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Familial hemophagocytic lymphohistiocytosis (FHL) is an often-fatal hyperinflalmmatory dis-
order caused by autosomal recessive mutations in PRF1, UNC13D, STX11,and STXBP2.\We
identified a homozygous STX77 mutation, ¢.173T > C (p.L58P), in three patients presenting
clinically with hemophagocytic lymphohistiocytosis from unrelated Pakistani families. The
mutation yields an amino acid substitution in the N-terminal Habc domain of syntaxin-11 and
resulted in defective natural killer cell degranulation. Notably, syntaxin-11 expression was
decreased in patient cells. However, in an ectopic expression system, syntaxin-11 L58P
was expressed at levels comparable to wild-type syntaxin-11, but did not bind Munc18-
2. Moreover, another N-terminal syntaxin-11 mutant, R4A, also did not bind Munc18-2.
Thus, we have identified a novel missense STX77 mutation causative of FHL type 4. The
syntaxin-11 R4A and L58P mutations reveal that both the N-terminus and Habc domain of
syntaxin-11 are required for binding to Munc18-2, implying similarity to the dynamic binary
binding of neuronal syntaxin-1 to Munc18-1.
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INTRODUCTION

Hemophagocytic lymphohistiocytosis (HLH) is a hyperinflamma-
tory disorder clinically diagnosed based on fulfillment of five out
of eight criteria including fever, splenomegaly, bicytopenia, hyper-
triglyceridemia and/or hypofibrinogenemia, hemophagocytosis,
low/absent natural killer (NK) cell activity, hyperferritinemia,
and high soluble interleukin (IL)-2 receptor levels (1). Familial
hemophagocytic lymphohistiocytosis (FHL) typically presents in
infancy (2, 3). The incidence of FHL has been estimated to 1 in
50,000 live births (4). Chemo- and immunotherapy succeeds in
controlling the disease in the majority of patients, but persistent
remission is rarely obtained. At present, hematopoietic stem cell
transplantation (HSCT) is the only cure for FHL (5).

Familial hemophagocytic lymphohistiocytosis is associated
with autosomal recessive mutations in genes including PRFI,
UNCI13D, STX11, and STXBP2 (6-10). In addition, Griscelli syn-
drome type 2 and Chediak Higashi syndrome, associated with
autosomal recessive mutations RAB27A and LYST, respectively,
may also present with HLH and are in addition characterized
by hypopigmentation. These genes encode proteins required for
cytotoxic granule biogenesis, secretion, and target cell death (11).
STX11, associated with FHL type 4 (FHL4), has the shortest cod-
ing sequence among these genes and accounts for only a small

fraction of FHL patients. Relative to other FHL subtypes, patients
with STX11I non-sense mutations or StxI I-deficient mice typically
display less severe disease (12, 13). Although syntaxin-11 (Stx11)-
deficiency abrogates degranulation by both cytotoxic T cells and
NK cells (14, 15). The exact molecular mechanisms are not clear.
Stx11 has been shown to bind Munc18-2, as well as the SNARE
domain-containing proteins SNAP-23 and Vtilb (9, 10, 16, 17).
Missense mutations can be informative in elucidating how Stx11
acts to facilitate exocytosis. To date, only two STX11 missense
mutations have been reported (18).

In this study, we report a novel STX11 missense mutation in
three unrelated Pakistani families. The autosomal recessive muta-
tion abrogated NK cell degranulation. Interestingly, biochemical
analyses of this N-terminal mutation, in addition to another muta-
tion at the conserved N-terminus of Stx11, revealed binding of the
N-terminal Habc domain of Stx11 to Munc18-2, stabilizing Stx11
expression, and facilitating cytotoxic lymphocyte exocytosis.

MATERIALS AND METHODS

PATIENTS AND CONTROLS

The studies were approved by the ethics committee at the Karolin-
ska Institutet. Written consent was obtained from the patients’
families.
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CELLS AND ANTIBODIES

Peripheral blood mononuclear cells (PBMC) were isolated from
peripheral blood by density gradient centrifugation (Lymphoprep,
Axis-Shield) and maintained in complete medium (RPMI 1640
supplemented with 10% FBS and 2 mM tr-glutamine; all Invitro-
gen). LAK cells were generated as previously described (19). The
human erythroleukemia K562 and mouse mastocytoma P815 cell
lines were maintained in complete medium. HEK-293T cells were
maintained in DMEM (Invitrogen) supplemented with 10% FBS.
Rabbit polyclonal anti-Stx11 and Munc18-2 (Proteintech Group)
as well as mouse monoclonal anti-HA (clone 16B12, Covance) and
anti-actin (C4, Fischer Scientific) antibodies were used for West-
ern blotting. Mouse monoclonal anti-FLAG (M2, Sigma) was used
for immunoprecipitation.

FUNCTIONAL ASSAYS

For assessment of NK cell-mediated cytotoxicity, a standard 4-h
I Cr assay was used (14). Cytotoxic lymphocyte exocytosis was
assessed by flow cytometry, as previously described (15). Sam-
ples were acquired on a Calibur instrument (BD Biosciences) and
analyzed using Flowjo 9.4 software (Tree Star).

PLASMIDS AND SEQUENCE ANALYSES

Sequences encoding human Stx11 and Muncl8-2 were cloned
into a pDisplay vector backbone (Invitrogen) for expression on
N-terminally tagged proteins. Stx11 mutations were generated
by site-directed mutagenesis. Sequence analyses, alignments, and
phylogenetic trees were performed and created with CLC Main
Workbench software (v.6).

BIOCHEMICAL ANALYSES

Patient and control PBMC or LAK cells were lysed in lysis buffer
[20 mM Tris, pH 7.4,2 mM EDTA, 1% Triton-X-100, 10% glycerol,
100 mM NacCl, protease inhibitors (Roche)]. The protein concen-
tration in nuclei-depleted lysates was determined using Bradford
assay (Thermo Scientific). Proteins were separated by SDS-PAGE
(NuPAGE, Invitrogen), transferred to PVDF membranes (Milli-
pore). The membranes were blocked with 5% skimmed milk, and
blotted with specific antibodies. HEK-293T cells were transfected
(Lipofectamine, Invitrogen) with plasmids encoding wild-type or
mutated FLAG-tagged Stx11 (FLAG-Stx11) constructs, wild-type
HA-tagged Munc18-2 (HA-Munc18-2, the empty vector, or com-
binations thereof). Twenty-four hours following transfection, the
cells were lysed and the protein concentration was determined
by Bradford assay (Thermo Scientific). For pull-down experi-
ments, protein G-beads (Invitrogen) were pre-incubated with
anti-FLAG mAb, washed in lysis buffer, and incubated with lysates
from different FLAG-Stx11 transfected cells for 2 h at 4°C. Sub-
sequently, FLAG-Stx11-loaded beads were washed and incubated
with lysates from vector or HA-Munc18-2 transfected cells for 4 h
at 4°C.

RESULTS

CLINICAL AND IMMUNOLOGICAL CHARACTERIZATION OF PATIENTS
WITH A HOMOZYGOUS STX77 MISSENSE MUTATION

Here, we describe two infants and one 5-year-old child born to
unrelated Pakistani families that presented with HLH (Table 1).

Patient A and B presented with a laboratory parameters consistent
with a clinical diagnosis of HLH at the Aga Khan Hospital, Karachi.
Patient C also presented with a hyperinflammatory syndrome and
was later referred to the Aga Khan Hospital. For patient C, it
has not been possible to retrieve laboratory parameters at initial
presentation.

Due to suspicion of FHL, NK cell cytotoxicity, degranulation,
and intracellular expression of granule constituents was assessed.
All patients displayed defective lysis of K562 target cells and
degranulation by NK cells in response to K562 target cells or
engagement of the Fc receptor CD16 (Figures 1A,B). Notably,
cytotoxicity and degranulation were partially restored by IL-2
stimulation (Figures 1C,D). Moreover, expression of cytotoxic
granule constituents’ perforin, granzyme B, and CD107a was nor-
mal in patient NK cells, suggesting that granule integrity was not
impaired (Figure 2). On the basis of these functional and phe-
notypic assessments, mutations in genes required for lymphocyte
exocytosis and associated with FHL were suspected.

Sequencing of the coding regions and splice-sites of UNCI3D,
STX11,and STXBP2 revealed that all three patients were homozy-
gous for a novel STX11 mutation, ¢.173T > C (p.L58P) (Table 1).
The L58P localizes to an a-helical strand of the predicted Stx11
Habc domain. The parents were heterozygous for this STXI11
mutation, but did not have any recorded history of inflammatory
disease. In addition, patient A was heterozygous for arare UNCI13D
c.811C>T (p.P271S; frequency 0.001 in a Caucasian popula-
tion of 4294 individuals) variant inherited from the father and
homozygous for an uncommon UNCI3D ¢.2782C > T (p.R928C,
frequency 0.01 in a Caucasian population of 4294 individuals)
variant inherited from either parent. As no hypopigmentation was
evident in the patients, RAB27A and LYST were not sequenced.

A HOMOZYGOUS STX71 MISSENSE MUTATION RESULTS IN SELECTIVE

LOSS OF SYNTAXIN-11 EXPRESSION IN PATIENT NK CELLS

To gain insights into how the Stx11 L58P missense mutation
may cause disease, we analyzed Stx11 expression in PBMCs from
patient C and controls. Stx11 levels were found to be greatly
reduced in the patient (Figure 3A). PBMCs from the patient’s
mother displayed low Muncl8-2 expression as well as slightly
decreased syntaxin-11 expression. Although Munc18-2 levels were
comparable between the patient and controls, the loss of Stx11
expression may reflect differences in the distribution of immune
cell subsets or the inflammatory state between the patient and con-
trols. Thus, we generated LAK cells from patient C and controls.
LAK cells from the patient also displayed a selective loss of Stx11
expression, whereas Munc18-2 expression was similar to that of
control LAK cells (Figure 3B). LAK cells from the patient’s mother
displayed syntaxin-11 and Munc18-2 levels similar to those of con-
trol LAK cells. Thus, Stx11 L58P might either be poorly expressed
or be destabilized and degraded in the patient cells.

SYNTAXIN-11 R4A AND L58P MUTATIONS DISRUPT BINDING TO
MUNC18-2

Stx11 interacts with Munc18-2 and loss of Munc18-2 expression
has previously been shown to result in loss of Stx11 expression
as well, suggesting a requirement for Munc18-2 in stabilization
of Stx11 (9, 10). With respect to N-terminal peptide sequences,
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Table 1| Clinical, laboratory, and genetic findings in patients.

A B [

Ethnical origin Pakistan Pakistan Pakistan
Familial disease No Yes No
Parental consanguinity Yes Yes Yes
Sex Male Male Female
STX11 173T > C, Leub8Pro hmz 173T > C, Leub8Pro hmz 173T > C, Leub8Pro hmz
STXBP2 None detected None detected None detected
UNC13D ¢c.811C>T p.Pro271Ser htz None detected None detected

¢.2782C >T p.R928C hmz
Age at diagnosis-HLH 2 months 5years 48 months
Fever Yes Yes nd
Splenomegaly Yes Yes nd
Hepatomegaly Yes Yes nd
Hb (g/L) 55 71 nd
Neutrophils (10/L) 0.3 0.4 nd
Platelets (10%/L) 13 8 nd
Triglycerides (mmol/L) 5.1 5.5 nd
Fibrinogen (g/L) 0.28 0.16 nd
Hemophagocytosis No No nd
Ferritin (ng/L) 8636 1929 nd
sCD25 (U/mL) nd nd nd
NK cell activity? Deficient Deficient Deficient
NK cell degranulation Deficient Deficient Deficient
Neurological manifestations® None None nd
Pathological CSF nd nd nd
Treatment active disease Dexa, CsA, etoposide Dexa, CsA, etoposide nd
Remission at 2 months Yes Yes Lost to follow-up
Age at HSCT 15 months Not done nd
Outcome Deceased Deceased nd

2Defective: 10 lytic units or less.

bReported at some point during the course of the disease; nd=no data;, Dexa= dexamethasone; CsA= cyclosporine A; HSCT= hematopoietic stem cell

transplantation.

human Stx19, Stx1A, Stx1B, Stx2, Stx3, and Stx4 represent
close homologs to human Stx11 (Figure 4A). Remarkably, the
N-peptide as well as the sequence surrounding the Stx11 L58
residue in the Habc are highly conserved between Stx11 and
Stx1 isoforms, as well as other related Stxs (Figures 4B,C). Inter-
estingly, studies of neuronally expressed Stx1A and Muncl8-1
have revealed that the N-terminal residues (N-peptide) as well
as the N-terminal Habc domains of Stx1 mediate interactions
with Munc18-1 (20-22). As both the N-peptide and Habc domain
of Stx1A are closely conserved to those of Stx11, we evaluated
whether a Stx11 R4A mutation as well as the patient-derived
Stx11 L58P mutation located to the Habc domain would inter-
fere with binding of Munc18-2. Constructs for ectopic expression
of FLAG-tagged wild-type and mutant Stx11 were transfected into
HEK-293T cells. In transfection experiments, both Stx11 R4A and
L58P mutants were expressed at levels comparable to Stx11 wild-
type (Figure 4D). Notably, in pull-down experiments using beads
loaded with FLAG-tagged Stx11 wild-type and Stx11 mutants nei-
ther FLAG-tagged Stx11 R4A nor L58P mutants bound HA-tagged
Muncl8-2 (Figure 4E). In contrast, the C-terminal Stx11 Q268X
mutation previously associated with FHL4 (14), did not display

impaired binding of Munc18-2 (Figure 4E). Together, the data
show that mutations in the N-peptide or Habc domain of Stx11
can disrupt interactions with Munc18-2, demonstrating a critical
role for both the N-peptide and Habc domain of Stx11 in binding
of Muncl8-2.

DISCUSSION

We describe a novel autosomal recessive missense STXI1
¢.173T > C (p.L58P) mutation causative of FHL4 in three children
from different Pakistani kindreds. Stx11 expression was absent in
NK cells from a patient homozygous for this STX11 mutation.
Consistent with previous studies, the STX11 mutation was associ-
ated with defective degranulation by resting NK cells (14, 23). Of
note, whereas only STX11 mutations were detected in the other
patients, patient A also carried UNCI13D variants. By comparison,
this patient presented at an earlier age than the patient B and C,
and displayed less of a restoration of NK cell degranulation upon
IL-2 stimulation. Thus, although an abrogation of NK cell degran-
ulation is expected in Munc13-4 deficient patients, it is possible
that the UNCI3D variants contribute to the severity of disease
presentation in patient A.
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FIGURE 1 | Defective NK cell degranulation in patients with homozygous
STX11 ¢.173T > C mutations. (A-D) PBMC were isolated from three
patients with homozygous STX77 ¢.173T > C, p.L68P mutations, relatives
(n=10, all six parents in addition to four siblings) as well as transport (n=3)
and local controls (n=5). PBMC (A) freshly isolated or (C) stimulated with
12 overnight were mixed with ' Cr labeled K562 target cells. After 4 h,
5'Crrelease was quantified in supernatants and specific lysis was calculated.
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Symbols indicate individual values for patients or mean values for relatives
and controls. Error bars indicate SD. PBMC (B) freshly isolated or

(D) stimulated with IL-2 overnight were mixed with target cells and
antibodies, as indicated. The cells were stained with antibodies to lineage
markers and CD107a. The frequency of cells expressing surface CD107a was
determined by flow cytometry. Symbols indicate values for patients and bars
mean for relatives and controls. Error bars indicate SD.
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FIGURE 2 | Intracellular expression of CD107a, perforin, and
granzyme B in patients with homozygous STX177¢.173T>C
mutations. Intracellular expression of perforin, granzyme B, and CD107a
was examined in patient B and C, in addition to relatives (n=38, all four
parents in addition to four siblings) as well as transport (n=2) and local
controls (n=4). Expression of granule constituents was normalized
relative to that of the transport control. Bars indicate the mean value,
Error bars indicate SD.

By sequence homology to Stx1A, the Stx11 L58P mutation
is located in the first a-helix of the conserved Habc domain
of Stx11 (20). Substitution to a proline residue at this position
likely disrupts the conformation of the Stx11 Habc domain. Inter-
estingly, biochemical analyses examining ectopically expressed,
tagged Stx11 in a cell line revealed that the Stx11 L58P muta-
tion disrupted interactions with tagged Munc18-2. Mutations in
STXBP2 thatlead to loss of Munc18-2 expression also cause loss of
Stx11 expression in lymphocytes (9, 10). Thus, conversely, it is ten-
able that Stx11 mutations that disrupt Munc18-2 binding might
reduce Stx11 expression through a similar mechanism, explaining
the low expression of mutant Stx11 in patient cells.
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FIGURE 3 | Low expression of syntaxin-11 L58P in patient
lymphocytes. \Whole cell lysates (WCL) prepared from (A) PBMC or

(B) LAK cells from Stx11 L58P patient C and controls, as indicated, were
analyzed by Western blotting for Stx11 and Munc18-2. B-actin was probed
as a loading control. Densitometry values normalized to B-actin for each
individual are indicated.

With respect to neuronal Stx1 binding of Munc18-1, the very
N-terminal residues as well as the Habc domain of Stx1 mediate a
binary interaction with Munc18-1 (20-22). Our data suggest that
Stx11 binding to Munc18-2 has similar molecular requirements
as either mutation of the conserved Stx11 N-peptide (R4A) or
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FIGURE 4 | Abrogated binding of Munc18-2 to syntaxin-11 N-terminal HA-Munc18-2 wild-type. Twenty-four hours after transfection, WCL were
R4A or Habc-domain L58P mutations. (A) Dendrogram comparing human prepared and analyzed for expression of Stx11, Munc18-2, and actin.
syntaxins based on peptide sequence alignments of the N-termini (N-peptide (E) HEK-293T cells constructs as indicated. Twenty-four hours after
and Habc domain; residues 1-167 of Stx11). (B) Amino acid alignments of transfection, WCL were prepared from Stx11 transfectants and Stx11 was
human syntaxin (B) N-terminus and (C) Habc domain sequences. Red shade immunoprecipitated to beads. The beads were washed extensively and
indicates a high degree of sequence homology, whereas blue shade indicates  thereafter incubated with WCL from EV or HA-Munc18-2 wt transfected
low homology. (D) HEK-293T cells were transfected with empty vector (EV), HEK-293T cells. Beads were washed, proteins eluted, and analyzed by
or constructs encoding FLAG-Stx11 wild-type (wt), R4A, L58F Q268X, or Western blotting with antibodies as indicated.

of the Habc domain (L58P) abrogated Munc18-2 binding. These
observations are supported by recent publications demonstrating
that mutations in the hydrophobic pocket of Munc18-2, which can
bind the N-peptide of Stx11, abrogate Stx11 binding and mast cell
degranulation (24). During preparation of this manuscript, the
Muncl18-2 crystal structure was reported (25). The crystal struc-
ture, as well as studies of how Muncl8-2 mutations associated
with FHL5 impact Stx11 binding, similarly suggest a require-
ment for the N-peptide and Habc domains of Stx11 for binding
to Muncl8-2 (25). With respect to neuronal exocytosis, it has
recently been shown that mutations in the Habc domain of Stx1
abrogate interactions with Munc18-1, which usually keep Stx1
in a closed conformation, leading to reduced Mun18-1 expres-
sion (26). In contrast, mutations of the Stxl N-peptide more
specifically interfere with vesicle fusion (26). It will be interesting

to further determine how the N-terminus and Habc domain
of Stx11 regulate Stx11 conformation, trafficking, and granule
exocytosis.

Stx11 has been shown to interact with additional proteins
involved in vesicle exocytosis, including SNAP-23, VAMP2, and
Vtilb (16, 17). In addition, the priming factor Munc13-4 has been
shown to interact with different Stxs (27). These proteins interact
with the Stx11 C-terminal SNARE domain, with preferential bind-
ing to the open conformation of Stx11. Speculatively, although
other more direct mechanisms for degradation of Stx11 due to
protein misfolding also may explain low Stx11 expression, dis-
ruption of the Stx11 — Muncl8-2 interaction in patient NK cells
may lead to Stx11 degradation based on a mechanism dependent
on such facilitators and regulators of vesicle exocytosis. Thus, it
is of interest to perform a more comprehensive screen of how
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different Stx11 mutations impact interactions with other proteins
implicated in facilitating and regulating granule exocytosis.

In conclusion, we demonstrate that both the N-terminus and
Habc domain of Stx11 are involved in binding to Munc18-2. In the
patients homozygous for a Stx11 L58P mutation, it is quite pos-
sible that the abrogated interaction between Stx11 and Muncl8-2
leads to destabilization of Stx11 expression. Further studies of
Stx11 mutants may provide insights into mechanisms, specificity,
and redundancy governing SNARE complex formation for lytic
granule exocytosis by cytotoxic lymphocytes.
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