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Regulatory T cells (Tregs) suppress exuberant immune system activation and promote
immunologic tolerance. Because Tregs modulate both innate and adaptive immunity, the
biomedical community has developed an intense interest in using Tregs for immunother-
apy. Conditions that require clinical tolerance to improve outcomes – autoimmune disease,
solid organ transplantation, and hematopoietic stem cell transplantation – may benefit from
Treg immunotherapy. Investigators have designed ex vivo strategies to isolate, preserve,
expand, and infuse Tregs. Protocols to manipulate Treg populations in vivo have also been
considered. Barriers to clinically feasible Treg immunotherapy include Treg stability, off-cell
effects, and demonstration of cell preparation purity and potency. Clinical trials involving
Treg adoptive transfer to treat graft versus host disease preliminarily demonstrated the
safety and efficacy of Treg immunotherapy in humans. Future work will need to confirm
the safety of Treg immunotherapy and establish the efficacy of specific Treg subsets for
the treatment of immune-mediated disease.
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INTRODUCTION
Autoimmunity and alloimmunity protect the host against malig-
nancy and infection; however, unrestrained immune system acti-
vation leads to clinical disorders. Induction of immunologic tol-
erance is essential to improving outcomes in diseases typified by
immune system activation: autoimmune disease (1), solid organ
transplantation (SOT) (2), and hematopoietic stem cell transplan-
tation (HSCT) (3, 4). In these states, conventional T cells coordi-
nate adaptive immunity and underlie the pathogenesis of autoim-
mune disease, allograft rejection, and graft versus host disease
(GVHD). Current strategies to induce tolerance include immuno-
suppressive pharmacotherapies that cause functional deletion or
anergy of reactive conventional T cells. Toxicity limits use of
these drugs, leading investigators to design immunotherapies
based on the immune regulatory system. This review focuses on
immunotherapy using regulatory T cells (Tregs).

Induction of peripheral immunologic tolerance requires Tregs,
which suppress autoimmunity and promote allograft survival
(5). Thymic deletion of self-reactive T cells provides a mech-
anism of central tolerance; Tregs represent a peripheral system
to maintain self-tolerance and prevent over-exuberant immune
responses. Mice with mutations in a critical Treg gene (Foxp3)
develop scurfy, a fatal lymphoproliferative syndrome characterized
by multi-organ inflammation (6). IPEX (immunodysregulation,
polyendocrinopathy,and enteropathy,X-linked) occurs in humans
with loss-of-function FOXP3 mutations (7). Constitutive expres-
sion of the forkhead box protein 3 transcription factor (Foxp3 in
mice and FOXP3 in humans) is necessary for Tregs to regulate
self-tolerance (8, 9). Polymorphisms of cytotoxic T-lymphocyte
antigen 4 (CTLA-4) – a co-signaling molecule with vital impor-
tance to Treg function (10) – are also linked to autoimmunity (11).
Table 1 lists Treg markers relevant to their use in immunotherapy.

Immunologically, Tregs comprise a subset of CD4+ lym-
phocytes that suppresses activation, proliferation, and effector

responses of both innate and adaptive immune cells (17). Func-
tional Tregs also express the interleukin-2 (IL-2) receptor α-chain
(CD25), although activated conventional T cells also transiently
express CD25. Like conventional T cells, Tregs require T cell recep-
tor (TCR) stimulation and costimulation for activation. Natural
Tregs (nTregs) are derived centrally in the thymus (12); induced
Tregs (iTregs) upregulate FOXP3 in the periphery following anti-
gen exposure and, for example, stimulation from transforming
growth factor β (TGF-β) (24). nTregs comprise 5–10% of the
circulating CD4+ population. Circulating and tissue iTreg num-
bers depend on anatomic location as well as specific inflammatory
environmental conditions. Abbas et al. recently published recom-
mendations for Treg nomenclature (25); in this review, we will use
nomenclature used by cited authors.

Gershon proposed using Tregs for immunotherapy decades
ago (26); however, clinical implementation of protocols employ-
ing Treg immunotherapy has proved challenging. In this review,
we discuss strategies for using Tregs as immunotherapy, address
barriers to the use of Tregs, provide promising examples of Treg
immunotherapy in animal models and clinical trials, and conclude
with future directions for the field.

PRACTICAL USE OF Tregs FOR IMMUNOTHERAPY
Adoptive transfer of autologous or donor-derived Tregs represents
an exciting immunotherapeutic strategy (27). Broadly, protocols
for adoptive transfer call for Treg isolation from the host or a donor,
enrichment, expansion, and re-infusion. Figure 1 diagrams such
a protocol. Advantages of an ex vivo expansion strategy include
the ability to perform careful cellular phenotyping and govern the
dose of administered cells (28). As the contribution of reduced
Treg number versus reduced Treg function remains unclear in
autoimmune pathogenesis (29, 30), it is advantageous from an
experimental perspective to maintain control over the phenotype
and number of infused Tregs.
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Table 1 |Treg markers relevant to their use as immunotherapy with selected references.

Marker Alterative name or identifier Function Relevance toTreg immunotherapy

Foxp3 Forkhead box protein 3 Transcription factor, master regulator of Treg

development and function

Identifies Treg lineage in mice; expressed in

human CD4+ Tregs (12)

CTLA-4 Cytotoxic T-lymphocyte antigen 4, CD152 Transmits inhibitory signal to APCs Important mechanism of Treg suppressive

function (10)

LAP Latency-associated peptide Component of TGF-β latent complex Identifies Treg subset with TGF-β-mediated

function (13)

GITR Tumor necrosis factor receptor superfamily

member 18 (TNFRS18), activation-inducible

TNFR family receptor (AITR)

Cell signaling Important mechanism of Treg suppressive

function (14)

ICOS Inducible T cell costimulator, CD278 Costimulator on T cells Involved in Treg expansion and IL-10

production, particularly during Th2

inflammation (15)

LAG-3 Lymphocyte activation gene 3, CD223 CD4 homolog with MHC class II binding

properties

Expressed on Tregs (16)

CD3 TCR co-receptor complex TCR signal transduction Stimulation required for Treg expansion

CD4 Interacts with MHC class II molecules on

APCs and amplifies TCR signals

Identifies CD4+ lymphocyte subset

CD25 IL-2 receptor α-chain IL-2 receptor component Expressed by CD4+Foxp3+ Tregs but also

other T cells (17)

CD28 Costimulator required for T cell activation Stimulation required for Treg expansion (18)

CD44 Hyaluronic acid receptor Marker of activated Tregs (19)

CD45RO Leukocyte common antigen (RO isoform) Protein tyrosine phosphatase, receptor

type, C

Positive Treg marker, also identifies memory

T cells

CD45RA Leukocyte common antigen (RA isoform) Protein tyrosine phosphatase, receptor

type, C

MinorTreg marker, also identifies naïveT cells

CD49b Integrin VLA-4 α4β1 α-chain Cell adhesion and signaling Expressed on Tregs (16)

CD62L L-selectin Lymphocyte cell adhesion molecule May be marker of effective

disease-modulating Treg subset (20, 21)

CD69 Transmembrane C-Type lectin Cell signaling Marker of activated Tregs that suppress via

membrane-bound TGF-β1 (22)

CD127 IL-7 receptor α-chain IL-7 receptor Negative Treg marker (23)

Peripheral or banked umbilical cord blood (UCB) may serve
as a Treg source. A frozen UCB unit yields approximately 5–
7.5× 106 Tregs; an adult peripheral blood apheresis unit can yield
on the order of 108 Tregs (28). Successful isolation requires label-
ing cell surface markers with a tagged antibody and sorting via
fluorescence-activated cell sorting (FACS) or magnetic bead sepa-
ration. Unfortunately, no cell surface markers uniquely identify
Tregs. Although Foxp3 expression specifies the Treg lineage in
mice (31), T cells promiscuously express FOXP3 in humans (32).
Regardless, FOXP3 detection requires cell permeabilization, which
renders cells unusable for adoptive transfer. Because activated
CD4+ conventional T cells may also transiently express CD25,
patterns of CD127 (the IL-7 receptor α-chain) (23), CD49b (the
integrin VLA-4 α4β1 α-chain) (16), lymphocyte activation gene

3 (LAG-3) (16), CD45RA, CD45RO, and latency-associated pep-
tide (LAP) (13) can identify Tregs and facilitate their isolation.
Although Tregs express CTLA-4, glucocorticoid-induced TNFR
family related gene (GITR) (14), CD69 (22), and CD44 (19),
activated non-Tregs may also express these markers.

Ex vivo stimulation with anti-CD3/CD28 microbeads in the
presence of recombinant human (rh) IL-2 expands Tregs for sub-
sequent manipulation (33, 34). The resultant Tregs have polyclonal
reactivity due to non-specific TCR stimulation. However, other
protocols generate donor alloantigen-specific Tregs for establish-
ment of allograft tolerance. In one method, Tregs are expanded in
the presence of donor antigen-presenting cells (APCs). These Tregs
have more potency than polyclonally reactive Tregs and demon-
strate a more favorable safety profile in vivo (35, 36). Retroviral
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FIGURE 1 | Schematic of a strategy to isolate, expand, and infuseTregs.

vector transduction of genes encoding TCRs with known antigen
specificities also produces alloantigen-reactive Tregs (37). Anti-
CD3 antibody-loaded K562-based artificial antigen-presenting
cells (aAPCs) may efficiently expand Tregs with a high level of
purity and potency (38, 39). Genetic modification that adds cell
surface molecules and secreted factors to K562-based aAPCs could
further refine the expanded Treg population (40).

It remains unclear what constitutes a therapeutic dose of Tregs.
The therapeutic dose in a given application will depend on Treg
potency, disease state and activity, and whether protocols employ
polyclonal or antigen-specific Tregs (41). In a phase I dose-
escalation trial of Tregs for prevention of acute GVHD, Blazar’s
group used Treg dosages between 1× 105 and 30× 105/kg (42).
Di Ianni et al. used 40× 105/kg of Treg in a similar trial (43).
Based on animal studies, effective immunosuppression and tol-
erance induction may require up to 1× 109 Tregs per infusion
(44). To that end, Hoffmann et al. reported a protocol capable
of a 4× 104-fold Treg expansion in 3–4 weeks (45); however, the
purity and phenotype of these cells was difficult to ascertain. Using
the aAPC method, a 1× 103-fold expansion of human peripheral
blood Tregs can be performed in approximately 3 weeks (39).

Ex vivo conversion of CD4+CD25− naïve T cells into iTregs
with suppressor function represents an alternative strategy to
ex vivo nTreg isolation and expansion (46). Exposure of naïve
CD4+CD25− or CD4+CD45RO− T cells to TGF-β (47) with the
addition of IL-2, IL-10, or vitamin D3 (48), indoleamine 2,3-
dioxygenase (49), all-trans retinoic acid (50), Foxp3-expressing
retroviruses (12), or epigenetic modifiers (DNA methyltransferase
inhibitors or histone deacetylase inhibitors) (51) accomplishes

such a conversion. Lan et al. have suggested that iTregs have more
potency than nTregs on a cell-by-cell basis (52), making strate-
gies that expand iTregs attractive for Treg immunotherapy. Future
work will need to validate methods of identifying nTregs versus
iTregs in humans and assessing their stability and plasticity (53).

A variety of strategies induce Treg number or potency in vivo
including expansion of nTregs and conversion of non-Tregs to
iTregs (54). For example, treating mice prior to allografting with
a donor alloantigen and a non-depleting anti-CD4 antibody
achieves Treg expansion. Tregs generated by this method prevent
allograft rejection (55–58). Moreover, adoptive transfer of Tregs
isolated from treated animals abrogates rejection (59). nTregs iso-
lated from naïve animals may also prevent rejection, although
long-term allograft survival requires 10-fold more Tregs com-
pared with Tregs isolated from tolerant mice treated with antigen
exposure alone (60).

Injection of IL-2/IL-2 monoclonal antibody (mAb) complexes
into mice results in a 10-fold in vivo Treg expansion (61). Mice
treated with this protocol display immunologic tolerance and
resistance to experimental autoimmune encephalomyelitis and
islet allograft rejection. Simultaneous injection of IL-2/IL-2 mAb
complexes and recombinant granulocyte-colony stimulating fac-
tor (G-CSF), which causes expansion of myeloid-derived suppres-
sor cells (MDSCs), augments induction of immunologic tolerance.
Expansion of MDSCs in addition to Tregs supports MHC class
II-mismatched skin allograft survival (62). In a phase 1 dose-
escalation trial of subcutaneous IL-2 to treat active chronic GVHD,
daily low-dose IL-2 was well-tolerated and led to sustained Treg
expansion with improvement in GVHD manifestations (63).

www.frontiersin.org February 2014 | Volume 5 | Article 46 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Immunotherapies_and_Vaccines/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Singer et al. Regulatory T cells as immunotherapy

Other pharmacotherapies target particular facets of Treg biol-
ogy. IL-2-dependent STAT-5 activates Tregs (64), whereas effector
T cells employ the phosphoinositide 3-kinase/Akt/mTOR pathway
(65). The mTOR inhibitor rapamycin exploits the latter path-
way to preferentially expand Tregs (66–68). Clinically, rapamycin
increases the number of CD62Lhigh Tregs in the peripheral blood
of lung transplant recipients (20) and expands the Treg popula-
tion in renal transplant patients (69). Anti-thymocyte globulin
(ATG), a T cell-depleting polyclonal antibody that promotes Treg
generation in mice (70), supports allograft survival when com-
bined with CTLA-4-Ig and rapamycin in a MHC-mismatched
skin allograft model (71). In that model, memory T cell-Treg bal-
ance shifted in favor of Tregs. Glucocorticoids have broad effects
on T cells; however, glucocorticoids may interact with Langer-
hans cells to promote Treg expansion in contact dermatitis (72).
The lymphocyte depleting mAb alemtuzumab (anti-CD52 mAb)
may have favorable effects on Treg survival when combined with
rapamycin (73). Standard dosages of calcineurin inhibitors such
as cyclosporine A and tacrolimus impair Tregs (74). However,
treatment with low-dose cyclosporine may increase Treg num-
bers in the skin of atopic dermatitis patients (75). Compared to
conventional doses, low doses of calcineurin inhibitors may allow
patients to continue the production of IL-2, which Tregs require
for expansion and survival (76, 77). Weng et al. published that
the proteasome inhibitor bortezomib reduced acute GVHD sever-
ity and prolonged survival time by triggering generation of Tregs
(78). A recently reported high-throughput screening assay may
increase the number of known compounds with positive effects
on Tregs (79).

BARRIERS TO USE OF Tregs FOR IMMUNOTHERAPY
Regulatory T cell functional stability represents a challenge for
using Tregs for immunotherapy. A minor population of Foxp3+

cells loses Foxp3 expression over time; these “ex-Foxp3” cells may
display an activated conventional T cell phenotype and become
pathogenic in vivo (80). Loss of Foxp3 expression has been associ-
ated with a pro-inflammatory microenvironment and switching to
an effector T cell phenotype characterized by IL-17 and interferon-
γ secretion (81–83). While Tregs delivered to a normal host tend to
retain their suppressive function, a proportion of Tregs adoptively
transferred into a lymphopenic environment may differentiate
into pathogenic T cells (84, 85). Exploiting the epigenetic control
of the Foxp3 gene could maintain Foxp3 expression and Treg stabil-
ity (85–87). Both DNA methylation at the Foxp3 upstream control
regions (88) and chromatin remodeling (89) help determine Treg
plasticity. Pharmacologic DNA methyltransferase inhibitors or
histone deacetylase inhibitors could maintain Treg fidelity follow-
ing adoptive transfer (51). IL-2 therapy might also promote Treg
stability after infusion (63).

Despite the fact that some costimulatory pathways differen-
tially affect conventional T cells versus Tregs, no single pathway
completely selects for a specific T cell subset (90). Therefore,
administration of pharmaceuticals that stimulate Tregs may also
activate conventional T cells (off-cell effect). Indeed, a phase I
clinical trial of TGN1412 – a super-agonistic anti-CD28 anti-
body – caused massive cytokine storm and multi-organ dysfunc-
tion in six healthy adults who required intensive care following

administration of the drug (91). The misadventure with TGN1412
highlights the risks of drugs designed to modulate T cell activity
without selectively targeting specific T cell subsets. As above, drugs
that modify T cell epigenetic signatures may add specificity to T
cell pharmacotherapy (92–94).

Memory T cells provide a significant barrier to the induc-
tion of clinical tolerance (95), and depleting donor-reactive T
cells permits Tregs to control allograft rejection (96). Therefore,
investigators desire drug protocols that functionally deplete mem-
ory T cells while maintaining immunoregulation. Alefacept, an
LFA-3-Ig fusion protein that polymerizes CD2, leads to selective
memory T cell elimination. When administered with CTLA-4-Ig,
alefacept prevents acute rejection and promotes kidney transplant
engraftment in a non-human primate model (97). Efalizumab, an
anti-LFA-1 antibody, showed efficacy in islet-cell transplantation
(98) but was withdrawn from the market after four patients with
psoriasis developed progressive multifocal leukoencephalopathy
(99). Functional Tregs themselves also potently suppress memory
T cell proliferation in humans and may not require additional
pharmacotherapy to overcome the effect of memory T cells if
administered in sufficient dosages (100).

The United States Food and Drug Administration mandates
documentation of sterility, identity, purity, and potency of a cell
therapy product before administration to patients (21 CFR §1271).
Sterility and identity are relatively facile to demonstrate; purity and
potency are more problematic. Investigators will need to empir-
ically determine the acceptable level of non-Treg contamination
in cell preparations. CpG demethylation of the Foxp3 conserved
non-coding sequence 2 (CNS2) identifies committed suppressive
Tregs (85, 86); therefore, methylation status of the FOXP3 CNS2
region may indicate Treg purity and stability in cells destined for
clinical use. As Tregs have many mechanisms of action, difficulty
exists in elucidating which mechanisms regulate a specific disease
in an inflammatory environment (101, 102). Therefore, in vitro
assays – such as the ability of Tregs to inhibit conventional T
cell proliferation – may inadequately describe the potency of cell
preparations. For example, Golovina et al. reported that CD4+ T
cells expanded in the presence of rapamycin were effective in an
in vitro suppression assay, but these cells failed to function in an
in vivo xeno-GVHD model (18). These findings imply that inves-
tigators may need to develop disease-specific Treg potency testing
systems prior to use in humans. Non-human primates have been
used to validate SOT protocols (103), but even these models may
lead to erroneous conclusions (104).

Cryopreservation of Treg cell preparations presents technical
challenges (105), although investigators have developed feasible
cryopreservation protocols. One popular method involves liq-
uid nitrogen cryopreservation with 20% human pooled serum
and 15% DMSO. After 1 year, Tregs showed 70–80% viability;
stimulation and subsequent expansion restored Treg function to
pre-cryopreservation levels (106). Strategies to freeze already-
expanded Tregs also exist. In their seminal clinical trial of Treg
immunotherapy for GVHD (reviewed below), Brunstein et al. cry-
opreserved ex vivo-expanded Tregs that were not initially infused
(42). Their protocol used a freezing medium containing Plasma-
Lyte A™ (Baxter, Deerfield, IL, USA), 10% DMSO, and human
serum albumin. The thawed cells had an immediate post-thaw
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viability exceeding 50%. However, an increase in peripheral blood
Tregs following infusion was not observed, whereas the authors
had observed a significant increase following the first infusion of
non-cryopreserved Tregs. Other authors using a mouse GVDH
model detected preserved in vivo suppressive function after thaw-
ing aAPC-expanded Tregs (39). Further refinement of cryopreser-
vation strategies could facilitate an “on demand” treatment for
acute inflammatory disease or acute allograft rejection without
the time delay required for ex vivo isolation and expansion.

Potential adverse effects of Treg infusion or expansion include
those associated with immunosuppression, including infection
and malignancy. Interestingly, Di Ianni et al. observed improved
immunity to opportunistic pathogens in their trial of Treg infu-
sion for GVHD prevention following HSCT (43). Brunstein et al.
similarly reported no increased risk of infection following Treg
infusion for acute GVHD (42). Numerous studies implicate Tregs
in suppressing anti-tumor immunity [reviewed in (107)]. Future
study will need to carefully examine the effect of Treg manipulation
on infectious risk and neoplasia.

EXAMPLES OF Treg IMMUNOTHERAPY
ALLOGRAFT TOLERANCE
Graft versus host disease results from donor T cell-mediated sys-
temic inflammation that overwhelms immune regulatory mech-
anisms following allogeneic HSCT (108). Clinical disease results
when donor (i.e., graft) cells recognize host cells as foreign and
incite an inflammatory reaction. Inflammation often causes tissue
damage despite routine post-HSCT immunosuppressive pharma-
cotherapy designed to dampen T cell alloreactivity. In contrast to
SOT, HSCT eventually fosters the development of tolerance, as
donor APCs and T cells replace host leukocytes. Therefore, risk
of alloreactive immunity peaks in the first few months follow-
ing HSCT, highlighting GVHD as an ideal application for Treg
immunotherapy. The availability of Tregs from HSCT donors
makes Treg immunotherapy protocols particularly feasible.

Strong pre-clinical work supports the use of CD4+CD25+

Tregs to suppress acute GVHD (109). Trzonkowski et al. reported
the first two cases of ex vivo-expanded donor-derived Tregs to suc-
cessfully treat post-HSCT GVHD (33). A phase I dose-escalation
trial demonstrated the safety profile and efficacy of human UCB-
derived partially HLA-matched ex vivo-expanded Tregs in reduc-
ing the incidence of grades II–IV GVHD in 23 patients compared
with 108 controls (42). These investigators isolated Tregs with
anti-CD25 magnetic beads, expanded them with anti-CD3/CD28
microbeads and rh IL-2, and infused the expanded Tregs at the
time of HSCT. Di Ianni et al. used adult expanded Tregs iso-
lated from the same HLA-haploidentical donor to assess safety and
efficacy in prevention of chronic GVHD in 28 patients undergo-
ing HLA-haploidentical HSCT for high-risk acute leukemia (43).
These patients also received donor conventional T cells to enhance
immune reconstitution and to promote the graft versus leukemia
effect. Chronic GVHD developed in only 2 of 28 patients. Other
trials of Treg adoptive transfer are ongoing (110, 111).

In 1995, Sakaguchi et al. published their watershed obser-
vation that Tregs from naïve mice prevented rejection of allo-
geneic skin grafts in nude mice given CD25− T cells (17). Their
work laid the foundation for the use of Treg immunotherapy to

promote tolerance following SOT. Indeed, induction of tolerance
to alloantigen via costimulatory blockade requires Tregs (112).
In a MHC-mismatched mouse orthotopic lung transplant model,
blockade of CD154 increased Tregs and was associated with atten-
uation of acute cellular rejection (113). In a chimeric humanized
mouse system, ex vivo-expanded Tregs prevented transplant arte-
riosclerosis in vivo by limiting effector cell function and allograft
infiltration (114). Clinical trials of Treg adoptive transfer to pro-
mote SOT tolerance have not been published; however, this review
highlights pre-clinical work that could inform the design of post-
SOT Treg immunotherapy protocols. Results from The ONE Study
(115) should shed light on Treg immunotherapy for induction of
tolerance following SOT.

ATOPIC DISEASE
Atopy is a complex immune phenomenon characterized by
Th2-predominant inflammation, production of allergen-specific
immunoglobulin E (IgE), attraction of pro-inflammatory cells,
and the degranulation of effector cells (e.g., mast cells) (116). Lit-
erature supports a functional role for Tregs in maintaining allergen
tolerance in normal individuals. Indeed, an imbalance between
Tregs and Th2 cells leads to an atopic phenotype (117). The E3
ligase Itch has recently been identified as a critical protein con-
trolling the Treg response to Th2 inflammation (118) and may
be a therapeutic target in atopic disease states. Allergen-specific
immunotherapy decreases allergen-specific T-cell proliferation,
Th2-type cytokine production, and inflammatory cell activity
(119). Generation of IL-10-producing Tregs may be a prominent
mechanism underlying these findings (15). The antidepressant
drug desipramine appears to alleviate allergic rhinitis by regulat-
ing Tregs and Th17 cells (120). Although clinical trials have not
attempted adoptive transfer of Tregs for allergic disease, protocols
to expand allergen-specific Tregs may potentially benefit atopic
patients.

AUTOIMMUNE DISEASE
Numerous studies have demonstrated diminished numbers of
peripheral blood Tregs in patients with autoimmune conditions
and that a Treg deficit associates with disease development (121).
Redistribution of the Treg population to the tissue compartment
does not fully explain the association between peripheral blood
Treg deficiency and disease development (122). Moreover, some
autoimmune conditions alter the functional activity of Tregs. Such
a functional alteration exists in rheumatoid arthritis (123) and
multiple sclerosis (124).

Failure to control islet-specific conventional T cells results in
type 1 diabetes mellitus (DM1). Risk of DM1 increases with
the loss of FOXP3-expressing Tregs (125), and Treg adoptive
transfer to non-obese diabetic (NOD) mice can prevent the
development of DM1 (41, 126). Interestingly, 80% of IPEX
patients develop DM1 in infancy (127). Marek-Trzonkowska et al.
recently published a study demonstrating that a donor-derived
CD4+CD25highCD127− Treg infusion preserves β-cell function
and may delay DM1 onset in children (128).

Despite positive results in DM1 and other animal models of
autoimmune disease including myasthenia gravis (129), adoptive
transfer of nTregs has not met with universal success. Adoptive
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transfer of nTregs had only a nominal effect on controlling disease
progression in a collagen-induced arthritis model (130) and failed
to suppress glomerulonephritis and sialadenitis in mice with estab-
lished lupus (131). nTregs have had variable achievement in con-
trolling other Th17-mediated autoimmune diseases (132). The
inability of nTregs to treat many autoimmune disorders may relate
to pro-inflammatory cytokines that suppress their function (123,
133) or convert them to pathogenic T cells upon adoptive trans-
fer. Additionally, activated Th17 cells may resist many suppressive
mechanisms employed by nTregs. iTregs might be a more appro-
priate Treg subset for use in autoimmune immunotherapy, as data
suggest that iTregs more effectively suppress autoimmune activa-
tion compared with nTregs possibly due to differential stability in
inflammatory environments (52).

ACUTE INFLAMMATORY DISEASE
Our group established that resolution of experimental murine
acute lung injury requires Tregs (134). Mice lacking all mature
lymphocytes (Rag-1−/−) do not resolve their injury by day 10
following an intratracheal injection of E. coli lipopolysaccharide
(LPS), whereas wild-type mice normalize. Adoptive transfer of
1× 106 congenic CD4+CD25+ cells up to 48 h after receiving
LPS restores resolution in Rag-1−/− mice to that of wild-type
mice. Moreover, Treg adoptive transfer limits fibroproliferation
following acute lung inflammation (135). Tregs also promote
repair from ischemic acute kidney injury (136) and have pro-
tective immunomodulatory effects following acute stroke (137).
These findings not only demonstrate the importance of Tregs
in tissue injury repair but also open the door to studying Treg
immunotherapy for other acute inflammatory conditions.

FUTURE DIRECTIONS AND CONCLUSION
Most clinical trials of Treg immunotherapy employed adoptive
transfer of CD4+CD25+ or CD4+CD25+CD127− cells. How-
ever, more precisely defined human Treg subsets exist; exploiting
these Treg subsets may benefit certain disease states. For example,
inducible costimulator-expressing (ICOS+) Tregs secrete more IL-
10 than ICOS− Tregs and could improve conditions characterized
by relative IL-10 deficiency, such as atopic disease (15). ICOS+

Tregs may also play an important role in dendritic cell func-
tion (138). Another example is the CD62L+ subpopulation of
CD4+CD25+ Tregs, which appears to most effectively treat acute
GVHD (21). In rheumatoid arthritis, abnormal Treg function may
stem from defective CTLA-4 (139); therefore, augmentation of
functional CTLA-4+ Tregs may be advantageous in rheumatoid
arthritis. Understanding Treg subset trafficking and survival via
chemokine and integrin signals will be key to selecting appropriate
Treg subsets for a given application (140).

Genetic reprograming of Tregs, possibly using clinical-grade
lentiviral vectors, represents an attractive strategy to fine tune Treg
subpopulations (141). Induction of a chimeric immune receptor
into Tregs prevented mouse models of experimental autoimmune
encephalomyelitis (142) and colitis (143). Engineered TCRs that
redirect Treg specificity could also improve Treg potency (144), as
Varela-Rohena et al. demonstrated in conventional T cells (145).

Use of Tregs for immunotherapy has a solid pre-clinical data-
base, and emerging data support the safety and efficacy of Treg

immunotherapy protocols in patients whose clinical scenario
requires induction of clinical tolerance. Both ex vivo expansion
with adoptive transfer and in vivo manipulation to expand and
augment the function of endogenous Tregs represent promis-
ing strategies to treat autoimmune and alloimmune conditions.
In order for clinically feasible Treg immunotherapy protocols to
succeed, investigators will need to surmount significant barriers
including Treg stability, isolation and storage of Treg subpopu-
lations, and off-target effects of in vivo Treg strategies. Because
immune dysregulation underlies myriad clinical disorders, design-
ing safe and effective immunotherapies that utilize Tregs could be
of great benefit.
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