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Recent advances that have been made in our understanding of cancer biology and immunol-
ogy show that infiltrated immune cells and cytokines in the tumor microenvironment may
play different functions that appear tightly related to clinical outcomes. Strategies aimed
at interfering with the cross-talk between microenvironment tumor cells and their cellu-
lar partners have been considered for the development of new immunotherapies. These
novel therapies target different cell components of the tumor microenvironment and impor-
tantly, they may be coupled and boosted with classical treatments, such as radiotherapy.
In this work, we try to summarize recent data on the microenvironment impact of radia-
tion therapy, from pre-clinical research to the clinic, while taking into account that this new
knowledge will probably translate into indication and objective of radiation therapy changes
in the next future.
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INTRODUCTION
In the last few years, the impact of the specific immune microen-
vironment in cancer has gained renewed interest, and is actually
recognized as one of the major determinants of clinical evolution
in a wide range of tumors. In this sense, cells like tumor-associated
macrophages (TAM), regulatory T cells (Treg), and myeloid-
derived-suppressor cells (MDSC), among others, are being pro-
posed as new prognostic biomarkers that might be taken into
account for diagnostic purposes, with the aim to complete classical
information that is generally focused mainly on intrinsic charac-
teristics of the tumor cell itself (histopathologic grade, mitosis,
etc). Importantly, the effect of antineoplastic treatments on tumor
cells may change the composition of microenvironment cells and
their functional status, which introduces even more complexity
(and importance) to this topic.

Radiotherapy (RT) remains a cornerstone of oncological treat-
ment for many types of tumors. Recently, it has been demonstrated
that ionizing radiation may exert interesting effects over the tumor
microenvironment, increasing the effectiveness of patients’ anti-
tumor immune responses in the clinical setting even at distant
sites (1). This fact has given rise to the concept of immunogenic
death mediated by radiation, which seems largely associated with
the immunocompetence status of the host (2).

In this review, we pursue to update and summarize the local
and systemic immune effects of RT from the molecular level to the
clinical scenario. Finally, some choices for immunotherapy com-
binatorial approaches based on RT and strategies for monitoring
these sorts of response are suggested.

LOCAL IMMUNE EFFECTS OF RT
The radiation-induced biological response exerts pro-
inflammatory and immunomodulatory effects against tumor cells,

and nowadays the modulation of the acquired immune response
after irradiation is gaining increased interest (1).

The radiobiological model considers that DNA damage after
radiation induces different types of biological response, this has
been classically described as the 5 Rs of radiobiology (intrin-
sic radiosensitivity, reoxygenation, redistribution in the cell cycle,
repair of sublethal damage, and accelerated repopulation) (3). In
this model, the radiobiological effects are caused by direct damage
on DNA by tumor cells or indirectly after the induction of free
radicals. It is worthy of consideration that this fact may determine
a variable type of cell death through the phenomena of apoptosis,
autophagy, necrosis, or mitotic catastrophe (4). Most cells survive
a limited period of time after irradiation and, during this time,
they generate molecular signals that induce the overexpression
of specific genes that control the expression of growth factors,
cytokines, chemokines, and cell surface receptors. Cell survival
depends on this response and its ability to repair damaged DNA,
being these phenomena of primary importance in radiation treat-
ments, as they may determine the final effects over the surrounding
microenvironment (5).

Increasing evidence has revealed that RT can change its recog-
nition level, making the tumor vulnerable to the immune sys-
tem. Furthermore, it has been described that the radiobiologi-
cal response causes the activation of different T-cell lines, gen-
erating the “switch-on” of the adaptive immune response (6).
These findings have led the scientific community to explore the
immunotherapy and the RT effects together, as synergic tools in
cancer treatment strategies (7).

It seems that one of the main effects of RT to unleash an
effective immune response is the induction of a strong “dan-
ger signal,” which is a concept postulated by Polly Matzinger in
1994, related to the stress signals generated by the damaged tissue
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FIGURE 1 | Immune response activation process after tumor cells irradiation. CRL, calreticulin; CTL, cytotoxic cell; TAAS, tumor-associated antigens;
HMGB1, high-mobility group box 1.

(8). Dying tumor cells after irradiation induce danger signals like
endogenous ligands called “alarmins” with immunogenic proper-
ties. Various mechanisms with different peptides, cytokines, and
cells are involved in this process (Figure 1):

(1) Calreticulin: Radiation causes the translocation of calretic-
ulin (CRL) from the endoplastic reticulum to the cell surface,
inducing the apoptotic cell antigen presentation to antigen
presenting cells (APCs), in particular dendritic cells (DC),
and stimulating specific anti-tumor T-cell responses (9, 10).

(2) High-mobility group box 1 (HMGB1): Another immuno-
genic determinant of cell death is the pro-inflammatory factor
HMGB1. HMGB1 is a nuclear protein that is released after
necrotic cell death and from dying cells during late stage apop-
tosis. After cell death induced by RT, HMGB1 may be released
to the stroma and act as a neo-antigen, which in turn acts
as an immunogenic endogenous “danger signal,” initiating an
inflammatory response through binding Toll-Like Receptor 4
(TLR4) on DC (9, 11).

(3) NKG2D receptor: NKG2D acts as an activating receptor on NK
cells, γδ T cells, NKT cells, and memory and activated CD8+ T
cells (12). RT induces the expression of NKG2D ligands that,

after engagement with its receptor, seems to increase cytokine
production in order to stimulate CTL (12, 13).

(4) Upregulation of death receptors: RT may activate the extrinsic
pathway of apoptosis, upregulating the expression of the FAS
death receptor on tumor cells, which induces the activation of
CTL via FAS ligand expressed on their surface (14).

(5) Release of tumor antigens: Apoptotic and necrotic tumor cells
after RT are a big source of tumor antigens, commonly tumor-
associated antigens (TAAs), which can be efficiently taken up
by DC that subsequently present them to CTL (15) (this topic
is amplified on section “Conclusion”).

(6) Release of pro-inflammatory cytokines: Pro-inflammatory
cytokines like IL-1β, TNF-α, or prostaglandin E2 are up-
regulated in tumor cells after the cellular lesion post-
irradiation, and they represent ultimately danger signals due
to the tissue stress induced by RT (16).

Immune-modulating effects of radiation are influenced by sev-
eral factors. In this sense, the dose of radiation has been correlated
with different responses. Low radiation doses seem to activate
innate immune cells and fail to induce cell death. This situation
develops a tumorigenic effect mediated by the cells of the immune
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microenvironment (17, 18). On the contrary, high radiation doses
seem to induce an immunogenic effect. Schaue et al. studied tumor
specific immune response in mice bearing murine melanoma irra-
diated with 15 Gy administered in different sizes per fraction. The
authors concluded that a single dose of 7.5 Gy or higher, but
not lower than 5 Gy, was immunostimulatory (19). These find-
ings agreed with the results of Lee who compared single dose of
20 Gy against 5 Gy× 4 given over 2 weeks in a pre-clinical study.
Ablative radiation of 20 Gy dramatically increased T-cell activity
and tumor control, whereas the fractionated radiation showed less
tumor growth inhibition (20). However, the inflammatory balance
in the tumoral environment is quite complex. Radiation could pro-
mote – directly or indirectly – negative regulators such us TGF-B.
It is known that latent isoform of TGFB1 is activated due to react-
ing oxygen species liberate the latency-associated peptide after RT
(21). Furthermore, increased levels of TGF-B are detected as a con-
sequence of M2 macrophage release after exposition to apoptotic
cancer cells (22). However, until now, there is little evidence about
the best radiation schedule to obtain an optimal immunogenic
response.

In addition, the physical sequence of events after RT seems to
be critical to mount a successful immune response. Pre-clinical
models have shown that DC loaded with tumor antigens migrate
toward the draining lymph nodes. This process leads to an acti-
vation of T cells that had not been previously exposed to specific
tumor antigens, spreading the immune response against the tumor
(20, 23). Activated CTL are guided by the chemokine gradient
induced by radiation. This fact has been ascertained, for exam-
ple, by the CXCL16 chemokine, which is able to recruit effector
T cells to the site of the irradiated tumor area (24). In a murine
model of metastatic breast cancer, the CXCL16 proved to be essen-
tial in the synergism between RT and CTLA-4 blocking (25, 26).
In addition, tumor vessels have multiple barriers – through an
abnormal architecture or a lower expression of endothelial adhe-
sion molecules – that hinder the infiltration of T cells (27). At
this point, RT allows the upregulation of cell adhesion molecules
(CAM), which facilitates the transit of lymphocytes to tumor cells
(23, 28). In a murine model of squamous cell carcinoma, blockade
of CD11b – ligand for ICAM-1 – reduced the radiation-induced
infiltration of myeloid cells into irradiated tumors and diminished
tumor regrowth (29). VCAM-1 is up-regulated in melanoma in a
process requiring IFN-γ production (28). Once the CTL are found
in the tumor, radiation therapy may again influence and boost the
anti-tumor immune response by the death of new tumor cells
leading to the increased expression of death receptors on tumor
cells such as Fas/CD95, MHC-R, CEA, NKG2D, and other co-
stimulatory molecules (30–32). This fact facilitates the recognition
and destruction of tumor cells by CTLs. The death of tumor cells
mediated by FAS represents a mechanism independent of the T-
cell receptors (TCR), so that if TCR affinity is low FAS has a potent
cytotoxic role (14). Therefore, radiation modifies the characteris-
tics of the tumor microenvironment, making it more accessible to
the immune system, which supports and extends the response to
RT, not only by direct and indirect injury from ionizing radiation,
but also by immunomodulatory mechanisms.

The potential immunogenicity of RT is heavily influ-
enced by the differentiation of immune cells in the tumor

microenvironment. Conventional fractionated radiation therapy
has traditionally been considered immunosuppressive (33). This
is due, in part, to the early apoptotic death occurring in lympho-
cytes following low doses of radiation (34). However, lymphocyte
subsets have distinct radiosensitivity. In this regard, immunosup-
pressive cells like macrophages are considered essentially radiore-
sistant, whereas final effects of RT in Treg are still unclear (17, 29,
35). Results from studies by pioneering labs in this field showed
that sublethal whole-body irradiation of mice bearing tumors
may result in absence of responses in nude mices, and in partial
or complete tumor regression in those with complete immunity.
Authors considered that RT-induced tumor regression by activa-
tion of the immune response through downregulation of Treg (36,
37). However, evidence at this point is controversial, since other
groups have recently postulated that Treg radioresistant behavior
might lead to a percentual increase of these cells. These phenom-
ena should deteriorate RT-induced anti-tumor immunity. In this
sense, Schuler et al analyzed Treg in tumor tissues and peripheral
blood of head and neck squamous cell carcinoma patients treated
with chemoradiotherapy. Their results suggest that chemoradio-
therapy favor survival and suppressor functions of Treg, and thus,
this combinatorial approach might induce disease recurrence or
even development of secondary cancers (38, 39). With respect to
macrophages, local low-dose irradiation seems to induce prolif-
eration of iNOS+ M1-macrophages in tumor microenvironment.
These macrophages may release pro-inflammatory molecules such
as TNF and facilitate cell infiltration by tumor-reactive effector T
cells, improving local immune response against cancer (33). Nev-
ertheless, it has been demonstrated that cell death after radiation
may also result in M2 macrophage activation and induce immune
suppression (40). The suppressive response of M2 macrophages is
a key feature of inflammatory resolution, which serves to repair
inflammatory destruction following control of infections by lay-
ing down supportive matrix, establishing vascular structures, and
terminating adaptive immune responses (22). This change in the
macrophage phenotype in tumors from M1 to M2 macrophage
has been associated with early tumor growth in vivo. Macrophages
from irradiated tumors express higher levels of iNOS, arginase-I,
and COX-2, and promote tumor growth (41).

SYSTEMIC IMMUNE EFFECTS OF RT, THE ABSCOPAL EFFECT
In recent decades, RT effects in distant sites away from the origi-
nal irradiated area have introduced a new concept of the highest
interest, which is the ability of RT to exert systemic anti-tumoral
responses. The first description of this effect was made by Robin
H. Mole in 1953 (42), and this is currently denominated as the
abscopal effect. The etymological definition comes from the Latin
ab (outside) and Scopus (target). The abscopal effect provides new
insights into the mechanisms of RT activity (43, 44).

The abscopal effect may have a dual role in the RT activity.
Firstly, unwanted side events, such as the onset of inflammatory
phenomena at a distance, can be generated. These side effects may
produce pneumonitis or other serious phenomena like genomic
instability resulting in leukemia or other neoplasms (17, 45). Sec-
ondly, the abscopal effect can have therapeutic consequences, with
the reduction of distant metastasis after RT of primary tumors or
localized metastases with palliative purposes as proof of principle
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of this phenomenon. Although proving irrefutable evidence of
the abscopal effect is a difficult task, this event has been postulated
in several types of tumors including melanoma, lymphoma, and
hepatocellular or renal cell carcinomas (46, 47).

In the previous section of this review, it was noted that RT
induces changes in the tumor microenvironment, transforming
the irradiated tissue into an immunogenic hub, which serves to
the immune system as a source for the identification of tumor
cells. Therefore, the immune system can recognize tumor cell
lines out and away from the irradiated zone. Some authors have
described this“vaccine effect”by the sensitization process that gen-
erates the body, which recognizes previously unnoticed tumor cells
(48). Nevertheless, the immunological mechanism underlying the
abscopal effect is still unknown (49). The primary hypothesis
focuses on a kind of “systemic cytokine storm” after irradiation,
with the release of cytokines like TNF, IL-4, IL-18, IL-2, and GM-
CSF (50–54). These cytokine may induce an anti-tumor humoral
immune effect and subsequently an immune cell response against
the tumor, ultimately mediated by T lymphocytes.

In the clinical setting, the abscopal effect has been studied
in patients with low grade B cell lymphoma after intratumoral
injection of a Toll-like receptor 9 (TLR9) agonist (CpG) during
treatment with RT. Previously, authors detected the recognition
and response of cytotoxic lymphocytes against B lymphoma cells
in vitro (55). Furthermore, in vivo studies with murine models
combining RT and immunostimulants, such as anti-CTLA anti-
body and the growth factor of DC (Flt-3) showed the reduction of
tumor growth outside the irradiation fields (56).

To date case reports related to the abscopal effect are relatively
scarce. One of the main reasons might be underdiagnosis due to
the lack of knowledge of this phenomenon. As we have mentioned
before, RT alone in some circumstances might develop immune
response to control the upgrowth of distant metastases. Nowadays,
this likelihood is getting higher, due to the addition of immune
drugs to RT that might lead to a better recognition of remote tumor
cell by the immune system. Nevertheless, some well-documented
case reports have been described recently. In this sense, a case
of regression of non-irradiated metastases from melanoma NY-
ESO+ after receiving palliative RT combined with immunotherapy
(anti-CTLA-4/ipilimumab) has been recently described by Postow
et al. (57). After combined treatment (palliative RT and ipili-
mumab), metastatic lesions showed marked regression. Biological
biomarkers were of great interest at this point with the observation
of an increase of NY-ESO-1-specific antibodies, CD4+ ICOS high,
NY-ESO-1-specific interferon-gamma-producing CD4+ cells and
HLA-DR-expressing CD14+monocytes, after RT. Simultaneously,
MDSC levels decreased sharply (57). Another well described
case report in a metastatic melanoma patient treated with pal-
liative RT and immunotherapy (anti-CTLA-4/ipilimumab) has
been recently published (58). In this case, the regression of
non-irradiated in transit metastases after RT of the primary
tumor was achieved. Again, a biomarker of immune activity was
studied. In this case, autoantibodies against melanoma antigen
A3 (MAGEA3) titers were measured demonstrating a systemic
anti-tumor immune response (58).

The aforementioned cases serve as proof of principle for the
abscopal effect theory related to the anti-tumor immune response,

supporting evidences extracted from pre-clinical studies (Table 1).
Therefore, association of RT and immunotherapy can open new
lines of work and research in both fields. Further studies are needed
to determine, which are the better RT and immunotherapy sched-
ules and combinations to unleash this immune response against
tumors.

COMBINATION OF IMMUNOTHERAPY AND RT
Immunogenic cell death mediated by RT may serve as the basis of
an effective immunogenic host response that can be modulated by
other immunogenic strategies.

As previously described, synergism between RT and other
immune therapies have a robust biological rationale that, related
to the adaptive-cell response and generation of cytotoxic T
lymphocytes, may be summarized in the following sequence
of events.

(1) First signal: tumoral associated antigens availability: At this
point, the effects of RT inducing an antigenic environment
with the release of tumoral antigens after cell death is a fact
of the highest importance since it favors the generation of
an inflammatory microenvironment around the irradiated
tumor. In addition, RT seems to favor antigen presenta-
tion via surface MHC-I in APCs to cytotoxic lymphocytes
(59). Specifically tumor specific antigens (TSA) identification
increases treatment efficacy due to immune response to selec-
tive cancer cells. Robbins et al. showed that transferring autol-
ogous lymphocytes – previously exposed to mutated cancer
proteins – lead to an in vitro an in vivo tumor regression (59).

(2) Second signal: co-stimulatory/co-inhibitory molecules:
Immune synapse has been revealed as a promising therapeu-
tic target and a set of monoclonal antibodies (mAb) targeting
the molecules of this virtual space is under intensive clinical
research (60).
(a) Cytotoxic T lymphocyte antigen-4 (CTLA-4): mAb anti-

CTLA-4 ipilimumab has been approved by the FDA for
the treatment of advanced melanoma, after demonstrat-
ing an increase in overall statistically significant survival
in two randomized phase III trials in the first and second
line setting (61, 62). Specifically with RT in pre-clinical
models, local RT and CTLA-4 blockade have shown to
mediate synergistic effects. In this sense, in mice con-
currently challenged with two tumors, the treatment of
one tumor with local RT in combination with the sys-
temic administration of anti-CTLA-4 induced signifi-
cant growth delay in the second tumor that did not
receive local RT (63). The exact mechanism underly-
ing the abscopal regression of unirradiated tumors has
not been fully explained, but the results are consistent
with an increased priming of tumor antigen-specific T
cells that subsequently infiltrate the tumor. Such an effect
would likely be mediated by blocking the engagement of
CTLA-4 on effect or T cells in the context of intensi-
fied cross-priming capacity of DCs in the lymph nodes
(48). At this point, Dewan et al. reported that a frac-
tional dose of 8 Gy× 3 was optimal for the induction
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Table 1 | Recompilation of case reports on abscopal effect.

Case

reports

Diagnosis Dose RT/irradiated

site

Response to RT Associated

treatments

Specific immune

response markers

Antoniades

et al. (74)

Stage III non-Hodgkin’s

lymphoma

30 Gy in 20 fx Regression of abdominal

lymph nodes after mantle’s

irradiation

No No

Ohba et al.

(50)

Metastatic hepatocellular

carcinoma to bone

36 Gy to metastasis Complete regression of the

metastasis and remarkable

regression of the hepatic

lesions.

No Increase of TNF-α

Wersäll

et al. (73)

Metastatic renal cell

carcinoma

Case report A: metastases in

lymph nodes and lung

32 Gy in 4 fx to primary

tumor

Complete regression of the

lung lesions and an almost

complete regression of lymph

nodes

No No

Case report B: multiple

pulmonary metastases

RT only in three

pulmonary metastases

(no dose mentioned)

All the metastases responded

partially or completely

Thalidomide No

Case report C: four

pulmonary metastases

30 Gy in 2 fx in two

lesions in the lungs

Complete regression of

treated lesions and partial

regression of remaining

metastatic lesions

No No

Case report D: metastases in

lymph nodes

32 Gy in 4 fx to primary

tumor

Complete response of all

metastases

No No

Okuma

et al. (72)

Hepatocellular carcinoma with

metastases in mediastinal

lymph node and lung

60.75 Gy in 27 fx to

single lung metastasis

Reduction of the mediastinal

lymph node and lung

metastasis unirradiated

No No

Cotter et al.

(75)

Merkel cell carcinoma with

cutaneous metastases

12 Gy in 2 fx to some

lesions

Treated and untreated lesions

responded partially or

completely

No No

Postow

et al. (57)

Metastatic melanoma with

pleural-based paraspinal

mass, hilar lymphadenopathy,

and splenic lesions

28.5 Gy in 3 fx to

pleural-based paraspinal

mass

All the metastases regressed

significantly

Ipilimumab Increase of NY-ESO-1-specific

antibodies, CD4+ ICOS high,

NY-ESO-1-specific interferon-

gamma-producing CD4+ cells

and HLA-DR-expressing

CD14+ monocytes

Decrease of myeloid-

derived-suppressor cells

Stamell

et al. (58)

Metastatic melanoma First RT: 24 Gy in 3 fx to

primary tumor.

All metastases had resolved

(forehead, scalp, and neck)

Ipilimumab Increase of MAGEA3

Development of nodal and

brain mestastases

Second RT: intracranial

stereotactic radiosurgery

Complete remission, including

node metastasis

of an abscopal effect when combined with anti-CTLA-
4, whereas an abscopal effect was not observed when
tumors were treated with 20 Gy× 1 or 6 Gy× 5 alone or
in combination with anti-CTLA-4 (63). The mechanic
basis for the ability of 8 Gy× 3 to properly synergize
with anti-CTLA-4 was not explored, but nevertheless the

authors pointed out that this dose schedule resulted in
the highest level of infiltration and IFN-γ production by
T cells. The synergism between local RT and the CTLA-4
blocking observed in pre-clinical models appears to trans-
late well into the clinic. As previously mentioned, some
clinical reports in melanoma patients have demonstrated
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abscopal regression following treatment with local RT
and anti-CTLA-4 (ipilimumab) that was associated with
elevated immunity to tumor-associated antigens (58, 59).

(b) OX40: Irradiation and anti-OX40 treatment synergis-
tically promote infiltrating CD8+ T cells (64). OX40
stimulation obtains no inherent capacity to polarize T
cells toward one particular effector subset, but in com-
parison, drives T-cell polarization in the context of the
inflammatory ambient. Considering the nature of most
tumor-associated antigens, it is important to observe
that co-stimulation through OX40 can deliver priming
of low avidity T cells and can also reverse T-cell toler-
ance against self-antigens. Pre-clinical and clinical data
employing local ablative RT with OX40 agonistic anti-
body, systemic IL-2, or anti-CTLA-4 determine that sig-
naling through CD25 and OX40 increase T-cell responses
against tumor-associated antigens (64, 65). Future clini-
cal trials involving local RT, anti-CTLA-4, and agonistic
OX40 are promising and may hopefully induce impressive
results.

(c) Programed death ligand 1 (PD-L1): Evidence in pre-
clinical models suggests that a PD-L1 blockade is essential
in some situations to fully uncover anti-tumor immu-
nity that is induced by local RT in combination with
co-stimulatory receptor engagement. Local RT combined
with anti-OX40 and anti-PD-L1 has shown to medi-
ate complete regression in orthotopic AT-3 mammary
tumors. (66).

(d) CD137: Agonist antibodies to CD137 and CD137-ligand
co-stimulate T cells after TCR stimulation (67). Anti-
CD137 mAb immunotherapy has been combined with
RT in pre-clinical models with encouraging results. At
this point, mAb to CD137 combined with a hypofrac-
tioned RT schedule induced up to a 100% rejection rate
of orthotopically implanted triple negative mammary
tumors (66).

Besides CTLA-4, OX40, PD-1, and CD137, other co-
stimulatory and co-inhibitory molecules like CD40 or glu-
cocorticoid induced TNFR (GITR) represent other new
emerging targets for immunotherapy (68).

(3) Third signal: cytokines: To complete the process of a full
effector T-cell response with clonal expansion and differenti-
ation on memory T cells, a third signal provided by cytokines
is needed (69). In this step, cytokines that mediate and
amplify adaptive immune responses are produced mainly by
antigen-stimulated T lymphocytes, and they include, among
others, IL-2, IL-4, IL-5, IL-13, and IFN-γ (70). Colony stim-
ulating factors (CSFs) are cytokines made by activating T
cells, macrophages, endothelial cells, and bone marrow stem
cells that stimulate the growth of bone marrow progeni-
tors, thereby providing a source of additional inflamma-
tory cytokines (69). GM-CSF is one of the most important
cytokines in cancer microenvironment and among their func-
tions it may induce the maturation of DCs enabling the
priming of immune responses and the generation of memory
T cells (15). Some preliminary data support an eventual syn-
ergism between cytokines and RT. Demaria et al. designed a

trial that recruited metastatic cancer patients that were pre-
viously treated with chemotherapy and afterward with RT to
one metastatic lesion coupled with GM-CSF s.c for 14 days.
Although it was a heavily pre-treated population, a response
outside of the RT field was detected in 4 out of 12 patients,
serving as proof of principle of the eventual abscopal effect
induced by RT and cytokines (71).

A tumor microenvironment is a challenging battlefield where
many actors interact. From a clinical point of view, synergy
between RT and immune therapies open a new breakthrough
for clinical research. Specifically, targeting of immunostimula-
tory and inhibitory checkpoints with immunomodulatory mAbs
can “awake” and promote the systemic effects induced by RT that
ultimately may be maintained and boosted by cytokines.

Monitoring immune response generated after RT is another big
challenge in this field. A set of different biomarkers in blood and
in tissue may aid in detecting the “switching-on” of the immune
response, if it finally occurs, and to follow its“real-time”evolution.
This may provide valuable information in order to amplify and
boost (with cytokines and other strategies) the immune responses
detected. Clinical development of anti-CTLA-4 mAb in the last
few years has increased the interest in the search and validation of
immune biomarkers. At this point, characterization of antigenic-
specific immune responses has been performed for several cancer
related antigens. Serological and T-cell responses to NY-ESO-1
and MAGEA3 have been detected and prove to be useful to mon-
itor immune responses and clinical evolution in patients with
melanoma treated with ipilimumab and with the combination of
RT and ipilimumab (57, 58). Some subsets of immunosuppressive
cells like Treg, TAM, and MDSC may represent other interesting
biomarkers. Furthermore, in the abscopal case reported by Postow
et al. with ipilimumab and RT, a decline in the levels of MDSC
(CD14+HLA-DRlow) was ascertained after RT and these findings
were timely correlated with the clinical response detected (57).

Every clinical trial with the aim of studying the synergism
between RT and immunotherapy in the future might introduce
some of the biomarkers previously cited (or a combination of
them) in order to detect accurately if the clinical outcomes even-
tually observed are related or not to the combination approach.
This is a critical point to truly confirm the abscopal effect hypoth-
esis, as noted in some case reports illustrated in Table 1 (50, 57, 58,
71–75). Furthermore, these biological markers may represent pow-
erful tools to increase not only the quality (duration of responses)
but also the quantity of life of cancer patients who will benefit
from this approach.

CONCLUSION
The data available support the hypothesis of a mediated immune
anti-tumor activity for RT. Our understanding of this effect
at the molecular level has substantially increased in the last
few years, and a couple of well-documented clinical cases have
been reported recently, which serve as proof of principle of
the abscopal effect in the clinical scenario. Therefore, com-
bined strategies of radio-immunotherapy will eventually mod-
ulate immune response toward cancer cell destruction leading
to meaningful clinical results. Nowadays, several clinical trials
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are ongoing exploring the immune consequences of RT, espe-
cially with immune checkpoints, and they will probably shed
more light to this topic. Interestingly, validation of biomarkers
like antibodies against NY-ESO-1 and MAGEA3 or measure-
ment of TAM and MDSC is another very important task in
order to facilitate the design of fine tune approaches related to
these new immunotherapies and combinations in the coming
future.
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