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During B cell development, long-distance DNA interactions are needed for V(D)J somatic
rearrangement of the immunoglobulin (Ig) loci to produce functional Ig genes, and for
class switch recombination (CSR) needed for antibody maturation. The tissue-specificity
and developmental timing of these mechanisms is a subject of active investigation. A small
number of factors are implicated in controlling Ig locus long-distance interactions including
Pax5,YinYang 1 (YY1), EZH2, IKAROS, CTCF, cohesin, and condensin proteins. Here we will
focus on the role of YY1 in controlling these mechanisms.YY1 is a multifunctional transcrip-
tion factor involved in transcriptional activation and repression, X chromosome inactivation,
Polycomb Group (PcG) protein DNA recruitment, and recruitment of proteins required for
epigenetic modifications (acetylation, deacetylation, methylation, ubiquitination, sumoyla-
tion, etc.). YY1 conditional knock-out indicated that YY1 is required for B cell development,
at least in part, by controlling long-distance DNA interactions at the immunoglobulin heavy
chain and Igκ loci. Our recent data show thatYY1 is also required for CSR.The mechanisms
implicated in YY1 control of long-distance DNA interactions include controlling non-coding
antisense RNA transcripts, recruitment of PcG proteins to DNA, and interaction with com-
plexes involved in long-distance DNA interactions including the cohesin and condensin
complexes.Though common rearrangement mechanisms operate at all Ig loci, their distinct
temporal activation along with the ubiquitous nature of YY1 poses challenges for determin-
ing the specific mechanisms of YY1 function in these processes, and their regulation at
the tissue-specific and B cell stage-specific level. The large numbers of post-translational
modifications that control YY1 functions are possible candidates for regulation.

Keywords:YY1, polycomb, condensin, cohesin, DNA loops, immunoglobulin loci

THE EARLY DAYS
Yin Yang 1 (YY1) was first identified in 1985 as a factor that yielded
an in vivo B cell-specific DMS methylation interference pattern
over the immunoglobulin heavy chain (IgH) intron enhancer (1,
2). The enhancer site that bound YY1 was defined as the µE1 site
(3) and nuclear factors that bound to this sequence were identified
by EMSA (4). Our laboratory isolated a cDNA clone expressing a
protein that bound to the Igκ3′ enhancer as well as the IgH µE1
site and named the protein NF-E1 (5). Simultaneously the factor
was cloned by Tom Shenk’s laboratory and named YY1 (6) based
on its ability to bind the adenoviral P1 promoter and both activate
and repress transcription, by Robert Perry’s laboratory and named
delta (7) due to its binding to the delta motif in the promoters
of ribosomal protein genes, and by Keiko Ozato’s laboratory and
named UCRBP based on its ability to bind to the upstream con-
trol region of retroviral LTRs (8). Ultimately, the name YY1 was
adopted by all.

Yin Yang 1 contains four zinc fingers at its carboxyl termi-
nus (amino acids 298–414) and a region rich in alanine and
glycine between amino acids 154 and 201. The first 100 amino
acids of YY1 encode several notable features. Sequences 43–53
contain 11 consecutive acidic residues while amino acids 70–80
consist of 11 consecutive histidine residues. These two segments
are separated by a region rich in glycine (residues 54–69). In addi-
tion, sequences 16–29 have the potential to form an amphipathic

negatively charged helix and sequences 80–100 are rich in proline
and glutamine. Sequences near the carboxyl terminus (333–397),
which overlap the YY1 zinc fingers, and sequences 170–200 have
been reported to be involved in transcriptional repression (6, 9–
15). These sequences are known to physically interact with a vari-
ety of transcriptionally important proteins including TBP, p300,
c-myc, and HDAC2 (16). YY1 sequences important for transcrip-
tional activation reside near the amino-terminus (9, 12, 13, 17).
Figure 1 shows various sequence features and functional domains
of YY1.

DIVERSE AND COMPLEX ROLES OF YY1
Over the past 22 years, multiple diverse YY1 functions have been
identified. YY1 is crucial for embryonic development because
homozygous mutation of the yy1 gene in mice results in peri-
implantation lethality (18). YY1 is implicated in lineage differen-
tiation of skeletal and cardiac muscle, and in cell growth control
(13, 17, 19–24), as well as disease pathways such as dystrophic
muscle disease (25–27). YY1 and its target genes are also believed
to be central regulators of germinal center B cell development
(28), and YY1 has been suggested to regulate genomic targeting of
activation induced cytidine deaminase (AID) (29). YY1 is impli-
cated in a number of cancers (30–32), and is overexpressed in
B cell lymphomas that depend on AID function. YY1 is associ-
ated with B cell transformation and tumor progression in diffuse
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Atchison YY1 and DNA loops

FIGURE 1 | Diagram of YY1 domains and functions. Domains of YY1 are
indicated with specific functions listed. The regions of similarity to
Drosophila Plieohomeotic are indicated below the diagram.

large B cell lymphoma (DLBCL) (33, 34), and high levels of YY1
expression are associated with reduced patient survival in DLBCL
as well as follicular lymphoma. CTCF–YY1 elements are clus-
tered in the imprinting domain of Tsix (35) and YY1 docks Xist
particles on the X chromosome via DNA and RNA interactions
during X chromosome inactivation (36). YY1 can also control
imprinting at the Peg3 and Gnas domains (37). YY1 can con-
trol human immunodeficiency virus (HIV) gene expression and
viral titers, and deletion of YY1 binding sites in regulatory regions
of human papilloma viruses correlates with increased viral gene
expression and the development of cervical cancer (38–46). Thus,
YY1 function is related to transcriptional regulation, embryonic
development, X-chromosome inactivation, imprinting, oncogen-
esis, viral gene expression, epigenetic function, and a growing list
of diseases.

IDENTIFICATION OF THE PcG FUNCTION OF YY1
A significant new function of YY1 was suggested in 1998 when
the Kassis laboratory cloned the Drosophila Pleiohomeotic (PHO)
sequence and observed similarity to YY1 (47) (Figure 1). Gir-
ton and Jeon (48) demonstrated that PHO is a Polycomb Group
(PcG) protein, a family of proteins involved in epigenetic chro-
mosomal condensation, stable transcriptional repression, control
of cell proliferation, hematopoietic development, as well as stem
cell self-renewal. This raised the exciting possibility that YY1 is a
vertebrate PcG protein. PHO is highly homologous to YY1 in two
regions. These two regions include YY1 sequences 296–414 and
205–226 (the corresponding segments in PHO are residues 357–
475 and 148–169, respectively). Sequences 298–414 constitute the
four YY1 zinc fingers. The homology over this region is extraordi-
nary for organisms as diverse as flies and humans (112 identities
out of 118; 95%). Within this segment, zinc fingers 2 and 3 are
100% identical. The 205–226 segment is also highly homologous
(18/22; 82% identity). Outside of these regions of high similarity,
YY1 and PHO showed no discernible similarity. PHO does not
contain an obvious transcriptional activation domain and lacks
YY1 structural features such as acid and histidine stretches. How-
ever, the two regions of high similarity between YY1 and PHO, and

their similar spatial locations within the proteins, suggested that
they might carry out some of the same functions in vertebrates
and flies, respectively.

Prompted by the possibility thatYY1 functions as a PcG protein,
we tested this hypothesis using a Drosophila in vivo transcription
system,as well as a phenotypic correction assay. Our results showed
that human YY1 does indeed function as a PcG protein in vivo
(49–51). We found that YY1 can repress transcription in a PcG-
dependent fashion, can phenotypically correct pho mutant flies,
and can recruit PcG proteins to specific DNA sequences result-
ing in tri-methylation of H3 lysine 27 (49–51). The mechanisms
responsible for targeting mammalian PcG proteins to specific
DNA regions has long been proven enigmatic because none of the
components of the PcG complexes bind to specific DNA sequences,
yet the PcG complexes associate with specific DNA regions in vivo.
Our demonstration that YY1 is a mammalian PcG protein with
high affinity sequence-specific DNA binding activity suggested
that YY1 is a crucial factor for targeting specific proteins to specific
DNA sequences. The role of YY1 in PcG targeting has been con-
firmed in a number of studies (52–55) though clearly other factors
are involved as YY1 (and PHO) does not co-localize with PcG pro-
teins in all cell types (56–58). A particularly exciting aspect of YY1
PcG function is that PcG proteins are known to contribute to B cell
development, and the PcG protein EZH2, like YY1, is required for
Ig locus contraction (further explained below) (59). Nucleation of
PcG proteins to specific target DNA sites by YY1 within the Ig loci
thus opens up a new avenue for mechanistic evaluation of B cell
development and Ig locus contraction, because PcG proteins are
capable of mediating long-distance DNA interactions (60).

THE YY1 REPO DOMAIN
Using a fly transgenic approach, we set out to identify the YY1
sequences involved in PcG function (61). We found that the
region of 82% YY1-PHO identity (the 25 amino acids between
residues 201 and 226), when fused to a heterologous GAL4 DNA
binding domain, was necessary and sufficient for PcG-dependent
transcriptional repression. Amazingly, this small 25 amino acid
segment was also necessary and sufficient for recruitment of PcG
proteins to DNA resulting in tri-methylation of H3 lysine 27.
Therefore, we named YY1 sequences 201–226 the REPO domain
for their ability to REcruit Polycomb (61). A REPO domain YY1
mutant (∆201–226) can mediate nearly all YY1 functions such as
DNA binding, transcriptional activation, transient transcriptional
repression, and interaction with HDAC proteins. However, this
mutant fails to carry out YY1 PcG functions and fails to recruit PcG
proteins to DNA (61). How the YY1 REPO domain recruits PcG
proteins to DNA is now being elucidated. Two homologous pro-
teins,YAF2 and RYBP, were previously identified asYY1 interacting
proteins (62, 63). Functionally, RYBP associates with a subset of
PcG complexes named PRC1L4 (64) and is involved in the repres-
sive function of hoxD11.12, a mammalian “PRE-like” sequence
(65). YAF2 was first identified by its ability to bind to YY1 (63)
and we found YAF2 can interact with the REPO domain perhaps
functioning as a bridge protein in PcG recruitment (52, 66). The
importance of the YY1 REPO domain for B cell development is
discussed below.
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Atchison YY1 and DNA loops

STRUCTURE OF IMMUNOGLOBULIN LOCI DURING B CELL
DEVELOPMENT
B cell development involves progression from Lin−Sca-1+c-kit+

(LSK) progenitor cells through a number of intermediate B cell
stages including pro-B, pre-B, immature B, mature B, and plasma
cell stages. The early stages of B cell development can be delin-
eated by the rearrangement status of the immunoglobulin heavy
and light chain genes. Both heavy and light chain genes are pro-
duced during early, antigen-independent B cell development by a
somatic rearrangement process that links together either V, D, and
J segments (heavy chain), or V and J segments (light chain) to pro-
duce functional Ig genes (67–70). The Ig loci are huge (2.4–3.2 Mb)
and for rearrangement of distal variable region genes to occur, the
loci must go through a physical contraction process. Prior to the
onset of rearrangement, Ig loci reside at the nuclear periphery in an
“extended” configuration. However, at the pro-B cell stage, when
the heavy chain genes undergo rearrangement, the loci take up an
intranuclear localization with concomitant contraction of the loci
(heavy chain first followed by light chain) (71–74). While IgH DJ

and proximal VH to D and Vκ to Jκ rearrangements can occur
without contraction, the distal V genes require locus contraction
and looping for rearrangement (71–73, 75–77).

Current data suggest that the Ig loci are organized as loops
into rosette-like structures separated by spacer DNA (76, 78–
80). A number of domains have been identified at the IgH locus,
which adopt various conformations during development (76, 78–
80). At the pre–pro-B cell stage, these rosette domains are in an
extended conformation, but in pro-B cells the structure changes
such that each V region domain is repositioned with all VH regions
approximately equidistant to the DH and JH regions, thus afford-
ing roughly equal access for recombination (79, 80) (Figure 2, left
panel). Similar structures are believed to exist at the Ig kappa locus
at pro-B and pre-B cell stages (Figure 3).

The mechanisms that control Ig locus contraction are
unknown. A small number of transcription factors or protein com-
plexes (YY1, Pax5, CTCF, IKAROS, cohesin, condensin, EZH2) are
implicated in the DNA loops needed for V(D)J rearrangement (59,
78, 81–86), but the molecular details and regulatory processes that

FIGURE 2 | Immunoglobulin heavy chain locus diagram with V, D,
J, and C regions indicated and locations of knownYY1 binding
sites, and the approximate positions of long-distance DNA loops
that areYY1-dependent. The red circles represent the IgH intron and

3′RR enhancers. The left panel models rosette-like loops
encompassing the VH regions at the pre–pro-B and pro-B cell stages.
The right panel diagrams the Eµ-3′RR long-distance DNA loop
required for CSR.
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Atchison YY1 and DNA loops

FIGURE 3 | Igκ locus diagram showing the location of knownYY1 binding sites, and the postulatedYY1-dependent loops required for Vκ–Jκ

rearrangement. Locations of the Igκ intron and κE3′ enhancers and shown by red circles and arrows. Postulated locus structure in pro-B and pre-B cells is
show below.

control this mechanism are not clear. Pax5 binds to multiple repeat
sequences in the distal region of the IgH locus (PAIR sequences)
and is believed to participate in rearrangement of distal VH genes
(83). Non-coding antisense transcripts expressed across the PAIR
sequences correlate with VDJ rearrangement and are postulated to
be involved with IgH locus contraction (83, 87, 88). Pax5 controls
some of these transcripts (83), and recently YY1 was shown to
regulate antisense transcripts across at least two PAIR sequences
(87). Many Pax5 and YY1 potential binding sites exist in the IgH
locus (89) and these transcription factors co-localize at some of
these sites (87). Similar to the Pax5 and YY1 knock-out pheno-
types (discussed below), PcG protein EZH2 knock-out results in
arrest at the pro-B cell stage with impaired distal VH to DH–JH

rearrangement (59). CTCF and cohesin have been argued to reg-
ulate Ig locus structure and to control interactions of DH and JH

regions with proximal VH segments and Jκ regions with proximal
Vκ segments (81, 82, 90–92). Ikaros knock-out also impacts IgH
rearrangement as well as locus contraction (93).

THE ROLE OF YY1 AND THE REPO DOMAIN IN B CELL
DEVELOPMENT
Yin Yang 1 has long been believed to play some role in
immunoglobulin (Ig) gene regulation and B cell biology because
it associates with multiple Ig enhancer elements including the

heavy chain intron and 3′ enhancers, the Ig kappa 3′ enhancer,
as well as to a site between the CH γ1 and γ2b exons (1–5, 87,
94) (Figures 2 and 3). The Shi laboratory at Harvard provided
insight into the role of YY1 in B cell development by demon-
strating that conditional knock-out of YY1 in the B cell lineage
(using mb1-CRE which is expressed early after B lineage commit-
ment) resulted in arrest at the pro-B cell stage (84). Pro-B cells
lacking YY1 have normal DH–JH recombination but reduced fre-
quency of VH–DH–JH recombination, with the defect being most
severe for more distal VH genes (84). These knock-out pro-B cells
showed a defect in Ig locus contraction (84), and this phenotype
has been confirmed by a number of studies (81, 88). Thus, con-
ditional knock-out of YY1 using mb1-CRE results in arrest at the
pro-B cell stage, lost Ig locus contraction, and reduced rearrange-
ment of distal V genes. Importantly, despite the fact that proximal
VDJ recombination does occur, very few mature B cells are gen-
erated in conditional knock-outs. Furthermore, introduction of a
rearranged heavy chain gene only partially complements the YY1
conditional knock-out phenotype, suggesting additional roles for
YY1 in early B cell development (84).

Intrigued by the similarity between the YY1 and PcG protein
EZH2 B cell knock-out phenotypes (59, 84), we set out to deter-
mine the importance of YY1 PcG function for B cell development.
Using YY1 wild-type and YY1∆REPO retroviral constructs, we
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Atchison YY1 and DNA loops

transduced bone marrow from yy1f/f mb1-CRE mice and injected
this transduced bone marrow into irradiated secondary recipi-
ents. Thus, within the B cell lineage of the transplanted mice, only
the transduced YY1 constructs will provide YY1 function due to
deletion of the endogenous yy1 gene by mb1-CRE action. While
wild-typeYY1 largely restored B cell development, theYY1∆REPO
reconstituted cells arrested B cell development at the pro-B and
pre-B cell stages (85). Interestingly, IgH VDJ rearrangement was
largely normal, but Igκ rearrangement showed a dramatically
skewed repertoire. Only a small number of Vκ genes underwent
rearrangement with one third of rearrangements to the most distal
5′ V kappa gene. This dramatic result suggested that in the absence
of YY1 PcG function, most of the DNA loops at the Igκ locus
needed for Igκ rearrangement were abrogated, and a small num-
ber of loops that are independent of YY1 PcG function remained
for Igκ Vκ–Jκ rearrangements. At least some of these loops may
require E2A or Pax5 (85), although this is speculative.

MECHANISMS OF Ig LOCUS CONTRACTION
The dramatically skewed Vκ–Jκ rearrangement profiles in
YY1∆REPO compared to wild-type YY1 mice (85), suggested a
possible direct effect of YY1 on Igκ locus structure, and loss of IgH
locus contraction in a YY1 knock-out background suggested par-
allel effects at the heavy chain locus. Consistent with a direct effect
on Igκ locus structure, RNAi knock-down of YY1 in bone marrow
cultures reduced Igκ rearrangement at a subset of Vκ genes (85).
Since the Shi lab showed YY1 is important for Ig locus contraction
(81, 84, 88), we hypothesized that clusters of YY1 binding sites
exist across the Ig loci, and that YY1 binding to these sites would
result in recruitment of proteins needed for Ig locus contraction.
As predicted, we identified clusters of YY1 binding sites across
the Igκ locus that binds to YY1 (85). We found that PcG protein
EZH2 co-localized with YY1 at these sites apparently as a result
of recruitment by YY1 (85). We also identified several proteins
that physically interact with the YY1 REPO domain providing
potential insight into the mechanism of YY1 function in locus
contraction. Intriguingly, we found that proteins from the con-
densin and cohesin complexes (SMC4 and SMC1) that are needed
for contraction of chromosomes during mitosis (95–99), as well
as lamin proteins, bind to the YY1 REPO domain. Lamin proteins
are known to be involved in long-distance DNA interactions (100–
103). Similarly, cohesin and condensin complexes, along with
topoisomerase 2, are involved in mitotic chromosome contraction
and higher order chromosome organization and dynamics (96,
104). During mitosis, condensin and cohesin proteins associate

with the chromosomes and function in chromosomal contraction,
cohesion, assembly, and segregation (96–98). A subpopulation of
these proteins remains chromosome-associated at specific foci in
the interphase nucleus (98). Importantly, cohesin and condensin
proteins are involved in numerous long-distance DNA interac-
tions (92, 105–114). Therefore, we hypothesized condensin and
cohesin proteins associate with Ig loci in pro-B and pre-B cells by
virtue of interaction with YY1, and thereby function to partici-
pate in Ig locus contraction. Consistent with this idea, we found
that condensin proteins associate with the clusters of YY1 binding
sites that we identified within the Igκ locus (85) in primary pro-B
cells, but not in fibroblasts suggesting a B cell specific function of
condensin and cohesin association with these sites (see Figure 4).

To test the functional consequences of YY1 and condensin bind-
ing at the Ig kappa locus, we performed RNAi knock-down and Ig
kappa rearrangement assays. We found that knock-down of YY1
or condensin proteins resulted in reduced Igκ rearrangement at a
subset of Vκ genes (85). Thus, YY1 binds to sites in the Ig loci, per-
haps recruits PcG, condensin, cohesin, and lamin proteins to these
sites, and results in specific Ig locus chromosomal contraction. The
identification of condensin mutants that specifically affect T cell
development supports the idea of condensin proteins (which are
ubiquitously expressed) having lymphoid specific functions (115).
These complexes can mediate long-distance chromosomal inter-
actions (105, 107), and kleisin-β, a member of the condensin II
complex is important for T cell development as is cohesin subunit
Rad21 (92, 115). Cohesin subunit Rad 21 (a kleisin family protein)
is recruited to CTCF binding sites throughout the Ig loci during
B lymphocyte development (82). As condensin I is involved in the
process of physically compacting DNA in the presence of hydrolyz-
able ATP (116), condensin complex proteins may also participate
in bringing V genes in the Ig locus into close proximity with D and
J gene segments.

LONG-DISTANCE DNA INTERACTIONS AND CSR
Long-distance DNA loops are also required for class switch recom-
bination (CSR), which recombines the rearranged VDJ segments
that provide antibody specificity with various Ig heavy chain con-
stant (C) regions with different effector functions (117, 118). CSR
requires a large 220 kb long-distance DNA loop synapse between
the IgH intron enhancer (Eµ) region, and the 3′RR enhancer
downstream of the 3′-most Cα exon (119, 120) (the Eµ-3′RR
synapse; see Figure 2, right panel). In addition, CSR to individ-
ual IgH C exons requires formation of inducible DNA loops from
each switch region DNA sequence into the Eµ-3′RR synapse (119,

FIGURE 4 | Summary of protein co-localization data across the Igκ locus.
The Igκ locus is shown in the top panel with Vκ genes represented by vertical
lines. The identified YY1 binding sites are represented by black circles.

Summary of ChIP data for YY1, EZH2, SMC4, SMC2, and BRRN1 are shown
in the bottom panel. Positive ChIP signals are represented by a + symbol and
question marks show inconclusive ChIP data.
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Atchison YY1 and DNA loops

120). Over 40 proteins are involved in the enzymology and mech-
anism of CSR and include DNA repair (base excision repair and
mismatch repair) proteins, DNA damage sensors, factors that alter
chromatin structure, factors that bind to AID, and transcriptional
regulatory proteins [reviewed in Ref. (121)]. However, none of
these factors are known to specifically impact the Eµ-3′RR DNA
loop required for CSR.

Recent progress, however, has shed light on these long-distance
DNA loops. CTCF and cohesin bind to the IgH 3′RR enhancer
within the hs5–7 sites (81, 122, 123), and cohesin binding is
induced at certain CH switch regions in response to inducers of
CSR implying a function for cohesin in CSR (123). Consistent
with this, knock-down of cohesin subunits impairs CSR (123).
In addition, knock-down of the cohesin loading protein NIPBL
reduces CSR, reduces non-homologous end joining, and increases
microhomology end joining (124). Interestingly, AID was shown
to physically interact with condensin, cohesin, and INO80 com-
plex proteins (123), precisely the same complexes that bind to YY1
(85, 125, 126).

Notably, we found that YY1 conditional knock-out in splenic B
cells significantly reduces CSR (127). YY1 physically interacts with
AID, leading to stabilization and increased AID nuclear accumu-
lation, and this control of AID nuclear levels can regulate CSR.
Control of nuclear levels of AID is crucial not only for regu-
lating antibody maturation processes (CSR and somatic hyper-
mutation), but also is important for maintaining integrity of the
mammalian genome. Elevated levels of YY1 could cause aberrant
accumulation of AID in germinal center B cells leading to increased
mutagenesis and lymphomagenesis. Indeed,YY1 levels are elevated
in germinal center-derived human DLBCL (34), suggesting that
YY1 contributes to disease progression. However, we also found
that YY1 has a second function important for CSR. In collabo-
ration with Ranjan Sen (NIA), we found that YY1 is necessary
for long-distance DNA loops formed between the Eµ and 3′RR
enhancers (unpublished data). Recently, Kenter and colleagues
identified a long-distance DNA loop between the Eµ and hs3b–
hs4 sites of the 3′RR that is dramatically induced upon induction
of CSR in splenic B cells (119). We found that this long-distance
DNA loop is YY1-dependent (unpublished data). Thus, YY1 con-
trols long-distance DNA loops in splenic B cells that are critical for
CSR. Can the same be said of the long-distance DNA loops needed
for IgH V(D)J rearrangement, and perhaps for other long-distance
DNA loops? Recent evidence suggests this is the case.

YY1-DEPENDENT IgH LONG-DISTANCE DNA INTERACTIONS
The Sen Laboratory and colleagues indentified long-distance DNA
loops in both the VH distal and proximal regions, and at the 3′ end
of the locus (78). They found YY1 bound to many of these seg-
ments and postulated either homotypic YY1 interactions to medi-
ate these loops, or heterotypic interactions with other proteins
(78). The essential nature of YY1 for these loops was subsequently
demonstrated. In pro-B cells, YY1 conditional knock-out ablates
long-distance DNA loops between the Eµ region and the distal and
proximal VH regions (87). In addition, YY1 knock-out in pro-B
cells ablates loops between the Eµ region and the 3′RR enhancer,
hs5–7 region (87). Thus, YY1 is essential for long-distance DNA
loops within the IgH locus involved in either VDJ rearrangement,

or CSR (Figure 2). Finally, YY1 is also involved in long-distance
DNA interactions at the Th2 cytokine locus and controls IL4, IL5,
and IL13 expression (128). These dramatic results indicate that
YY1 is required for long-distance DNA loops that control IgH
V(D)J rearrangement, CSR, and gene regulation. Our studies at
the Igκ locus (85) also indicate a role for YY1 in long-distance
DNA interactions needed for Igκ rearrangement (Figure 3).

REGULATORY MECHANISMS FOR YY1 FUNCTION
How mightYY1 be functioning in these diverse long-distance DNA
interactions? As described above, in pro-B cells, YY1 binds consti-
tutively to the Eµ enhancer, to hs5–7 sites in the 3′RR enhancer,
to a site between the Cγ1 and Cγ2b exons, and inducibly to the
hs3b site in the 3′RR enhancer in splenic B cells (5, 78, 87, 94). The
mechanism of regulation of developmental stage-specific function
of YY1 in VDJ rearrangement at the IgH locus (pro-B cells), in Vκ–
Jκ rearrangement at the Igκ locus (pre-B cells), and in CSR at the
IgH locus (mature splenic B cells), is presently unknown. YY1
may participate in regulatory stage-specific functions to control
locus accessibility (129), but other factors may control accessibility
enabling subsequent YY1 DNA binding.

Yin Yang 1 function can be regulated by a number of mecha-
nisms. Stage-specific regulation could be at the level of YY1 DNA
binding, such as the LPS inducible binding in the 3′RR enhancer
in splenic B cells. YY1 binding to the Ig heavy chain 3′RR hyper-
sensitive site 3b (hs3b) as well as to the Eµ enhancer is inducible by
LPS (94). In this case, YY1 appears to be sequestered from DNA in
resting B lymphocytes through interaction with hypophosphory-
lated retinoblastoma protein (Rb). However, after LPS induction,
Rb becomes hyperphosphorylated and releases YY1 enabling it
to bind to the hs3b and Eµ enhancers. Interestingly, hs3b and 4
hypersensitive sites are crucial for formation of Eµ: 3′RRl enhancer
synapses with germline switch region promoters after cytokine
treatment (119, 120). We hypothesize that LPS induction of CSR
might partially result from induction of YY1 binding to the 3′RR
and Eµ enhancers leading to induced DNA loop formation.

Alternatively, YY1 may be controlled by stage-specific post-
translational modifications, or by stage-specific interaction with
other proteins. A number of YY1 post-translational modifica-
tions can regulate YY1 DNA binding (phosphorylation of serines
180 and 184, and threonines 348 and 378) (130–132), and YY1
is sumoylated on lysine 288 (133), which can control protein–
protein interactions. Phosphorylation of serines 180 and 184 is
mediated by Aurora B kinase and expression of this kinase peaks
in splenic germinal center B cells (www.immgen.org) when CSR
is active. Several studies demonstrated that YY1 subcellular local-
ization is regulated during cell cycle progression and development
(132, 134–137) suggesting that YY1 might also regulate subcellular
localization of interacting partner proteins. In addition, apoptotic
stimuli promote rapid translocation of YY1 from the cytoplasm
to the nucleus in asynchronous HeLa cells (138). Thus, YY1 might
function to increase transport of proteins from the cytoplasm to
the nucleus via the nuclear pore.

During B cell development, YY1 expression levels remain rela-
tively constant, as defined by transcript levels (www.immgen.org).
However,YY1 protein levels are regulated in some systems yielding
biological responses. This is most well studied in skeletal muscle
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Atchison YY1 and DNA loops

FIGURE 5 | Model of YY1 recruitment of proteins to DNA needed for
long-distance DNA interactions. Using the IgH locus as a model, YY1
binding sites are indicated. Binding by YY1 then results in recruitment of
condensin, cohesin, and PcG complex proteins. These proteins may form
homotypic or heterotypic interactions to mediate long-distance DNA

interactions. Positions of the Eµ enhancer, 3′RR enhancer, and various V
genes are shown by arrows. Black rectangles represent various CH constant
regions. YY1 also physically interacts with AID, and AID is able to interact with
condensin, and cohesin complexes, and thus may contribute to DNA loop
formation in germinal center B cells.

differentiation systems where YY1 expression levels drop as a result
of proteolysis (24), and in cardiac disease conditions (139, 140).
Thus, regulation of YY1 protein stability may control DNA loop
formation.

It should be noted that RNA expression profiles of PcG pro-
teins EZH2 and YAF2, as well as cohesin, and condensin subunit
proteins SMC4, SMC2, SMC1, SMC3, CAP-G, CAP-H (BRRN1),
and CAP-D2 all peak during B cell development at the pre-B
cell stage (www.immgen.org). Expression levels are also high in
pro-B cells, but peak in pre-B cells, then drop in immature B
cell stages. This expression pattern is coincident with the tim-
ing of Ig rearrangement and is consistent with a role in Ig locus
contraction and rearrangement. However, this timing is also coin-
cident with high levels of proliferation in pre-B cells suggesting
a possible effect of YY1 on the pre-B proliferative burst dur-
ing development. All factors peak again in germinal center B
cells (www.immgen.org) suggesting possible roles in proliferation,
CSR, or somatic hypermutation.

Whatever the mode of locus accessibility or YY1 DNA binding,
YY1 may then recruit proteins to DNA that are required for long-
distance DNA interactions. As presented above, YY1 physically
interacts with PcG, condensin, cohesin, and lamin proteins, all

involved in long-distance DNA interactions, and we have noted
co-localization of some of these proteins with YY1 at the Igκ
locus (Figure 4). PcG proteins can mediate long-distance DNA
interactions (60), and since YY1 recruits PcG proteins to DNA
via the REPO domain (50, 61), we predict that this interaction
will be important for long-distance interactions leading to DNA
loop formation. Notably, condensin and cohesin complex pro-
teins (105, 107), and lamin proteins (100–103) are all involved in
long-distance DNA structures, suggesting that the DNA binding
capacity of YY1 at IgH and Igκ sequences may nucleate protein–
protein interactions that govern DNA looping mechanisms. In
addition to co-localization of YY1 and condensin proteins at the
Igκ locus, YY1 co-localizes with cohesin at the hs5–7 sites in the
3′RR enhancer (78, 81).

MODELS OF YY1-MEDIATED LONG-DISTANCE DNA
INTERACTIONS
Based upon: (a) the crucial nature of the YY1 REPO domain for
B cell development, (b) the ability of this domain to recruit PcG
proteins to DNA, (c) the physical interaction of the REPO domain
with PcG, condensin, cohesin, and lamin proteins, (d) the co-
localization of YY1, EZH2, and condensin proteins across the Igκ
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locus, (e) the co-localization of YY1 and cohesin proteins at the IgH
3′RR enhancer, (f) the effect of cohesin knock-down on CSR, (g)
the effect of condensin subunit knock-down on Vκ–Jκ rearrange-
ment, (h) the high levels of EZH2, YAF2, cohesin, and condensin
proteins in pro-B, pre-B, and germinal center cells, (i) the critical
role of YY1 in long-distance DNA loops in the IgH V region and 3′

region, and (j) the regulatory role of YY1 in CSR, we propose the
following mechanism. We propose that YY1 binds to sites span-
ning the IgH and Igκ loci. Concomitant with YY1 DNA binding,
increased EZH2,YAF2, cohesin, and condensin subunit expression
results in these proteins binding to the same DNA regions, presum-
ably due to interactions with YY1. The nucleated PcG, cohesin,
and condensin proteins then mediate long-distance interactions
between the YY1 binding sites resulting in contraction of the Ig
loci in looped or rosette structures (Figure 5). These loops then
control somatic rearrangement of IgH and Igκ genes as well as
CSR. Immediately upon maturation to the immature B cell stage,
or upon maturation to plasma cells,EZH2,YAF2,cohesin,and con-
densin protein expression drops dramatically (www.immgen.org),
thus facilitating de-contraction of the Ig loci, perhaps assisting in
regulation of the allelic exclusion process, and causing a decrease
in the inducible loops needed for CSR. In the case of CSR, it is
intriguing that AID binds to many of the same factors that bind
to YY1 (condensin, cohesin, and INO80 complexes) (123). Thus,
YY1–AID physical interaction may also contribute to DNA loop
formation (Figure 5).

Finally, it has been proposed that YY1 function in long-
distance DNA interactions relates to the regulation of non-coding
antisense transcripts in the IgH VH PAIR sequences (88). YY1
knock-out ablates some of these transcripts, and these transcripts
have been proposed to play a role in IgH locus contraction (87,
88). Some RNA transcripts are known to regulate long-distance
DNA interactions via interactions with the mediator complex
(141). Whether YY1 functions in this mechanism is presently
unclear.

FUTURE STUDIES AND REMAINING QUESTIONS
A number of outstanding questions remain. (1) Is recruitment
to DNA of proteins involved in DNA loop formation dependent
upon YY1 DNA binding? (2) What mechanisms enable YY1 to
function at distinct loci at various developmental stages? (3) Is
YY1 function controlled by post-translational modifications? (4)
Is YY1 controlled by stage-specific protein interactions? (5) What
functions and domains of YY1 are needed for DNA looping,V(D)J
rearrangement, and CSR? (6) What are the biochemical mech-
anisms for Ig locus contraction and for DNA loop formation?
These questions and others are important for immune function
and control of gene expression. The ubiquitous nature of YY1 and
its involvement in looping at multiple loci (78, 87, 128) suggests
that paradigms learned in the Ig systems will be globally applicable
to other long-distance DNA interactions.
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