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Staphylococcus aureus is both a major bacterial pathogen as well as a common member
of the human skin microbiota. Due to its widespread prevalence as an asymptomatic skin
colonizer and its importance as a source of skin and soft tissue infections, an improved
understanding of how S. aureus attaches to, grows within, and breaches the stratified lay-
ers of the epidermis is of critical importance. Three-dimensional organotypic human skin
culture models are informative and tractable experimental systems for future investiga-
tions of the interactions between S. aureus and the multi-faceted skin tissue. We propose
that S. aureus virulence factors, primarily appreciated for their role in pathogenesis of inva-
sive infections, play alternative roles in promoting asymptomatic bacterial growth within
the skin. Experimental manipulations of these cultures will provide insight into the many
poorly understood molecular interactions occurring at the interface between S. aureus and
stratified human skin tissue.
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Staphylococcus aureus is simultaneously a pathogen of signifi-
cant morbidity and mortality and a common member of the
skin microbiota. As a major human bacterial pathogen, S. aureus
infections cause tens of thousands of deaths and millions of out-
patient and emergency room visits in the United States annually
(1). Although the disease caused by S. aureus infections manifests
in a wide range of clinical presentations, the vast majority are skin
and soft tissue infections (2, 3).

However, in spite of the pathogenesis associated with S. aureus,
it is also acknowledged to be a typical member of the com-
plex community of microbes living on and within our skin (4,
5). An estimated 20% of American adults are persistently col-
onized in the anterior nares with S. aureus, and an additional
30% are intermittently carrying S. aureus in the nares (6, 7). For
neonates and children, the prevalence of S. aureus positive skin
cultures is thought to be even higher (8, 9). Furthermore, evidence
from recent prevalence studies in which non-nasal skin sites are
surveyed suggests that traditional screening approaches may be
underestimating a larger skin colonization burden of S. aureus by
focusing on one niche, the anterior nares (10–12). Little is known
about the transition from the asymptomatic colonization state to
an invasive infection, despite the fact that persistently colonized
individuals have nearly triple the risk of developing S. aureus bac-
teremia and are most often infected by their own colonizing strains
(13–16).

Whether one considers S. aureus as an invasive pathogen or
from the perspective of its role as a common colonizer, an apprecia-
tion of how S. aureus interacts with the skin environment is central
to its biology. Much remains unknown about how S. aureus per-
sists in the skin over time and what bacterial factors it may use to

actively modify the host skin environment to persist in its replica-
tive niche. We propose that three-dimensional (3D) human skin
culture models are an informative and tractable experimental sys-
tem for future investigations of the interactions between S. aureus
and the multi-faceted skin tissue. In this perspective, we consider
the current experimental model systems for studying the S. aureus
skin interface, and describe advantages of utilizing organotypic
3D human skin models for future investigations into S. aureus
biology.

Historically, many of the molecular biology studies into S.
aureus skin interactions have been done using in vitro infections
of keratinocytes cultured as a two-dimensional (2D) monolayer of
cells. Such studies have provided insight into many aspects of bac-
terial attachment and the innate immune response mounted by
keratinocytes upon encountering bacteria (17, 18). However, the
bi-dimensional nature of these assays completely eludes the com-
plex stratification and terminal differentiation process central to
how keratinocytes form a multilayered epidermal tissue with bar-
rier functionality. To study determinants of S. aureus interaction
with a stratified skin tissue (as opposed to isolated keratinocytes),
investigators have relied on a variety of animal models. Epicuta-
neous or superficial epidermal inoculation of S. aureus in rodent
skin models have proven ineffective for reproducible observations
of S. aureus growth on skin over extended periods of time (19–
22). Further, there are considerable differences between human
skin and rodent skin in both histology and immunology, which
complicate interpretation of data with respect to bacterial local-
ization and replication in the skin. A recently developed murine
model of S. aureus skin and soft tissue infections uses small allergy
test needles coated in bacteria to introduce the inoculum precisely
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and superficially into the outer ear pinna (23). This model has been
used to examine the immune response to a superficial S. aureus
skin infection (23). With this notable exception, nearly all of the
existing S. aureus animal skin models require severe mechanical
disruption of the skin to facilitate bacterial growth, such as the
subcutaneous foot pad model, the scalpel wound model, or the
subcutaneous skin abscess model (24–27). While these models are
extremely useful for studying pathogenesis, they neither facilitate
observation of the replicative niche of S. aureus within an intact
tissue, nor address how the transition of S. aureus from an asymp-
tomatic colonization state to a more invasive soft tissue or systemic
infection might occur.

Due to the need for a physiologically relevant in vitro model sys-
tem to dissect the interactions of S. aureus with intact human skin,
we have modified an existing 3D organotypic human skin tissue
model to examine the processes of staphylococcal skin coloniza-
tion and infection (28, 29). An appreciation of the inherent limita-
tions of 2D cultures for understanding skin biology has motivated
the development of many tools to study stratified human skin
tissue over the past several decades (30–32). Only recently, micro-
biologists have begun to capitalize on these advancements and
utilize 3D organotypic human skin models to examine the specific
interactions between the human skin and clinically relevant viral,
bacterial, and fungal species (31, 33–36).

Established models for studying stratified human skin fall into
two main categories, namely ex vivo human skin explant cultures
and regenerated 3D organotypic models derived from primary
cells and/or human cell lines. All 3D skin models are relatively
labor and time intensive when compared to traditional 2D skin
models using keratinocyte-derived cell lines. Ex vivo human skin
explants, typically acquired from neonatal foreskin, surgical, or
cadaveric tissues, can be maintained in cell culture media directly
or on supports in an air–liquid interface and remain viable in
culture for up to 2 weeks. Skin explants have the advantage of
containing all resident cell types of the epidermis and dermis as
well as skin appendages; however, there are limited options for
experimental manipulation of host genetics as well as restricted
availability of such tissue samples. Organotypic 3D skin models
(sometimes referred to as reconstructed skin models) are gener-
ally comprised of primary or immortalized human keratinocytes,
grown at an air–liquid interface on an extracellular support matrix,
which can be seeded with fibroblasts (32, 37, 38). Other relevant
cell types have been incorporated into organotypic skin models
including melanocytes, Langerhans cells, as well as endothelial
and nervous cells [reviewed in Ref. (30)]. Organotypic 3D strati-
fied human skin cultures comprised of immortalized human cell
lines such as the widely studied HaCaT cell line do not reflect
the intrinsic genetic variability of cultures cultivated using pri-
mary keratinocytes, leading some to argue that models built using
the former cells are more reproducible (32). On the other hand,
HaCaT 3D organotypic cultures exhibit differentiation and strat-
ification deficiencies when compared to primary keratinocyte 3D
organotypic skin cultures (39–41).

In the 3D organotypic human epidermal tissue model we
have modified to study S. aureus colonization and infection, pri-
mary human keratinocytes and fibroblasts are isolated from fresh
discarded neonatal foreskin specimens (28, 29). Fibroblasts are

seeded into pieces of devitalized human dermal tissue derived
from cadaveric donors to provide the underlying support matrix.
Keratinocytes are then seeded on top of the fibroblast-populated
dermis and grow at the air–liquid interface (Figure 1B). After
several days of growth, the keratinocytes fully differentiate, gen-
erating a basement membrane and all of the stratified epidermal
layers, including the outermost squames of the stratum corneum
(Figure 1A). The resulting 3D human organotypic tissues are com-
posed entirely of human protein and cells, and unlike murine
skin these human organotypic tissues recapitulate the thickness
and most of the cellular architecture of the human epidermis and
underlying dermis. A limitation of this model is the high genetic
variability of skin cultures due to the use of primary cells from
heterogeneous donors. Another feature of the model that needs to
be improved in the future is the absence of cell types other than
keratinocytes and fibroblasts, and skin appendages such as hair
follicles and apocrine and eccrine sweat glands.

Epicutaneous infections of these 3D human skin cultures
with S. aureus USA300 constitutively expressing GFP allow us
to follow the bacteria during the colonization process over time.
Overnight colonies of bacterial cultures grown on agar plates are
re-suspended in Hanks buffer, and the inoculum is applied to
the air interface of the skin culture using a pipette tip. At var-
ious times after infection, the skin cultures are harvested into
paraformaldehyde fixative and further processed for cryosection-
ing. Using confocal microscopy to generate 3D images of infected
skin tissue, we can examine the bacterial skin interface both from
a “top-down” view (Figures 2B,D) as well as by looking at cross-
sectional slices (Figure 2C). We have tested whether the bacteria
are capable of growing on the regenerated human epidermis with-
out exogenous addition of nutrients or media. By starting with
a very small inoculum so that mainly single bacteria adhere to
the corneocyte surface, we can follow the fate of the microbes over
time and determine whether they grow and their preferential repli-
cation niche. By 2 days post-infection, the bacteria have expanded
to form microcolonies localized at different levels within the stra-
tum corneum of the epidermis (Figure 2, compare Figures 2A,B
to later stages of growth in Figures 2C,D). Experiments done with
antibiotics added to the basal media reveal this bacterial growth
depends on direct interactions with the keratinocytes and not from
contact with the cell culture media in the basolateral compartment
of the skin cultures (data not shown).

This model system will allow us to query multiple poorly under-
stood aspects of the interactions between S. aureus and skin tissue.
For example, we can more precisely identify the replicative niche
of S. aureus within the skin. Does a deeper, quiescent reservoir
population of bacteria seed a more rapidly expanding population
of surface associated bacteria in the stratum corneum? In addition
to examining the location of bacterial attachment and growth dur-
ing colonization, we can use this experimental system to observe
a more pathogenic bacterial invasion of the epidermis. By modu-
lating the maturity of the skin cultures at the time of infection, we
can create conditions where bacteria are interacting with nucleated
keratinocytes localized to more basal layers of the epidermis.

Unlike human or porcine skin explant models, a key advan-
tage of an in vitro 3D epidermal organotypic system is that it
allows the study of skin colonization and infection processes by
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FIGURE 1 |Three-dimensional organotypic human epidermal tissues
recapitulate the stratified structure of the epidermis. (A) Cross-sectional
view of a fully differentiated 3D human organotypic epidermal tissue. Collagen
VII (white) comprising the basement membrane is visible at the interface
between the dermis and epidermis. Nuclei of keratinocytes and fibroblasts
are blue, filamentous actin is red, and loricrin (green) localizes to the granular

layer and the squames of the stratum corneum. Scale bar is 10 µm.
(B) Top-down macroscopic view of the 3D organotypic human epidermal
tissue system. Pieces of devitalized human dermis are seeded with primary
human keratinocytes and fibroblasts. Tissue culture support trays raise the
organotypic human epidermal tissue and promote keratinocyte differentiation
by facilitating growth at the air–liquid interface. Scale bar is 1 cm.

experimentally controlling both the skin tissue as well as the
bacteria (42–44). In this model, the contribution of specific host
keratinocyte factors to generate an effective epidermal barrier or
to provide critical innate immune responses can be examined.
Human keratinocytes treated with RNAi against a gene of interest
prior to seeding the dermis generate skin tissue, which is stably
knocked-down for a particular gene of interest (28, 29). By then
infecting these “custom knocked-down” skin tissues, in the future
we can examine how tissues deficient in a particular structural or
innate immune product may alter the replicative niche of S. aureus.
Specifically, this approach could prove useful to assess the role of
the host protein filaggrin in staphylococcal infections of skin cul-
tures (45). A better understanding of staphylococcal interactions
with filaggrin-depleted skin is relevant due to the contribution of
filaggrin to the pathology of atopic dermatitis, a dermatological
condition, which is known to enhance S. aureus skin colonization
as well as pre-dispose patients to staphylococcal skin infections
(46–48). Indeed, 3D organotypic human skin cultures depleted
for filaggrin using siRNA technology have been reported in the
dermatological literature (49).

In addition to experimentally manipulating the host side of
the system, we can query the impact of specific bacterial viru-
lence factors in promoting growth and invasion processes. The
role played by S. aureus virulence determinants in skin persistence
is an area ripe for inquiry. A handful of staphylococcal virulence
factors have known host targets within the skin, most notably
the exfoliative toxins, which cleave epidermal desmogleins, lead-
ing to staphylococcal scalded skin syndrome (50, 51). However,
the vast majority of S. aureus virulence factors have been investi-
gated solely for their role in contributing to invasive disease and
remain largely ignored from the perspective of asymptomatic col-
onization. Considering the evolutionary pressure on S. aureus for

effective transmission and the relatively infrequent occurrence of
invasive infections relative to the high prevalence of colonization,
it is likely that many staphylococcal virulence factors are involved
in establishing and maintaining the colonization state. Clumping
factor B is a clear example of a S. aureus virulence factor with
dual roles in both the pathogenesis of a systematic infection and
colonization. In bloodstream infections, clumping factor B binds
to the α-chain of fibrinogen, promoting platelet aggregation, and
staphylococcal attachment to damaged tissue in endocarditis (52,
53). Nevertheless, it is one of the few known critical determinants
of nasal colonization and has been shown to facilitate adhesion
to the keratinized epithelium through its interaction with cytoker-
atin 10 expressed on squamous cells (18, 54). Similarly, the secreted
toxin α-hemolysin has been shown to promote the cleavage of E-
cadherin in epithelia such as the lung and the skin in disease models
(55). It seems very likely that the ability of S. aureus to modify
host adherens junction biology may contribute to its ability to
persist in the skin over time in a disease-free state. The 3D organ-
otypic human epidermal tissue system will facilitate examination
of the vast arsenal of S. aureus virulence factors with respect to the
hypothesis that virulence factors may play unique roles in the biol-
ogy of S. aureus colonization. One can assess the importance of
a particular bacterial product through competition experiments
where the same epidermal tissue is co-infected with wild type
(WT) and isogenic mutant S. aureus strains. Each strain can be
tracked via unique fluorophores, allowing observation of the fate
of WT and mutant populations within the same stratified human
tissue over time.

Examining the immune response to S. aureus cutaneous col-
onization and infections is an important potential application of
a 3D human skin culture system. The bi-dimensional nature of
traditional S. aureus infections of immune cell cultures in vitro
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FIGURE 2 | Staphylococcus aureus adherence, growth, and localization
can be observed within 3D organotypic human epidermal tissues. (A) 3D
confocal microscopy reconstruction of an infected (T = 1 h) 5-day-old 3D
organotypic human epidermal tissue. S. aureus USA300 GFP-expressing
bacteria (in green) are visible attached to the surface squames; filamentous
actin is red, and nuclei are blue. Scale bar in all panels corresponds to 10 µm.
(B) Top-down view of bacterial inoculum in (A), visualized immediately after
infection. (C) Cross-sectional view of an 8-day-old 3D organotypic human

epidermal tissue, infected with S. aureus USA300 GFP for 2 days. Bacteria (in
green) are visible throughout the squames in the stratum corneum (loricrin in
white). Filamentous actin is red and nuclei are in blue. (D) After 2 days of
growth on the organotypic epidermal tissue, S. aureus USA300 GFP has
started to form visible microcolonies within the squames in the stratum
corneum in this top-down view (loricrin in white). Inset depicts a
cross-sectional view located along the vertical line with arrows revealing a
large staphylococcal microcolony.

forces direct interactions between the bacteria and immune cells,
which are not likely to represent the most physiologically rele-
vant way in which an immune cell would encounter S. aureus. By
incorporating relevant immune cell types such as Langerhans cells
or neutrophils into the 3D skin culture system, future investiga-
tions could examine how S. aureus and immune cells interact with
one another in stratified human epidermal tissue. Other investi-
gators have successfully incorporated “Langerhans-like” immune
cells into similar 3D dermatological skin cultures, although to our
knowledge, these models have not yet been infected for use in
microbiology studies (56–58). Additionally, treatment with anti-
bodies directed against S. aureus or addition of recombinant
cytokines in the basolateral media of the skin cultures could allow
examining impact of immune response to S. aureus in the localized
cutaneous setting. As more S. aureus vaccines move forward into
clinical trials, it remains totally unknown how an efficacious anti-
body response to vaccination may impact S. aureus colonization
burden (59). Studies using a 3D organotypic human epidermal
tissue model will prove valuable in assessing how immunization

against S. aureus might alter bacterial population behavior on the
epidermis or protect against invasive epidermal infections.

In order to better understand staphylococcal colonization and
the transition to invasive infections, we must study S. aureus in its
natural habitat: the human stratified squamous keratinized epithe-
lium. Our group and others have begun to use organotypic 3D
human skin equivalent cultures to experimentally probe S. aureus
colonization and infections (36, 60). It is our hope that mov-
ing toward more physiologically relevant model systems, which
capture the complex biology of the skin, will allow us to bet-
ter understand the critical interface between our most important
tissue barrier and S. aureus.
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