate NF-κB1, AP-1, and
NFAT signaling pathways (30). BCMA has binding sites for TRAFs
1, 2, and 3 in its cytoplasmic tail and is capable of activating NF-
κB1, Elk-1, p38 MAPK, and JNK signaling pathways (31). BAFFR
contains only a single TRAF binding site, specific for TRAF3 and
efficiently activates the NF-κB2 signaling pathway (32). Given
these characteristics of the receptors, the majority of this review
will focus on BAFFR and it role in activating non-canonical NF-κB
signaling.

BRIDGING THE GAP FROM RECEPTOR TO TRANSCRIPTION
FACTOR
An outline of NF-κB2 signaling was given in the introduction,
however a more in depth description of the proximal signal-
ing events which lead to the activation of NF-κB2 transcription
programs in response to BAFF/BAFFR ligation is given below
(Figure 1). These events have been recently elucidated using
mainly in vitro systems employing on both CD40 and BAFFR
as the activating receptors. A more complete understanding of
the molecular events facilitating NF-κB2 activation in response
to BAFFR ligation will aid in understanding how the molecules
involved have been manipulated in vivo in order to reveal the tissue
specific outcomes of BAFF/BAFFR-mediated NF-κB2, which will
be discussed in Section “Tissue Responses and Effector Functions:
The Outcomes of NF-κB2 Signaling in Response to BAFF.”

THE ABSENCE OF BAFFR LIGATION: KEEPING NF-κB2 SWITCHED OFF
In contrast to many other signaling pathways, the initiation of NF-
κB2 signaling by BAFFR actually results from the de-repression of
the pathway, rather than its activation. The key kinase in the path-
way, NF-κB inducing kinase (NIK) is constitutively degraded by
the proteasome in the absence on BAFFR ligation (33). A complex
consisting of TRAF2, TRAF3 and the cellular inducer of apoptosis
proteins 1 or 2 (cIAP1/2) is responsible for this degradation. While
all three components of the complex have ubiquitin ligase capa-
bility, only the cIAPs have been shown to mediate the attachment
of K48 ubiquitin linkages, which direct proteins to the proteasome
for degradation (34, 35). Both TRAF2 and TRAF3 harbor RING
domains in their N termini, however their ubiquitin ligase activ-
ity is thought to be restricted to K63 ubiquitin linkages which are
involved in signaling interactions rather than degradation of pro-
teins (36, 37). Thus the role of TRAF2 and TRAF3 is thought to
be acting as a molecular bridge. TRAF3 is able to directly interact
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FIGURE 1 |The molecular details of BAFF/BAFFR-mediated activation
of NF-κB2 signaling pathway. (A) In the absence of BAFF a complex
consisting of TRAF2, TRAF3, and cIAP1/2 facilitate the degradation of NIK,
the key kinase involved in activation of NF-κB2 signaling. p100 inhibits
NF-κB2 activation by sequestering RelB in the cytoplasm. (B) Following
BAFF ligation of BAFFR, TRAF3 is recruited to the receptor and
subsequently degraded by the combined actions of TRAF2 and cIAP1/2.
Lack of TRAF3 deactivates the TRAF/cIAP complex, releasing NIK from
degradation and allowing it to accumulate in the cell. NIK then facilitates
degradation of p100 via direct phosphorylation and phosphorylation of

IKKα. p100 is subsequently partially degraded and active p52/RelB dimers
are able to migrate to the nucleus and initiate NF-κB2 specific gene
transcription programs. Refer to Sections “The Absence of BAFFR
Ligation: Keeping NF-κB2 Switched Off” and “Turning NF-κB2 on in
Response to BAFFR Ligation” of text for further details. Negative control
mechanisms which impact on NF-κB2 activation are indicated within
dashed boxed, including OTUD7, Act1, IKKα, and nuclear p100, refer to
Section “Negative Control Mechanisms Limiting BAFFR Induced NF-κB2”
of the text for further details. Small black circles represent ubiquitin, small
red circles with P are phosphorylations.

with NIK and it has long been recognized that this interaction
is followed by the ubiquitylation and subsequent degradation of
NIK (33). The interaction between TRAF2 and cIAP1/2 was more
recently demonstrated to be essential for K48 ubiquitylation of
NIK and the cIAP proteins were identified as the ubiquitin ligases
responsible (38, 39). Interaction between TRAF2 and TRAF3 is
the final step that brings the ubiquitin ligase, cIAP1/2 into close
proximity with its target, NIK (40, 41). Indeed a fusion protein
consisting of the RING and zinc finger domains of TRAF2 and
the TRAF domain of TRAF3 was able to compensate for both
TRAF2 and TRAF3 in the ubiquitin ligase complex and, along
with cIAP1/2, facilitate the degradation of NIK (41).

TURNING NF-κB2 ON IN RESPONSE TO BAFFR LIGATION
The extracellular interaction between BAFF and BAFFR facilitates
the recruitment of TRAF3 to the cytoplasmic domain of BAFFR,
via a PVPAT binding site (32) which is unable to recruit other
TRAF family members (42). Following recruitment to BAFFR,
TRAF3 undergoes proteasomal degradation (33), a process which
requires TRAF2 and cIAP1/2. Indeed cell line studies using CD40
engagement as a stimulus indicated that the K63 ubiquitylation
of cIAP1/2 by TRAF2 contributed to enhanced activity of the
cIAP’s own ubiquitylation action. The target of cIAP1/2’s K48
ubiquitylation action was TRAF3, resulting in its degradation
by the proteasome (40). No direct interaction between cIAP1/2
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and TRAF3 has ever been shown, which suggests that TRAF2
plays a dual role in this process: it both recruits the ubiquitin
ligase, cIAP1/2 to its target, TRAF3 via direct interaction with
both proteins, as well as activating cIAP1/2, by K63 ubiquity-
lation, which optimizes the subsequent K48 ubiquitylation and
degradation of TRAF3. It is likely a similar process occurs at
the BAFFR and this is supported by in vivo evidence showing
that TRAF3 is not efficiently degraded in TRAF2-deficient B cells,
which express BAFFR and are subject to continual BAFFR ligation
(43). It is not currently understood how the K63 polyubiquiti-
nation of cIAP1/2 promotes its own K48 ubiquitylation activity.
It is tempting to speculate that this molecular mark on cIAP1/2
may contribute to directing its activity away from NIK and toward
TRAF3. However it is equally possible that this change in specificity
is due to conformational changes in TRAF3 caused by binding to
BAFFR (42) or even the subcellular location of the event, that
is proximal to BAFFR and thus the cell membrane. It is equally
possible that K63 ubiquitination of cIAP1/2 results in the subse-
quent recruitment of another protein that acts to modulate the
specificity of cIAP1/2, however as yet no such protein has been
identified.

The recruitment to BAFFR and subsequent degradation of
TRAF3 disrupts the cytoplasmic complex of TRAF2/TRAF3/
cIAP1/2, not only by the removal of TRAF3, but also by the recruit-
ment of TRAF2 and cIAP1/2 to the vicinity of the BAFFR in order
to mediate the degradation of TRAF3. These events mean that
NIK is no longer targeted for constitutive degradation and sub-
sequently accumulates within the cell. The requirement for NIK
accumulation explains the slower kinetics of the non-canonical
NF-κB pathway compared to canonical NF-κB signaling (44)
and is thought to result in the phosphorylation of NIK, possi-
bly via autophosphorylation (45). Recent evidence suggests that
this phosphorylation of NIK is not necessary for its activity as the
kinase domain is in the active conformation even in the absence of
phosphorylation (46). Thus it appears that it is the rescue of NIK
from degradation and its subsequent accumulation in the cell that
is the critical step in activating NF-κB2 signaling. NIK is capa-
ble of both phosphorylating p100 directly, at serines 866 and 870
(3), as well as phosphorylating another p100 kinase, IKKα (47).
IKKα phosphorylates p100 at serine 822 (1) and it is thought that
the combination of all three p100 phosphorylations is required to
initiate the processing of p100 to p52 (48, 49). This final process-
ing step is mediated by beta-transducin repeat containing protein
(β-TrCP), a component of the SCF (Skp1-Cullin-1/Cdc53-F box
protein) ubiquitin ligase complex (50). Active p52/RelB dimers are
then free to migrate to the nucleus to initiate gene transcription
programs (Figure 1).

A number of other positive mediators of NF-κB2 signaling have
recently been identified whose contribution is not well under-
stood. While the BAFFR cytoplasmic domain appears to contain
only one TRAF binding site, specific for TRAF3, recent in vitro
evidence suggests that it may also interact with TRAF1 (51). The
presence of TRAF1 was demonstrated to decrease TRAF3, stabi-
lize NIK, and increase p100 processing, though these functions
were not a result of competing with TRAF3 for receptor bind-
ing. More recently TRAF1 has been shown to form heterotrimers
with TRAF2, which display enhanced interaction with cIAP2 over

the TRAF2 homotrimers (52). Thus TRAF1 may contribute to
NF-κB2 activation by helping TRAF2 to enhance cIAP-mediated
TRAF3 degradation. A further alternative is that TRAF1 may
directly interact with NIK, stabilizing it and interfering with its
TRAF2/TRAF3/cIAP1/2-mediated degradation, though the study
suggesting this mechanism used TNFα as a stimulus, presumably
acting through its non-death domain receptor TNFR2 (53).

It has been suggested that Mucosal associated lymphoid tis-
sue lymphoma translocation gene 1 (MALT1) is required for p100
phosphorylation, optimal p100 processing and p52/RelB nuclear
translocation (54). MALT1 was shown to interact with TRAF3 and
was therefore proposed to act as a scaffold for the TRAF/cIAP com-
plex. However, molecular evidence for this is currently lacking.
Interestingly the MALT1 binding partner B cell CLL/lymphoma
10 (Bcl10) has also been implicated both directly (55) (though
through LPS stimulation, rather than BAFF stimulation) and indi-
rectly (56, 57) to contribute to NF-κB2 signaling. Whether these
contributions also require MALT1 is largely unknown and requires
further investigation.

NEGATIVE CONTROL MECHANISMS LIMITING BAFFR INDUCED NF-κB2
A number of mechanisms have been identified which target var-
ious components of this pathway as a way of limiting ongoing
NF-κB2 signaling (Figure 1).

A further layer of control exists with respect to NF-κB2 or p100
itself: the presence of nuclear p100, which inhibits RelB binding to
DNA. The ubiquitylation and subsequent degradation of nuclear
p100 has recently been shown to be mediated by a different subunit
of the SCF ubiquitin ligase complex, F box/WDF-repeat contain-
ing protein 7 (Fbxw7) and is thought to be constitutive (58, 59).
Thus mechanisms affecting the function of Fbxw7 may impact on
the efficiency of NF-κB2 activation.

Recently the deubiquitinating enzyme (DUB) ovarian tumor
domain containing 7B (OTUD7B, also known as Cezanne) has
been identified as the DUB responsible for removing degrada-
tive K48 ubiquitin chains from TRAF3 (60). OTUD7B was shown
to be indirectly recruited to the receptor along with the TRAF3,
TRAF2, and cIAP proteins in response to receptor ligation. Thus
it is proposed to provide a negative feedback loop to oppose
signal-induced activation of NF-κB2.

TRAF3 interacting protein 2 (TRAF3IP2, also known as Act1)
is recruited to BAFFR, via its interaction with TRAF3. Mice lack-
ing TRAF3IP2 exhibit B cell hyperplasia (61), suggesting that
TRAF3IP2 is a negative regulator of B cell survival possibly via
modulation of NF-κB2 signaling (see next section for a descrip-
tion of the contribution of NF-κB2 to B cell survival). However its
mechanism of action is currently not understood and whether
it exhibits its function independently of BAFFR ligation or in
response to it, is unknown. The B cell hyperplasia phenotype is
partially B cell extrinsic as B cell specific deletion of TRAF3IP2
produces a milder phenotype (61).

NF-κB inducing kinase is also subject to negative feedback con-
trol in response to receptor ligation, which was independent of
the TRAF/cIAP complex. NIK can be phosphorylated by IKKα

which results in its destabilization and subsequent degradation by
the proteasome. Whether this involved ubiquitylation and which
ligase was involved has not be determined (62).
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TISSUE RESPONSES AND EFFECTOR FUNCTIONS: THE
OUTCOMES OF NF-κB2 SIGNALING IN RESPONSE TO BAFF
Many of the studies investigating the role of TRAFs and cIAPs in
NF-κB2 activation were performed in vitro using cell lines, MEFs
and in some cases utilized synthetic antagonists. These studies in
many cases and did not examine BAFFR-mediated NF-κB2 activa-
tion, but rather utilized a variety of other TNFRs including CD40
and LT-βR in order to study NF-κB2 activation. Thus while these
studies have allowed us to delineate the cytoplasmic events which
contribute to NF-κB2 activation, they have not contributed greatly
to our knowledge of the physiological outcomes of NF-κB2 activa-
tion, especially downstream of BAFF/BAFFR ligation in primary B
cells. Importantly in vivo work has provided much greater insight
in this respect, in addition to supporting much of the mechanistic
data obtained in vitro.

Although the non-canonical NF-κB pathway has been clearly
linked to a number of physiological responses, in some cases
the activating receptor/ligand pair has not been clearly identified.
Given the restriction of the expression of BAFF receptors to the
lymphoid compartment, it is unsurprising that most identified
roles for BAFF are in lymphocytes. Indeed the largest body of evi-
dence for the role of BAFF mediated NF-κB2 signaling is in relation
to B cell biology, including peripheral B cell survival and matura-
tion, the generation of antibody response and the maintenance of
PCs, all of which are further discussed below (Figure 2). Interest-
ingly, NF-κB2 signaling is also essential for the development and
organization of secondary lymphoid organs such as spleen, lymph
node and Peyer’s patches [reviewed in Ref. (63)]. However these

functions of NF-κB2 appear to be mediated entirely by LT-βR sig-
naling, and do not involve BAFF or its receptors and thus will not
be further discussed here.

PERIPHERAL B CELL SURVIVAL AND MATURATION
B cells, like all cells of the hematopoietic lineage develop from
hematopoietic stem cells in the bone marrow. The defining fea-
ture of B cell development is the expression of a B cell receptor
(BCR), composed of immunoglobulin heavy and light chains
derived from V(D)J recombination, which combine to define the
unique specificity of each BCR and also of the antibody that the
B cell will secrete should it eventually differentiate into a plasma
cell. Pre-B cells in the bone marrow express only a recombined
immunoglobulin heavy chain along with a pseudo-light chain.
Final rearrangement of the light chain immunoglobulin genes
and expression of a fully functional BCR is the defining feature
of an immature B cell in the bone marrow which is then ready
to egress into the periphery. In the periphery immature B cells
have been further categorized into transitional subsets T1, T2, and
T3. There is much controversy of the number of these subsets
(some researchers defining two T2 subsets, a T2 follicular and T2
MZ), their position in the schema of development and even their
functionality (it is possible that the T3 population represent not a
transitional subset of immature B cells, but rather an anergic pop-
ulation). So while the exact developmental pathways of immature
B cells in the periphery are not well defined, their outcomes are.
Two subsets of mature B cells can be found in the periphery: follic-
ular B cells, found in the spleen, lymph nodes and circulating in the

FIGURE 2 | Phenotypic outcomes of B cells in response to
BAFF/BAFFR-mediated NF-κB2 activation. Activation of
non-canonical NF-κB signaling in response to BAFF contributes to key
events throughout the lifespan of a B cell. These include facilitating
the survival of immature (Imm) B cells in the periphery and activating
transcriptional programs which allow them to mature into follicular

and marginal zone (MZ) B cells; contributing to some T-independent
immune response; extending the duration of germinal center (GC)
reactions; and maintaining long lived plasma cells (PCs) in the bone
marrow. Refer to Section “Tissue Responses and Effector Functions:
The Outcomes of NF-κB2 Signaling in Response to BAFF” of text for
further details.
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blood,and MZ B cells, a sessile population found only in the spleen.
The various genetically modified mice lines discussed below have
demonstrated the importance of BAFF/BAFFR-mediated NF-κB2
signaling to the survival of mature peripheral B cell subsets and
their maturation (Figure 2). It should be noted that a further pop-
ulation of B cells exists, known as B1 B cells. These arise in the fetal
liver and mainly populate the peritoneal cavity, though some are
also found in the spleen. Their survival appears to be independent
of BAFF and BAFFR signaling and thus they will not be further
discussed here.

BAFF-deficient (64, 65) and BAFFR-deficient (66, 67) mice
exhibit very similar phenotypes, with normal early B cell develop-
ment in the bone marrow, but a paucity of peripheral B cell popu-
lations after transitional stage 1, suggesting that BAFF/BAFFR sig-
naling is essential for B cell maturation and survival in the periph-
ery. In addition a naturally occurring mutant strain A/WySnJ,
which lacks peripheral B cells, was identified to have a mutation
in the Tnfrsf13c gene that encodes BAFFR (68, 69) further vali-
dating the role of BAFF and BAFFR in supporting peripheral B
cell survival. In contrast, BAFF transgenic mice display expanded
mature B cells in the periphery, demonstrating that the consti-
tutive production of BAFF is limiting and restricts total B cell
numbers in wild-type mice (70, 71). It was of course possible that
signaling through the other BAFF receptors may contribute to
B cell survival. However, the phenotype of BCMA- and TACI-
deficient mice, demonstrate that BAFF/BAFFR signaling is the
main contributor to this phenotype. BCMA-deficient mice do not
display any B cell specific phenotype (65, 72) and TACI-deficient
mice actually exhibit a slight hyperplasia of B cells, suggesting
negative regulatory role for this receptor in maintaining B cell
populations (73, 74).

The accumulation of B cells in BAFF transgenic mice is associ-
ated with autoantibody production and autoimmune manifesta-
tions (70, 71) suggesting that induced or increased production of
BAFF may rescue some self-reactive B cells from elimination from
the repertoire. This was verified to be the case using transgenic
mouse models of B cell self-reactivity (75, 76) and may contribute
to the onset of disease in a number of human autoimmune diseases
associated with increased levels of circulating BAFF (21).

As described above, BAFF/BAFFR signaling efficiently activates
the NF-κB2 pathway and genetic evidence also demonstrates that
it is this pathway that primarily supports peripheral B cell survival.
Thus NF-κB2-deficient mice also display a deficit in peripheral B
cells (77, 78) and more importantly the survival ex vivo of those
that do exist cannot be rescued by addition of BAFF, empha-
sizing that this pathway is required to facilitate BAFF’s survival
effect (79). The survival of some periphery B cells to maturity
in NF-κB2-deficient mice suggests that other signaling pathways
also contribute to B cell survival and maturation. Indeed NF-
κB1/NF-κB2 double-deficient mice show a more severe loss of
peripheral B cells (80) and certainly NF-κB1 signaling activated
by the BCR contributes to B cell survival. At least part of the
canonical pathway’s contribution is indirect, as p100 and RelB are
NF-κB1 regulated genes (81–83). Thus canonical activation may
be required to furnish the cell with sufficient components of the
non-canonical pathway to allow it to promote B cell survival (84).
Over activation of the canonical pathway can substitute for loss

of BAFFR (85). However, it is likely that under physiological con-
ditions both pathways contribute to B cell survival and that the
BCR is the primary activator of canonical NF-κB signaling, whilst
BAFFR is primarily responsible for activating NF-κB2 signaling.

NF-κB inducing kinase is the central kinase controlling NF-κB2
activity. Deficiency of NIK (86) or mutation in its kinase domain
(alymphoplasia – aly mice) (87) results in severe lymphoid abnor-
malities including loss of lymph nodes and Peyer’s patches as well
as B cell lymphopenia and splenic disorganization. As mentioned
above control of lymphoid organ formation and organization has
been attributed to LT-βR mediated NF-κB2 signaling and indeed
these mice phenocopy LT-βR-deficient mice with respect to these
phenotypes (88). These abnormalities are also more similar to
NF-κB1/NF-κB2 double-deficient mice than either of the single
deficient mice alone. Indeed it has been suggested that, in addition
to its role in NF-κB2 signaling, NIK may also contribute to NF-
κB1 signaling. Despite the many additional phenotypes present
in the aly mice, they retain the B cell lymphopenia common to
mice models with defects in BAFF/BAFFR signaling and NF-κB2
signaling. Thus the phenotype of NIK-deficient mice also reflects
the role of BAFFR-mediated NF-κB2 activation in B cell survival
and maturation.

In contrast to deletion of other components of the NF-κB2
pathway, deletion of IKKα results in perinatal lethality (89) sug-
gesting that this kinase has additional roles outside NF-κB sig-
naling. Bone marrow chimeras for IKKα-deficient fetal liver cells
or mice expressing a kinase-inactive version of IKKα, do display
B cell abnormalities similar to other mice models with defec-
tive NF-κB2, including a deficit in peripheral B cell numbers and
impaired GC formation (90, 91). However, given that non-NF-κB2
related roles for IKKα exist and may confound NF-κB2 related
phenotypes, further detailed description of these mice will not be
undertaken here.

One outcome of NF-κB2 signaling which is thought to promote
B cell survival is the upregulation of anti-apoptotic molecules such
as B cell CLL/lymphoma 2 (Bcl-2) (92, 93). Indeed transgenic
overexpression of Bcl-2 in mice models lacking functional BAFFR
signaling was sufficient to restore mature B cell populations (66, 94,
95). However while follicular B cells were observed in these models,
MZ B cells were not restored. This demonstrated that in addition
to providing survival signals to peripheral B cells, BAFF/BAFFR
signaling is also essential for the complete maturation of B cells
into MZ phenotype.

In line with this finding, mouse models with hyperactive NF-
κB2 signaling display an expansion of the MZ B cell population,
confirming that NF-κB2 signaling promotes this phenotypic out-
come. These models include BAFF transgenic mice (71), as well as
mice lacking components of the ubiquitin ligase complex which
facilitates NIK degradation, namely TRAF2, TRAF3, or the cIAPs
(43, 96–98). TRAF2 and TRAF3 play co-operative, but distinct
roles in facilitating both the constitutive suppression of NF-κB2
signaling and the BAFFR-mediated activation of this pathway, the
molecular details of which are described above. Mice completely
lacking either TRAF are perinatally lethal (99, 100). Thus the use
of a B cell specific deletion system to investigate their role in B
cells has been important in furthering our understanding of these
molecules. Lack of either TRAF2 or TRAF3 specifically in B cells
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led to increased NF-κB2 signaling and an enlarged mature B cell
population, with the largest expansion being in the MZ compart-
ment of the spleen (43). While loss of TRAF2 or TRAF3 from B
cells produced a similar phenotype, the implication from in vitro
work that the two molecules are not performing the same func-
tion in regulating BAFFR signaling is supported by evidence from
in vivo work. Firstly, the fact that loss of either TRAF resulted in the
same phenotype, that is one was not able to completely compen-
sate for the loss of the other. Secondly, mice lacking both TRAF2
and TRAF3 from their B cells did not display a more extreme phe-
notype in terms of levels of NF-κB2 activation or expansion of
mature B cell populations, as would be expected if TRAF2 and
TRAF3 were able to partially compensate for each other (43).

In contrast to the TRAF proteins, cIAP1 and cIAP2 are able
to compensate for each other in their roles in BAFFR signaling.
Thus mice completely deficient in cIAP2 or mice lacking cIAP1 in
B cells, both displayed normal NF-κB2 activation in their B cells
and consequently normal B cell survival and maturation. How-
ever mice lacking both cIAP1 and cIAP2 from their B cells had
hyperactive NF-κB2 and expanded mature B cell populations (98).
cIAP1/2-deficient B cells also contained high levels of TRAF3 (98).
This demonstrated definitively that in vivo cIAP1 and cIAP2 are
able to compensate for each other in facilitating both the degra-
dation of NIK to suppress NF-κB2 activation and the degradation
of TRAF3 in order to activate it. Indeed the ubiquitin ligase activ-
ity of cIAPs was shown to be essential in vivo to mediate these
processes by the development of mice in which cIAP2 contained
mutations which inactivated its E3 ligase activity (101). These mice
displayed increase peripheral B cells and expanded MZs in the
spleen. The authors proposed that mutant cIAP2 also had the affect
of inhibiting the association of cIAP1 with TRAF2 and thus with
the ubiquitin ligase complex which regulates NIK, thus explaining
why in this case cIAP1 was not able to compensate for cIAP2 as it
is able to in the complete absence of cIAP2.

The loss of either BAFF (43), or BAFFR (98) can be completely
compensated for in terms of B cell survival and maturation by
disruption of the TRAF/cIAP ubiquitin ligase complex and thus
constitutive hyperactivation of NF-κB2. Whilst other evidence
presented above shows that BAFF, BAFFR and NF-κB2 signaling
are all able to individually contribute to B cell survival and matu-
ration, it is these experiments which definitively demonstrate that
activation of NF-κB2 sufficiently compensates for loss of BAFF or
BAFFR. That is the primary, perhaps even the exclusive purpose of
BAFF/BAFFR signaling in B cells is the activation of NF-κB2 sig-
naling and it is this pathway which facilitates the transcriptional
effects required in order for B cells to survive and mature in the
periphery. However, because of the tight link between BAFF sig-
naling and B cell survival, the specific genes that are upregulated
by BAFF in B cells and their roles in B cell physiology have been
difficult to verify and are not well understood.

B CELL ANTIBODY RESPONSES
The main function of B cells is to protect the body from foreign
invasion by the production of antibodies. A B cell encounter-
ing a foreign antigen that matches the specificity of its BCR can
ultimately differentiate into a plasma cell, a specialized antibody-
producing factory capable of making large amounts of secreted

antibodies. Most foreign antigens illicit a T cell dependent anti-
body response, in which activated B cells form GCs where they are
able interact with cognate T follicular helper cells as well as receive
survival signals from support cells such as follicular dendritic cells
(FDC) in order to select cells with high affinity for the foreign anti-
gen that have been generated by somatic hypermutation (SHM) of
the immunoglobulin genes [reviewed in Ref. (102)]. Alternatively
some antigens are able to illicit maximal responses from B cells
even in the absence of T cells and germinal center formation –
that is they illicit T cell independent antibody responses. These
antigens tend to be generic antigens, for example the repeating car-
bohydrate units which make up bacterial cell walls. BAFF/BAFFR
signaling has been implicated in both these processes (Figure 2).

The germinal center reaction
Despite the severe restriction on the survival of peripheral B cell in
mice deficient for either BAFF or BAFFR, those remaining are able
to form of relatively normal GCs in which SHM can occur (67,
103, 104). Thus BAFF/BAFFR signaling activating NF-κB2 is not
required for these processes. However it appears they do play a role
in the maintenance of GCs as GCs in mice lacking BAFF/BAFFR
signaling dissipate a few days after they form. Interestingly the rea-
sons for the instability differed between the two models. A lack of
BAFF meant the FDC reticulum, important for trapping and pre-
senting immune complexes failed to mature, probably leading to a
lack of stimulation being received by the B cells present in the GC
and subsequent breakdown of the GC (103, 104). However the
FDC reticulum was normal in A/WySnJ (BAFFR mutant) mice,
and B cells instead exhibited a proliferation defect after initial ger-
minal center formation (103). The most obvious explanation for
this discrepancy is that BAFF acts directly on FDCs to promote
their maturity and does so through a receptor other than BAFFR.
In addition BAFF acting through the BAFFR on B cells is also
required for germinal center maintenance. However this expla-
nation is unlikely as both TACI and BCMA-deficient mice (72,
73) display normal GC formation, and therefore were unlikely to
be the receptors responsible for the failure of FDC maturation in
BAFF-deficient mice. Whatever the precise roles of BAFF are in
supporting GC persistence, the fact that activated FDCs are a rich
source of BAFF (105) makes them the most likely source of the
BAFF required to support the GC.

A second explanation is that the maturity of the B cells entering
the GC may impact on FDC maturation as this process is known
to require interaction with GC B cells and those lacking signals
from BAFF may be too immature to provide these signals to the
FDCs. Indeed some B cells in A/WySnJ are able to mature past
the transitional stages in contrast to BAFF- or BAFFR-deficient
mice (106), thus the greater maturity of the these cells may explain
their ability to support maturation of the FDC reticulum, where
the B cells from BAFF-deficient mice cannot. The increased matu-
rity of B cells in A/WySnJ mice may be due to the ability of the
mutant BAFFR to retain some signaling, as only the last 8 amino
acids of this mutant receptor have been replaced with an unre-
lated transposon sequence (69). An examination of GC formation
in BAFFR-deficient mice would help to answer this question and
indeed like BAFF-deficient and A/WySnJ mice GCs in BAFFR-
deficient mice form, but fail to be maintained (67), However,
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whether this is due to lack of FDC maturation or a B cell prolifer-
ation defect has unfortunately not been investigated. The authors
did suggest that the defect they observed in BAFFR-deficient mice
was less severe than that observed in BAFF-deficient mice. If this is
the case it does suggest that BCMA or TACI, while not playing any
essential role in GC maintenance as indicated by the phenotypes
of their respective knockout mice, may be able to compensate for
some of the functions of BAFFR in its absence.

It is highly likely given the involvement of BAFFR and its
strong activation of the NF-κB2 pathway, that NF-κB2 signaling
is involved in GC maintenance. However this has been difficult
to confirm as NF-κB2-deficient mice completely fail to form GCs
and FDC networks suggesting the NF-κB2 is a key signaling path-
way involved in the initiation of GCs as well as their maintenance
(77, 78). Neither BAFF nor BAFFR are involved in initial GC for-
mation, suggesting that in this case the NF-κB2 pathway is being
activated through a different ligand, possibly lymphotoxin αβ. Of
course without formation of GC it is impossible to assess their
maintenance. Adoptive transfer experiments in RelB-deficient
mice showed that in order to restore GC formation, RelB was
required in radioresistant stromal cells rather than hematopoietic
cells (107). However, as GCs were only examined on day 10 post-
immunization, it is impossible to say whether GC maintenance was
also defective when RelB was absence from hematopoietic cells. In
alymphoplasia (aly – NIK mutant) mice, similar adoptive trans-
fer experiments revealed that functional NIK was indeed required
in the stromal cells for FDC formation, but was also required
in hematopoietic cells for GC formation (108). These apparently
conflicting results as to the requirement for NF-κB2 signaling in
hematopoietic cells may be explained by functional redundancy of
RelB with another member of the NF-κB family, whereas NIK, the
central kinase of the NF-κB2 pathway is absolutely required. While
these results attempt to identify the cell types in which NF-κB2
signaling is required, it remains difficult to link its usage with the
activating receptor,as indeed it is likely that more than one receptor
contributes at various stages in GC formation and maintenance.
Thus the questions surrounding GC maintenance remain.

Whilst normal NF-κB2 appears necessary for GC formation,
even hyperactive NF-κB2 cannot rescue GC formation in the
absence of other signals required, for example T cell help in
the form of CD40-CD40L interactions. The adapter molecules
TRAF2, TRAF3, and cIAP1/2 are all involved in CD40 signaling
in addition to their regulation of BAFFR signaling. While indeed
they maintain their role as gatekeepers of NF-κB2 signaling, almost
certainly through analogous activation methods as BAFFR, they
are also variously involved in the JNK, MAPK, and NF-κB1 path-
ways. Generally TRAF2 and cIAP1/2 are positive mediators of these
pathways, whereas TRAF3 is a negative regulator (40, 98, 109).
Thus in mice lacking these molecules in their B cells, TRAF3-
deficient B cells are able to form and maintain GCs as they retain
competent CD40 signaling, whereas GCs are stunted or almost
completely absent in the TRAF2 and cIAP1/cIAP2-deficient mice,
due to a lack of CD40 signaling, despite high NF-κB2 signal-
ing (98). Likewise over expression of BAFF and thus NF-κB2 in
BAFF transgenic mice is unable to rescue GC formation in CD40-
deficient mice (110). These results emphasize the complex nature
of the signaling required in order to establish and maintain GC

reactions. BAFF/BAFFR signaling contributes to these processes,
but it is not a master regulator of them, as it is with B cell survival
and maturation.

T-independent antibody responses
The involvement of both TACI and BAFF in T-independent anti-
body responses seems to be quite clear [reviewed in Ref. (111)]. It is
possible that the multimeric BAFF 60mer is the ligand responsible
for these functions (112). However, as TACI is not a strong inducer
of NF-κB2 either via its interaction with BAFF or APRIL (84), it is
unlikely that NF-κB2 signaling plays a role in these processes. For
some T-independent antigens the BAFFR, and thus possibly NF-
κB2 signaling, do appear to be involved. Antibody titers were lower
in BAFFR-deficient mice compared to wild-type mice in response
to NP-Ficoll or TNF-Ficoll but similar in response to Pneumovax
vaccine (66, 67), suggesting that certain specific responses may
require BAFFR signaling. In addition, some human patients with
BAFFR deficiency also showed defects in mounting T-independent
responses (113). However it remains unclear if BAFF/BAFFR
signaling is directly required during a T-independent antibody
response. It is possible that the defects observed in the absence of
BAFFR, may be ascribed at least in part to a dramatic decrease in
MZ B cells as this subset is recognized to be the origin of the early
responders to T-independent antigens (114).

PLASMA CELL MAINTENANCE
Plasma cells are highly differentiated B cells capable of secret-
ing large amounts of antibody and, along with the production
of memory B cells, are the main B cell outcome of an immune
response. Whilst large numbers of antigen specific PCs exist dur-
ing and immediately following an immune response, over time
these numbers greatly reduce. However, it is thought that a small
number of the PCs resulting from a particular immune response
survive long term and are the source of “basal” immunoglobulin
found circulating within the body. The bone marrow has been
identified as a survival niche for these long lived PCs and a variety
of cells including stromal cells, myeloid cells and granulocytes all
contribute to the production of factors which attract and promote
the survival of PCs in these sites [reviewed in Ref. (115)]. Among
these survival factors are APRIL and BAFF. Neutralization of both
ligands is required in order to ablate plasma cell survival in the
bone marrow (19, 116), however it is likely that under physio-
logical conditions APRIL plays a greater role than BAFF. This is
supported by the findings that APRIL is better than BAFF at sup-
porting plasma cell survival in vitro (117) and in vivo plasma cell
survival in APRIL-deficient mice was greatly diminished, whereas
it was normal in BAFF-deficient mice (117, 118). BCMA is the
receptor which is most thought to contribute to plasma cell sur-
vival, with BCMA-deficient mice failing to sustain long lived PCs
in the bone marrow (119). It is possible, however, that TACI and/or
BAFFR may contribute to these responses.

Although BCMA is not thought to be a strong activator of
NF-κB2 signaling, there is evidence that NF-κB2 signaling can con-
tribute to plasma cell survival, at least in the disease state. Multiple
myeloma is late stage B cell malignancy that arises from PCs in the
bone marrow. Whilst the primary genetic lesions are immunoglob-
ulin gene translocations and hyperdiploidy, a large number of
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secondary genetic mutations also characterize the progression of
the disease and it is amongst these that the NF-κB pathways have
been strongly implicated (120–122). Mutations that activate NF-
κB2 signaling including inactivating mutation in TRAF2, TRAF3,
cIAP1, and cIAP2, as well as activating mutations or duplications
of NIK and NF-κB2 have been identified in patients with multiple
myeloma. These mutations are thought to contribute to the ability
of the tumor to become independent in terms of its survival from
the bone marrow microenvironment, that is no longer requiring
BAFF and APRIL and other survival factors produced in the bone
marrow. This in turn implies that NF-κB2 signaling is either nor-
mally involved in these processes for non-malignant PCs, or at
least it can compensate for the signaling pathways involved under
non-cancerous conditions. Thus it seems that BAFF induced NF-
κB2 signaling plays a role at almost every stage of a B cell’s life
(Figure 2).

CONCLUSION
In addition to multiple myeloma, BAFF signaling as been impli-
cated in a variety of autoimmune disorders, B cell malignancies
and immunodeficiency disorders. It is also emerging that BAFF
plays a role in regulating immune responses to infections [reviewed
in Ref. (123)]. While in many of these cases there is quite strong evi-
dence that BAFF contributes to disease, further molecular details,
such as whether BAFFR is the responsible receptor and whether
activation of NF-κB2 also contributes to disease, require additional
investigation. Given the central role of BAFF mediated NF-κB2
activation in the life span of B cells and the importance of B cells
in attempting to control (in the case of infection) or potentially
contributing to (in the case of autoimmunity) disease, it is likely
that this signaling pathway indeed impacts greatly on our state of
health and disease.
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