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Mammalian skeletal muscle maintains a robust regenerative capacity throughout life,
largely due to the presence of a stem cell population known as “satellite cells” in the
muscle milieu. In normal conditions, these cells remain quiescent; they are activated upon
injury to become myoblasts, which proliferate extensively and eventually differentiate and
fuse to form new multinucleated muscle fibers. Recent findings have identified some of the
factors, including the cytokineTNFα-like weak inducer of apoptosis (TWEAK), which govern
these cells’ decisions to proliferate, differentiate, or fuse. In this review, we will address
the functions of TWEAK, its receptor Fn14, and the associated signal transduction mole-
cule, the cellular inhibitor of apoptosis 1 (cIAP1), in the regulation of myogenesis. TWEAK
signaling can activate the canonical NF-κB signaling pathway, which promotes myoblast
proliferation and inhibits myogenesis. In addition, TWEAK activates the non-canonical NF-
κB pathway, which, in contrast, promotes myogenesis by increasing myoblast fusion. Both
pathways are regulated by cIAP1, which is an essential component of downstream sig-
naling mediated by TWEAK and similar cytokines. This review will focus on the seemingly
contradictory roles played byTWEAK during muscle regeneration, by highlighting the inter-
play between the two NF-κB pathways under physiological and pathological conditions. We
will also discuss how myogenesis is negatively affected by chronic conditions, which affect
homeostasis of the skeletal muscle environment.

Keywords:TWEAK, Fn14, cIAP1, NF-κB signaling, myogenesis, myoblast fusion, muscle regeneration

INTRODUCTION
Skeletal muscle is comprised of multinucleated fibers that result
from the fusion of hundreds or thousands of individual mononu-
cleated progenitor cells. In addition to their highly specialized roles
in the generation of force, individual muscle fibers are capable
of extensive metabolic and functional plasticity. Skeletal muscle
also exhibits robust regenerative capacity, as a means to recover
from injury as well as to adapt to changing physical demands
(1). A population of muscle-resident stem cells, known as satel-
lite cells, resides within the laminin sheath encasing each muscle
fiber, and is responsible for regeneration of muscle in the adult.
These normally quiescent cells enter the cell cycle upon muscle
injury, producing a transient and rapidly expanding population
of committed progenitors or myoblasts. After several rounds of
proliferation, the myoblasts enter a highly orchestrated differenti-
ation program, wherein most exit the cell cycle, adopt biochemical
and physiological characteristics of mature muscle, and fuse with
each other to replace or repair the damaged tissue (Figure 1). The
multiple steps in the process of muscle regeneration, beginning
with satellite cell activation and ending with myoblast fusion, are
all subject to separate levels of regulation, and are affected by a
variety of muscle disorders and myopathies.

Investigation of the intracellular signaling pathways involved
in muscle repair has been traditionally hampered by difficulties in

accurately modeling the regenerative context in vitro. Recent devel-
opments in genetic and imaging techniques, however, have allowed
new and detailed insights into many aspects of the repair process.
These insights can be summarized under three major themes. First,
myogenesis is comprised of several processes with distinct, and
not necessarily complementary, regulatory, and signaling require-
ments. For instance, a pathway that promotes myoblast prolif-
eration may have different and even inhibitory effects on the
subsequent steps of myoblast differentiation, fusion, and mus-
cle growth. Second, several cell populations co-exist with satellite
cells in skeletal muscle; these other cells are either myogenic pre-
cursors [as in the case of pericytes surrounding blood vessels (2)]
or non-myogenic contributors to the regenerative process, such
as macrophages. Third, skeletal muscle engages in active signal-
ing interplay with other tissue systems to maintain physiological
homeostasis. Evidence in recent years has implicated the TWEAK-
NF-κB signaling axis in several important functions associated
with muscle damage and repair. This short review highlights both
known and putative roles of TWEAK signaling in muscle biol-
ogy. We emphasize recent discoveries that reflect the diverse and
highly context-dependent effects of TWEAK on muscle regenera-
tion and homeostasis. A companion article in this research topic
by Sato et al. further discusses the critical importance of TWEAK
signaling in skeletal muscle atrophy (3).
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Enwere et al. Noncanonical NF-κB regulation of myogenesis

FIGURE 1 | Mammalian skeletal myogenesis. Upon muscle injury, a
resident population of quiescent myogenic precursor cells, known as satellite
cells (because they encircle muscle fibers), start to proliferate and
differentiate into myoblasts. These mononuclear cells proliferate and fuse
together (primary fusion step) to create multinucleated myocytes or
myotubes over the course of several days. Additional myoblasts fuse to the
existing myotubes in the secondary fusion step to produce even larger
myotubes which eventually align to form muscle fibers. This differentiation
process is regulated by many internal and external factors. Over the course of

myogenesis, expression of stem cell markers such as Pax7 is gradually lost,
while the appearance of differentiation markers, such as myosin heavy chain
(MyHC), muscle-regulatory factor 4 (Mrf4), and muscle creatine kinase (MCK)
gradually increases. The NF-κB pathways are now known to play significant
roles in this differentiation process. The canonical (or classical) NF-κB pathway
is needed for myogenic cell proliferation. However, upon the loss of canonical
NF-κB signaling and the activation of non-canonical (or alternative) NF-κB
signaling, myoblasts stop dividing and start fusing to form multinucleated
myotubes, a key event in myogenesis.

REGULATION OF NF-κB SIGNALING BY TWEAK
Fibroblast growth factor-inducible protein 14 (Fn14/TNFRSF12A)
is classified as a member of the tumor necrosis factor recep-
tor (TNFR) superfamily based on its ability to bind TWEAK
(TNFSF12), although it bears minimal sequence homology to
other TNFR superfamily members (4, 5). Fn14 is also the smallest
member of the TNFR superfamily; the proteolytically processed
form that is present as a transmembrane receptor has only 102
amino acids (4, 6). Furthermore, the cytoplasmic tail contains
a single TNF receptor-associated factor (TRAF)-binding domain
but lacks a death domain motif normally found in several other
TNFR superfamily members. The adaptor proteins TRAF-1, -
2, -3, and -5 are able to bind to this site, and are essential for
downstream pathway activation (5, 7, 8). Given the lack of other
functional domains it is likely that all TWEAK–Fn14 signal trans-
duction is due to interaction of Fn14 with one or more of these
TRAF adaptors (9). While a comprehensive screen of TNF super-
family cytokines identified TWEAK as the only ligand able to
interact with Fn14 (10), a number of reports suggests that the
TWEAK–Fn14 pairing is not exclusive. For example, the scav-
enger receptor CD163 can bind and internalize TWEAK, though
there is no evidence of signal transduction activity resulting from
this interaction (11). A 2003 study (12) demonstrated the ability
of TWEAK to induce robust differentiation of RAW264.7 murine
macrophages, which do not express Fn14 (12, 13). Other studies

have demonstrated the ability of Fn14 to activate canonical NF-κB
signaling in the absence of TWEAK (7, 14). Furthermore, three
separate studies reported that down-regulation of Fn14 severely
attenuates myoblast fusion, even in the absence of TWEAK (15–
17). Nevertheless, the interaction of TWEAK with Fn14 is suffi-
cient to activate canonical and non-canonical NF-κB pathways (9,
18, 19), so we will focus hereafter on signaling mediated by the
binding of TWEAK to Fn14.

TWEAK, THE cIAP PROTEINS, AND CANONICAL NF-κB SIGNALING
The NF-κB family consists of five transcription factor subunits, as
well as a plethora of inhibitors, activators, and signal transduction
molecules that function as both pathway regulators and mediators
of inter-pathway cross-talk. The NF-κB subunits are RelA/p65,
RelB, c-Rel, p105/p50 (NF-κB1), and p100/p52 (NF-κB2) (20). All
subunits contain a Rel-homology domain near their N-termini,
which confers protein dimerization and DNA-binding capabilities;
however, only RelA, RelB, and c-Rel contain C-terminal transac-
tivating domains. An NF-κB complex consists of a homodimer
or heterodimer of any pair of subunits. These dimers are nor-
mally retained in the cytoplasm in an inactive state by an array of
inhibitor of κB (IκB) repressor proteins. One of the better-studied
NF-κB signaling axes, known as the classical or canonical path-
way, principally involves signal transduction through the p50:RelA
heterodimer. Upon pathway stimulation by ligands such as TNFα
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(Figure 2), a signaling complex forms, which leads to the activation
of IκB kinase α, β, and NEMO complex (IKK). IKK catalyzes
the phosphorylation and subsequent degradation of IκBα, thus
allowing nuclear translocation of p50:RelA and transcriptional
activation of NF-κB target genes.

Several studies over the past two decades have identified the
cellular inhibitor of apoptosis 1 and 2 (cIAP1/2) proteins as
regulators of multiple signal transduction pathways, including
NF-κB, that are activated by TNF superfamily cytokines (19, 21–
29). The inhibitors of apoptosis (IAP) were identified based on
their homology to viral IAPs (30–32), and contain one or more
N-terminal baculoviral IAP repeat (BIR) homology domains. In
addition, cIAP1/2 were independently identified based on their
association with the TNF receptor 2 (TNF-R2) and the adaptors
TRAF1 and TRAF2 (21). These two IAPs are recruited to the var-
ious TNF superfamily receptors through direct interaction with
TRAF1, TRAF2, or TRAF6 (19, 33–36). The cIAP1/2 proteins con-
tain single C-terminal RING E3 ubiquitin ligase moieties (37),
as well as ubiquitin-binding UBA domains (38), whose functions
have been the focus of considerable research interest. In most cells,
cIAP1 triggers the constitutive lysine-48 (K48)-ubiquitination and
degradation of cIAP2 (39); thus, cIAP2 expression is low in most
non-lymphoid tissues unless cIAP1 is absent, or unless cIAP2
expression is induced (40–42). Nevertheless, in many scenarios
cIAP1 and cIAP2 function redundantly (28). In the context of NF-
κB signaling induced by a prototypical ligand such as TNFα, the
TNF receptor 1 (TNF-R1) recruits a signal transduction complex
consisting of TNF-R1-associated DEATH domain (TRADD), the
kinase/scaffold protein receptor-interacting protein 1 (RIP1), and
TRAF2. TRAF2 recruits cIAP1/2, which in turn catalyze the polyu-
biquitination of RIP1 by K63- and K11-mediated linkages (43).
The K63- and K11-linked chains on RIP1 serve as scaffolds for the
assembly of an IKK complex consisting of TAB1, TAK1, NEMO,
and IKKα,β. This complex phosphorylates IκBα, thus completing
the signal transduction process upstream of the NF-κB transcrip-
tion factors (Figure 2). When cIAP1/2 are depleted, either by
genetic or pharmacological means (such as through the use of IAP
antagonists known as SMAC mimetic compounds or SMCs), RIP1
instead activates a pro-apoptotic complex, referred to as the ripop-
tosome. This death complex consists of de-ubiquitinated RIP1, the
DEATH domain-containing adaptor protein FADD, and caspase-8
(44, 45) (Figure 2).

The receptor Fn14 is an effector of signaling through its ability
to recruit TRAF-1, -2, -3, and -5. At sufficiently high concentra-
tions, soluble TWEAK triggers IκB phosphorylation and degra-
dation, as well as p65 phosphorylation and nuclear translocation,
events that are typical of the canonical NF-κB pathway activa-
tion (7). As Fn14 lacks a death domain, it is unable to directly
recruit a death-signaling complex. Instead, apoptosis results from
the NF-κB-stimulated release of TNFα, which induces apopto-
sis in a manner requiring RIP1 and FADD (46). Cancer cells
that have been “primed” with TWEAK are sensitized to TNFα-
induced cell death owing to the depletion of cIAP1 and TRAF2
proteins (18). Evidence is accumulating that canonical NF-κB acti-
vation and cell death are consequences of pathological, rather than
physiological, levels of TWEAK or Fn14. At low (physiological)
concentrations, TWEAK is unable to activate canonical NF-κB,

but still produces robust activation of the non-canonical pathway
(17, 47), as described in the next section. Remarkably however,
membrane-bound TWEAK is highly capable of activating canoni-
cal NF-κB signaling (47), suggesting that juxtacrine signaling may
produce considerably different effects on target cells. Further-
more, Fc-TWEAK or Fc-Fn14 fusion constructs, which have a high
propensity to multimerize, are able to activate Fn14 and cause sig-
nificant canonical NF-κB activation with pathological outcomes
(47–49). These negative consequences of TWEAK signaling are
also seen upon Fn14 upregulation due to stress or injury, even
when TWEAK levels remain unchanged. This is due to the greater
chance for receptor oligomerization and clustering to occur, which
is needed to induce downstream signaling events (50).

During myogenesis, canonical NF-κB activity promotes
myoblast proliferation and inhibits differentiation [reviewed else-
where (51–53), and see Figures 1 and 4 for illustration]. These
effects are important during the early phases of muscle regener-
ation, where efficient repair necessitates rapid expansion of the
myoblast population. Notably, following muscle damage, the first
wave of inflammatory cells release a plethora of inflammatory
cytokines, such as TNFα, IL-6, and TWEAK, which are potent
activators of NF-κB signaling (54, 55). During chronic regenera-
tive cycles observed in certain muscle disorders, such as Duchenne
muscular dystrophy, the continued presence of such inflammatory
cytokines both impairs muscle repair and aggravates the resulting
pathology (56). This differential effect of transient and chronic
cytokine signaling will be discussed later in this review, in the
context of non-myogenic contributors to myogenesis.

TWEAK AND NON-CANONICAL NF-κB SIGNALING
Transcriptional activity in the non-canonical NF-κB pathway is
mediated by the p52:RelB heterodimer. This signaling axis is tightly
regulated by the controlled processing of p100 into p52. Under
basal conditions, a ubiquitin ligase complex consisting of TRAF2,
TRAF3, and cIAP1/2 catalyzes the constitutive K48-ubiquitination
and consequent degradation of the NF-κB inducing kinase (NIK),
which is essential for activation of the non-canonical pathway
(33, 57). Upon non-canonical NF-κB stimulation by a variety
of ligands [including TWEAK, BAFF, CD40 ligand (CD40L),
and RANKL], TRAF2, TRAF3, and cIAP1/2 are sequestered to
the corresponding membrane-bound TNF superfamily receptor.
Here, K48-ubiquitination of TRAF3 by cIAP1/2 leads to auto-
inactivation of the complex and stabilization of cytosolic NIK
(58). NIK in turn phosphorylates IKKα, which activates p100 and
leads to its partial proteasomal processing to p52. The p52:RelB
dimer is then released for nuclear translocation and gene trans-
activation (Figure 3). TWEAK signaling subsequently triggers
the degradation of TRAF2, TRAF3, and cIAP1/2 through both
proteasomal and lysosomal pathways (17, 18, 59, 60). The lyso-
somal degradation mechanism may represent a separate mode
of NF-κB activation unique to TWEAK, since inhibiting lysoso-
mal protein degradation is sufficient to completely prevent p100
processing (18). Unlike the stimulation of the canonical pathway,
which is quite rapid, the non-canonical pathway is gradually acti-
vated over several hours, possibly due to the requirement for de
novo NIK translation and accumulation. The lysosomal degrada-
tion of cIAP1 and TRAF2 by TWEAK impairs NF-κB activation
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Enwere et al. Noncanonical NF-κB regulation of myogenesis

FIGURE 2 | cIAP1/2 regulation ofTNFα-induced canonical NF-κB
pathway activation and suppression of default death pathways.
(A) The E3 ubiquitin ligases cIAP1 and cIAP2 are required for TNFα

activation of canonical NF-κB signaling, and to suppress TNFα-induced
caspase-8 death pathway. These two cIAPs are recruited to the TNFα

receptor, TNF-R1, via their association with the adaptor protein TRAF2. Upon
ligand stimulation, the cIAPs promote K63-linked polyubiquitination of RIP1,
which creates a signaling scaffold (or signalosome complex) to recruit the
TAK1 kinase, LUBAC, otherwise known as the linear ubiquitin chain
assembly complex (consisting of Sharpin, HOIL-1L, and HOIP), and the
trimeric IKK kinase complex (consisting of IKKα, IKKβ, and IKKγ/NEMO).
This signalosome formation results in the activation of the IKK complex, and

subsequent phosphorylation and degradation of the NF-κB inhibitor, IκB,
which occurs within minutes. This allows canonical NF-κB heterodimers to
form and translocate into the nucleus to alter gene expression profiles over
several hours, which affects many pathways such as survival, proliferation,
inflammation, muscle atrophy, and NF-κB signaling itself. This pathway is
subject to negative regulation by the deubiquitinase, A20, for example.
(B) In the absence of the cIAPs, the unmodified RIP1 can form a death
complex with FADD and caspase-8 known as the ripoptosome. This
apoptotic death pathway can also default to a necrotic-like pathway in the
absence of caspase-8, through another complex called the necrosome
which involves the kinases RIP1 and RIP3, mixed lineage kinase domain-like
(MLKL) and the short and long forms of the phosphatase PGAM5.

by other cytokines that require these adaptors; thus, TWEAK sen-
sitizes cancer cells to TNFα-induced apoptosis through activation
of caspase-8 (8, 18, 61). The cIAPs are thus considered to be nega-
tive regulators of the non-canonical NF-κB pathway, through their
constitutive effects on NIK degradation. The binding of TWEAK
to Fn14 then relieves this cIAP1/2 suppression by recruiting the
TRAFs and cIAPs to the receptor, away from NIK. This membrane
receptor sequestration of the cIAPs and TRAFs may be sufficient
for NIK stabilization, or may require further degradation and loss
of those factors to fully activate NIK as illustrated in Figure 3.

TWEAK AND cIAP1 AS REGULATORS OF MYOBLAST FUSION
While the functions of canonical NF-κB signaling in muscle regen-
eration and atrophy have been investigated extensively over the
years (52, 62, 63), very few studies have examined the role of
non-canonical NF-κB in skeletal muscle. In 2001, a paper (64)

suggested that NIK and IKKα promote differentiation of the rat
L6E9 myoblast cell line. More recently, the non-canonical NF-κB
signaling was implicated in muscle resistance to metabolic stress
(65), and as a factor specifying the oxidative mode of glucose
metabolism in muscle fibers (66). We had observed that primary
myoblasts from cIAP1−/−mice [note that skeletal muscle does not
express cIAP2 (28)] exhibit constitutively elevated canonical and
non-canonical NF-κB activity. We reasoned that upon differentia-
tion of cIAP1−/− myoblasts into myotubes, which are the in vitro
analogs of muscle fibers, both canonical and non-canonical NF-κB
pathways should produce separate respective phenotypes.

The initial outcome of our experiments was unexpected. While
there was a clear delay in cell cycle exit and differentiation of
cIAP1−/− myoblasts, the resulting myotubes were characterized
by significant hypernucleation and increased myotube size, indica-
tive of a robust fusion response. Subsequent experiments showed
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Enwere et al. Noncanonical NF-κB regulation of myogenesis

FIGURE 3 | cIAP1/2 regulation of TWEAK-induced non-canonical NF-κB
pathway activation. (A) Contrary to the canonical NF-κB pathway for which
cIAP1/2 are positive regulators, these two E3 ubiquitin ligases act, via the
bridging molecules TRAF2 and TRAF3, as negative regulators of the
non-canonical NF-κB by continuously degrading the NF-κB-inducing kinase,
NIK. This occurs through the attachment of K48-linked polyubiquitin chains
and the targeting of NIK to the proteasome, under basal or non-stimulated
conditions. One mechanism (process 1°) to reverse this inhibitory effect is
through A20 mediated disruption of the cIAP-TRAF complex, which would
presumably lead to ligand-independent activation of the non-canonical NF-κB
pathway. (B) In most instances, upon stimulation of a TNF receptor
superfamily member by its ligand, the cIAPs and TRAFs are recruited away

from the cytosolic reactions and sequestered at the plasma membrane
(process 2°). This allows for the stabilization of NIK, the formation of IKKα

homodimers, and ultimately the partial processing of p100 into p52. RelB and
p52 then dimerize to form an active, functional NF-κB transcription factor
complex. Several models of receptor-mediated non-canonical NF-κB activation
have been proposed, which include the cIAPs inducing K48-linked
ubiquitination of themselves and the TRAFs, resulting in their proteasomal
degradation (process 3°). Alternatively, the receptor-mediated endocytosis of
the TWEAK-Fn14 complex results in lysosomal degradation of the cIAPs and
TRAFs (process 4°). This loss of cIAP and TRAF adaptors may impact other
pathways, such as CD40L signaling through CD40, that also require these
adaptors.

that the elevated non-canonical NF-κB activity, resulting from the
loss of cIAP1, was responsible for this effect (17). This observa-
tion highlighted a disparity between immortalized myoblast cell
lines (C2C12) and primary myoblasts. In C2C12 cells, p100 pro-
cessing to p52 increases over the time course of differentiation
(65). In contrast, primary cells exhibit the greatest p100 processing
at the myoblast stage; processing diminishes markedly as mus-
cle fibers form (17). The increased myoblast fusion observed in
cIAP1−/− cells could be recapitulated using low doses of TWEAK.
At low concentrations, exogenous TWEAK led to robust activation
of the non-canonical NF-κB pathway. At higher concentrations,
TWEAK activated both canonical and non-canonical pathways.
The requirement for high TWEAK concentrations to activate
canonical NF-κB suggests that this pathway represents a secondary
mode of signaling for TWEAK. In order to further investigate
the physiological consequences or TWEAK activity in vivo, we
employed the snake venom cardiotoxin (CTX) model of muscle
injury, which involves the direct injection of CTX into muscle.
This treatment causes rapid development of focal necrotic lesions,
but also initiates a robust regenerative response. Following CTX
injection, the cIAP1−/− muscle exhibits a slight increase in aver-
age muscle fiber size as compared to wildtype controls, but not
to the same robust extent observed in vitro (17). This is likely an
outcome of the interplay and functional antagonism between both
NF-κB pathways. TWEAK administered by micro-osmotic pump

produced greater increases in fiber size than did the loss of cIAP1,
further indicating the preference of TWEAK for non-canonical
NF-κB signaling. In regenerating muscle, the window of regen-
erative opportunity is very narrow; the majority of myogenesis
occurs within 4 days of the injury. A delay in the development of
fusion competence – as can be caused by elevated canonical NF-
κB activity – may be sufficient to reduce the muscle’s regenerative
potential. Collectively, the data indicate that enhanced myogenesis
is best achieved by attenuating the canonical NF-κB pathway, and
promoting fusion through the non-canonical corollary [(17); see
also Figure 4].

The evidence to date shows that both canonical and non-
canonical NF-κB pathways are concurrently active in proliferating
and differentiating mouse myoblasts. During the process of muscle
differentiation, both pathways are similarly inactivated. However,
these NF-κB pathways clearly have complementary but oppos-
ing functions in muscle regeneration (Figures 1 and 4). While
the canonical pathway is important during myoblast proliferation
(67), the reported effects of non-canonical NF-κB signaling on
stress resistance (65), metabolism (66), and fusion (17) are all fea-
tures specific to developing muscle fibers, rather than to myoblasts.
Therefore, a model can be proposed in which canonical NF-κB
activity is switched off to suppress myoblast proliferation thereby
allowing for their differentiation. At this point, non-canonical NF-
κB predominates, likely driven by TWEAK stimulation, to promote
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FIGURE 4 | Roles ofTNFα,TWEAK, cIAP1/2, and A20, in myogenesis in
the regulation of switching from canonical to non-canonical NF-κB
signaling. The transition from myoblast to myotube has been known for
several years to involve a switch from canonical to non-canonical NF-κB
signaling. More recently, several of the key players and the mechanisms of
action for this switch have been identified. The promotion of TNFα-mediated
canonical NF-κB signaling involves the positive regulation by the E3
ubiquitin ligase cIAP1/2 and the negative regulation by the deubiquitinase
A20. The non-canonical pathway is oppositely controlled: it is negatively
regulated by cIAP1/2 and positively regulated by A20. Interestingly, the
cytokine TWEAK (a pathological factor in muscle atrophy) has been recently
shown to stimulate non-canonical NF-κB signaling by removing the negative
regulation of cIAP1/2 on that NF-κB pathway. Physiological levels of TWEAK,
in fact, promote myogenesis through the enhancement of myoblast fusion
amongst other things. The non-canonical NF-κB pathway has been shown
previously to regulate mitochondrial biogenesis and to promote myotube
maintenance, and recently shown to do so through the NF-κB-mediated
induction of the mitochondrial regulator PPAR-γ co-activator 1β (PGC-1β).
Figure adapted from Ref. (65).

the formation of myotubes, while also aiding in their mainte-
nance. The canonical NF-κB pathway may in fact prime the non-
canonical NF-κB pathway by inducing the expression of p100, the
precursor to p52. It is thus possible that p52:RelB (non-canonical
NF-κB) activity then serves to further push myoblast fusion, by
inducing expression of transcriptional targets whose functions are
only observed in later stages of the differentiation process. With
the exception of PGC-1β (66), the relevant transcriptional tar-
gets of non-canonical NF-κB in this context, and the effectors of
TWEAK-driven myoblast fusion, are unknown. Another possibil-
ity is that, though p100/52 expression is high in myoblasts, activity
of this pathway may be inhibited in myoblasts, and subsequently
de-repressed during differentiation. A potential mechanism for the
switch between canonical and non-canonical pathways involves
the deubiquitinase A20. The A20 protein inhibits canonical NF-
κB signaling by removing the K63-ubiquitin chains on RIP1 that
are essential for its function as an adaptor (68). Conversely, A20
disrupts the cIAP1/2–TRAF2/3 ubiquitin ligase complex, thus pre-
venting NIK degradation and promoting non-canonical NF-κB
signaling (69). Since A20 has been shown to be upregulated during
muscle cell differentiation (70), it is possible that A20 is essential
for normal regeneration.

Knockout studies have revealed disparities between the muscle-
intrinsic effects of TWEAK and Fn14 on regeneration. Upon
muscle injury, TWEAK−/−mice exhibit more rapid muscle regen-
eration than wildtype controls; in contrast, mice over-expressing
TWEAK under a muscle-specific promoter exhibit slower regen-
eration (71). However, TWEAK is not normally expressed in
myoblasts either in vivo or in vitro (15, 17), suggesting that the phe-
notype observed in the knockout mice may result from decreased
paracrine signaling from other TWEAK-producing cells such as
macrophages. Fn14 expression in muscle is clearly induced during
regeneration and atrophy (16, 50), and mice lacking Fn14 exhibit
considerably impaired regeneration. This effect can be recapit-
ulated in vitro in the absence of TWEAK (16, 17), highlighting
the possibility that Fn14 may play essential roles independent of
TWEAK.

The application of TWEAK/Fn14 therapeutics in the context
of muscle regeneration may at first appear somewhat counterintu-
itive, until the specific mechanistic intent is examined closely, and
hypotheses are tested. Most of the published reports on TWEAK
highlight its aggravating role in muscle (72, 73), liver (74), kidney
(75) and neurological (76) regeneration or repair. A consistent fea-
ture of these studies however, is the pathologically elevated levels
of TWEAK signaling, due either to the experimental intervention
(transgenic over-expression of TWEAK) or a chronic, localized
over-production of cytokine (77). However, we propose that tran-
sient TWEAK/Fn14 activation at physiological levels may prove
beneficial (Figure 5). Consistent with this idea, a number of stud-
ies have shown that TWEAK can act as a mitogen to stimulate
proliferation of progenitor cells (15, 78–81). In particular, soluble
TWEAK, particularly at low concentrations, preferentially acti-
vates the non-canonical NF-κB pathway, whereas high concentra-
tions are sufficient to mobilize both canonical and non-canonical
pathways (17, 48). Therapeutic activation of the non-canonical
pathway has been suggested in a number of separate contexts. For
example, TWEAK promotes lymphocyte and T cell recruitment
to the kidney following renal injury by inducing expression of the
chemokine CCL21 in a non-canonical NF-κB-specific manner (82,
83). TWEAK is also important to prevent certain lymphoprolifer-
ative disorders that lead to impaired antibody responses (84, 85).
A better understanding of the mechanisms of TWEAK signaling
should permit an informed tailoring of its uses, such as with ago-
nistic and antagonistic antibodies (48), for particular therapeutic
applications.

NF-κB, NFAT SIGNALING, AND THE PROMOTION OF
MYOBLAST FUSION
Extracellular calcium is one of the earliest known regulators of
myoblast fusion. In 1969, Shainberg and colleagues (86) demon-
strated that fusion of chick myoblasts could be reversibly blocked
by removing Ca2+ ions from the growth medium. These results
were confirmed in multiple species (87–89). Importantly, it was
shown that extracellular calcium is not required for myoblast cell
cycle exit or for muscle-specific gene expression (90–93). Cal-
cium was subsequently identified as a potent activator of the
nuclear factor of activated T cells (NFAT) transcription factor
pathway. Out of five proteins in this family, three – NFAT-c1, -
c2, and -c3 – are regulated by calcium and expressed in skeletal
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FIGURE 5 | Differential activation of NF-κB pathways byTWEAK based
on strength of Fn14 signaling. TWEAK can signal either in a juxtacrine
manner, as a membrane-bound ligand, mTWEAK (A), or in a paracrine
manner as a soluble ligand, sTWEAK (B,C). Depending on the
concentration of ligand or receptor, or the propensity of the Fn14 ligand to
oligomerize the receptor and form signaling clusters, differential activation
of the NF-κB pathways occurs. (A) During juxtacrine signaling, mTWEAK
favors the clustering of Fn14 on the opposite cell, leading to hyperactive
signaling for which canonical NF-κB signaling predominates over
non-canonical signaling. MAPK activation also occurs. (B) Under
physiological conditions, low endogenous levels of sTWEAK signal in a
paracrine manner, leading predominantly to non-canonical NF-κB activation.
(C) However, under certain pathological or experimental conditions,
sTWEAK can also lead to hyperactive signaling leading to canonical NF-κB

and MAPK signaling. For example, high concentrations of TWEAK, applied
to myoblasts or myotubes ex vivo, hinder differentiation and cause atrophy,
respectively. Transgenic over-expression of TWEAK in mice also leads to
pathological consequences. In a variety of injury states (such as
denervation-induced muscle atrophy), the receptor Fn14 is induced, which
then is followed by and pathological responses to endogenous levels of
TWEAK. Furthermore, recombinant TWEAK fusion proteins with the ability
to multimerize, or Fn14 agonistic antibodies, can both promote receptor
clustering and the activation of the canonical NF-κB pathway. The pathways
leading to pathological activation of the canonical NF-κB pathway are still
poorly defined, but are thought to arise either from pathway cross-talk,
such as that seen with NIK or IKK activation of the canonical mediators, or
through the adaptor and E3 ubiquitin ligase TRAF6. In addition, activation
of MAPK pathways may also contribute to the pathology observed.

muscle (93). Ca2+-activation of the phosphatase calcineurin leads
to the dephosphorylation of NFAT proteins. These then translo-
cate to the nucleus where they activate the transcription of a
range of NFAT target genes (94). Multiple stimuli that poten-
tiate the Ca2+-calcineurin-NFAT signaling axis, such as calcium
ionophores (95), increase myoblast fusion; conversely, substances
that deplete intracellular or extracellular calcium stores, such as
EDTA and thapsigargin, impair myoblast fusion (96, 97). A notable
aspect of NFAT transcription factors is that they mediate different
aspects of myoblast fusion. Whereas NFATc3 is calcium-responsive
in myoblasts, NFATc1 and NFATc2 are active in nascent myotubes
(93). This suggests that they differentially regulate primary fusion
(myoblast–myoblast) and secondary (myoblast–myotube) fusion
events (Figure 1). Consistent with this hypothesis, the protein
four-and-a-half LIM 1 (FHL1) is a co-factor of NFATc1; over-
expression of FHL1 increases myoblast fusion in vitro and in vivo
(98). Muscle fiber formation is also impaired in NFATc2−/− mice
(99). Collectively the data indicate a hierarchical process of fusion,
whereby primary myotubes, formed under control of NFATc3,
recruit further myoblasts in an NFATc1- or NFATc3-specific
manner for formation of secondary myotubes and continued
myogenesis.

Evidence from some published reports suggest that the
TWEAK/Fn14/cIAP signaling axis may act through one or more
NFAT pathways to regulate myoblast fusion. Upon inactivation
of the non-canonical NF-κB pathway in wildtype myoblasts,
myotubes still form, but are small and have reduced numbers
of nuclei (17). This phenotype is similar to that observed with
NFATc2−/− cells (99), where myogenesis stalls at the primary
myotube phase. The existence of cross-talk between the struc-
turally similar NFAT and NF-κB transcription factors is well-
established (100–102). A recent study indicated that RANKL,
which like TWEAK activates both canonical and non-canonical
NF-κB pathways in osteoclasts, induces expression of NFATc1
in a manner that requires NIK (103), suggesting that NFATc1
may be a target of the non-canonical pathway. Furthermore,
cIAP1/2 was shown to suppress NFATc1 expression in response
to RANKL; conversely, loss of cIAP1/2 led to upregulation of
NFATc1in osteoclasts (104).

Our understanding of molecular triggers and signaling path-
ways that are critical to myoblast fusion is still very limited. While
the list of known effectors of fusion is extensive [as has been cat-
egorized in other recent reviews (105, 106)], a coherent picture of
timing, mechanism, and relative importance has yet to emerge. It
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seems likely that the TWEAK-NF-κB signaling axis converges with
the transcriptional upregulation of one or more muscle-derived
cytokines or chemokines (referred to as “myokines”). A search for
known targets of the non-canonical NF-κB pathway, including
such molecules as CCL19 and CCL21 (83), should provide further
insight into the placement of NF-κB within the stepwise processes
of fusion.

INNATE IMMUNITY AND MUSCLE REGENERATION
MEDIATED BY THE CYTOKINES IL-4, IL-10, AND IL-13
In the context of regenerating muscle, a number of recent
papers have examined the interplay between muscle cells and
multiple non-muscle lineages that participate in the regenera-
tive process. Following muscle injury, an inflammatory response
emerges, which involves the infiltration of myeloid cell types such
as eosinophils, basophils, mast cells, macrophages, and leuko-
cytes (107, 108). These cells release a medley of cytokines and
chemokines; the leukocytes in particular are robust sources of
TWEAK (109, 110). Broadly speaking, the damage-associated
innate response is structured such that the early infiltrating cells,
dominated by CD68-expressing “M1” macrophages, produce pro-
inflammatory cytokines such as IL-6, TNFα, and IL-1β (54). The
timing of M1 influx correlates with the activation of satellite
cells and proliferation of myoblasts, a process that is enhanced
by canonical NF-κB activation. The M1 macrophages are sub-
sequently replaced with CD163-expressing “M2” macrophages,
which promote muscle growth through the secretion of IL-4, IL-
10, and IL-13. The M2 response occurs during the phase of muscle
regeneration predominated by myoblast fusion, which may be
enhanced by M2-derived cytokines such as IL-4 and IL-13.

The various contributions of inflammatory and lymphoid cells
to the course of muscle regeneration have been assessed in injury
models. A commonly used animal model of muscle injury is the
mdx mouse, which exhibits many of the hallmark symptoms and
pathology of the human disorder known as Duchenne muscu-
lar dystrophy. In mice and humans, the disease results from loss
of the structural protein dystrophin, which leads to increased
muscle fragility and continued cycles of injury and regenera-
tion (111). This creates a chronic inflammatory milieu in muscle,
which both aggravates and perpetuates the pathology. In mdx mice
depleted of macrophages during the early stages of the disease,
muscle injury is significantly reduced (112). Similar outcomes are
observed in mdx mice depleted of CD8-positive cytotoxic T cells
alone (113), or of both CD4-positive helper and CD8-positive
T cell populations (114). An important point of note, however,
is that these studies describe the outcome of short-term deple-
tion of these cell populations on the dystrophic phenotype. In an
analysis of mdx mice crossed with scid mice (lacking both mature
T and B cells), no differences in muscle fiber size, percentage of
regenerated fibers, or muscle force were observed as compared to
immunocompetent mdx mice (115). In contrast, mice depleted of
monocytes and macrophages, using a targeted cytotoxic diphthe-
ria toxin approach, exhibit severely impaired muscle regeneration
(116). These observations are consistent with the biphasic and
important roles of M1 and M2 macrophages in the regenerative
process.

Also relevant to this stage of regeneration is a recently identi-
fied population of fibro/adipogenic progenitors (FAPs), which are
essential contributors to normal muscle regeneration following
acute trauma (117–122). These FAPs, like satellite cells, are acti-
vated following muscle injury, and proliferate in response to IL-4
and IL-13 secreted by eosinophils (123). IL-4 also specifies the fate
of FAPs as phagocytes rather than fat-generating adipocytes. In the
absence of IL-4/IL-13-secreting eosinophils or in an IL-4 receptor
alpha-knockout (IL-4Rα−/−) background, muscle regeneration is
severely impaired, at least in part due to excessive deposition of
FAP-generated brown fat. There are currently no studies explic-
itly examining the relationship between TWEAK and FAPs during
myogenesis; nevertheless corollary evidence from other tissue sys-
tems suggests that TWEAK may promote muscle regeneration
through regulation of FAP differentiation. TWEAK and Fn14 are
expressed in adipocytes (124, 125), and TWEAK inhibits adipocyte
differentiation (126). This occurs at least in part through the blunt-
ing of pro-inflammatory and pro-adipogenic signaling induced
through the canonical NF-κB pathway by TNFα (125–127). Still
further, TWEAK synergizes with IL-13 as a fibroblast mitogen
(127, 128). Given the overlap between the influx of TWEAK-
expressing M2 macrophages and FAP activation during regenera-
tion, it seems likely that the pro-regenerative context established
by both cell types may involve low levels of secreted TWEAK as a
paracrine regulator of muscle regeneration.

Given the upregulation of Fn14 following muscle injury, and
the influx of TWEAK-expressing myeloid cells, it is likely that the
non-canonical NF-κB signaling has a direct influence on the course
of muscle repair. The highly orchestrated nature of the innate
immune response in damaged muscle, which occurs in synchrony
with the course of muscle differentiation and fusion, is critical
to normal muscle regeneration. This timing is controlled by IL-
10 (129), which deactivates M1 macrophages; and by AMPKα1,
which is required for macrophage acquisition of an M2 phenotype
(130). Given that such timing is disrupted in chronic degenerative
muscle diseases and myopathies, factors that skew the population
distribution in favor of an M2 phenotype may improve muscle
regeneration in disease conditions. This hypothesis is supported
by certain acute experiments in which administration of exoge-
nous IL-4 (123) or IL-10 (131) was found to promote necrotic cell
clearance and muscle regrowth.

Recently we evaluated the effect of cIAP1 loss on muscle func-
tion in the mdx mouse model of Duchenne muscular dystrophy
(132). In cIAP1−/− mdx double-mutant mice, muscle degener-
ation was attenuated in some muscle groups, particularly the
soleus and diaphragm. The outcome was that double-mutant
mice exhibited improved muscle resiliency and exercise endurance
as compared to the mdx controls. These results were accompa-
nied by a reduction in pro-inflammatory M1 macrophages, and
an increase in pro-regenerative M2 macrophages in muscle tis-
sue. These results suggest that non-canonical NF-κB activation,
through loss of cIAP1 can mediate diverse effects that converge to
improve muscle regeneration and function. It remains to be seen
if low doses of TWEAK, which would more specifically target the
non-canonical pathway, can recapitulate these positive effects on
muscle regeneration.
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TWEAK SIGNALING IN DIABETES AND MUSCLE
REGENERATION
Skeletal muscle is responsible for the uptake of 80% of blood glu-
cose (133–135); consequently, the outcome of prolonged insulin
resistance in muscle is primarily type 2 diabetes (136). The pres-
ence of excessive fat deposits is associated with both onset and
progression of type 2 diabetes (137). It was recently discovered
that high-glucose diets trigger the differentiation of multipotent
myoblasts into adipocytes (138). While the resulting fat deposits
can accelerate insulin resistance through autocrine release of
TNFα, TWEAK can inhibit this process by blocking TNF-mediated
activation of JNK (139). TWEAK is constitutively expressed in adi-
pose tissue (124, 125), suggesting that it actively antagonizes the
process of insulin resistance. Evidence for this is shown by a recent
study demonstrating that reduced levels of TWEAK correlate
with increased risk of diabetes (140), at least in part by reduc-
ing autocrine release of TNFα from adipocytes (141). Overall,
these findings suggest that TWEAK can operate in a feed-forward
mechanism to both promote muscle regeneration and attenuate
the pathogenesis of diabetes.

While TWEAK-expressing adipocytes may be beneficial for
the purposes of insulin tolerance, it is naturally preferable to
reduce fat deposition in muscle altogether. This is consistent with
a beneficial role for FAPs in muscle regeneration when the dif-
ferentiation choice toward adipocytes is blocked (123, 142, 143).
Remarkably, TWEAK is a potent inhibitor of adipocyte differ-
entiation and functions, unlike TNFα, without affecting glucose
uptake or cytokine release (126). Collectively, the data show that
TWEAK signaling can positively regulate homeostasis by improv-
ing glucose tolerance in muscle, reducing fat deposition, and
reducing adipocyte differentiation of FAP cells during muscle
regeneration.

CONCLUSION
The array of recent discoveries on the functions and mecha-
nisms of action of TWEAK offer several intriguing possibilities
into both the frontiers of new biology and the potential for
therapeutic interventions. The ability of TWEAK/Fn14 to pref-
erentially activate the non-canonical over the canonical NF-κB
pathway (17) places TWEAK in a category of TNF superfamily
members along with BAFF, CD40L, RANKL, and lymphotoxin β

(144). This implicates TWEAK in immunological functions that
have, to date, been explored only briefly. The preferential acti-
vation of the canonical pathway by membrane-bound TWEAK
and the upregulation of Fn14 upon injury are likely the causes of
most TWEAK-associated pathology (47, 50). Thus, the paradox of
TWEAK as a beneficial and deleterious cytokine becomes a mat-
ter of degree: whereas low concentrations of soluble TWEAK can
be beneficial for immunological and regenerative purposes, high
levels of TWEAK or Fn14 may have pathological consequences,
and require intervention using neutralizing antibodies or TWEAK
inhibitors.
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