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Primary biliary cirrhosis (PBC) is an uncommon autoimmune disease with a homoge-
neous clinical phenotype that reflects incomplete disease concordance in monozygotic
(MZ) twins. We have taken advantage of a unique collection consisting of genomic DNA
and mRNA from peripheral blood cells of female MZ twins (n=3 sets) and sisters of similar
age (n=8 pairs) discordant for disease. We performed a genome-wide study to investigate
differences in (i) DNA methylation (using a custom tiled four-plex array containing tiled 50-
mers 19,084 randomly chosen methylation sites), (ii) copy number variation (CNV) (with a
chip including markers derived from the 1000 Genomes Project, all three HapMap phases,
and recently published studies), and/or (iii) gene expression (by whole-genome expression
arrays). Based on the results obtained from these three approaches we utilized quanti-
tative PCR to compare the expression of candidate genes. Importantly, our data support
consistent differences in discordant twins and siblings for the (i) methylation profiles of 60
gene regions, (ii) CNV of 10 genes, and (iii) the expression of 2 interferon-dependent genes.
Quantitative PCR analysis showed that 17 of these genes are differentially expressed in
discordant sibling pairs. In conclusion, we report that MZ twins and sisters discordant for
PBC manifest particular epigenetic differences and highlight the value of the epigenetic
study of twins.

Keywords: autoimmune cholangitis, epigenetics, environment

INTRODUCTION
Primary biliary cirrhosis (PBC) is a female-predominant autoim-
mune liver disease affecting the small interlobular bile ducts,
ultimately leading to periportal fibrosis and cirrhosis (1). Sim-
ilar to most autoimmune diseases, PBC onset results from the
interplay of genomic predisposition and environmental factors
(2–5) with a possible role for sex factors (6). Recent genome-wide
association studies (GWAS) have reported consistent associations
with polymorphisms of genes such as IL12RA and HLA class II
in subgroups of patients with PBC (7–13) and a pathway analysis
was recently performed (13). PBC concordance rates in dizygotic

(DZ) and monozygotic (MZ) twins are significantly different being
0 and 63%, respectively, thus supporting the role of both genetic
and environmental factors (14) with the latter supported also by
epidemiology (15, 16).

Promoter methylation influences gene expression (GEX) and
our group recently reported differences in the DNA methylation
and expression of two X-linked genes (PIN4 and CLIC2) in MZ
twins discordant for PBC (17). On the other hand, copy num-
ber variations (CNV) are the result of duplications and other
rearrangements (18) occur de novo at much higher rates than
single nucleotide variants, and may regulate GEX (19). While
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sharing their genomic sequence, MZ twins may develop different
phenotypes over the years because of increasing differences in
DNA methylation (20) and CNV (21, 22).

We have taken advantage of a unique DNA collection of iden-
tical and non-identical twins with PBC and performed a genome-
wide investigation to determine differences in DNA methylation,
CNV, and GEX. Our data identify 17 candidate genes that are
significantly under- or up-regulated in affected individuals and
we suggest that these might constitute new candidates as disease
markers of genetic determinants. The value of this approach is
highlighted and suggests the need for the study of a large number
of patients and cell subpopulations (23) to support this thesis.

MATERIALS AND METHODS
SUBJECTS
Blood samples from three MZ twins pairs discordant for PBC
whose zygosity had been determined using microsatellite analy-
sis (Ballestar) and eight sister pairs of similar age (within 5 years)
discordant for PBC studied (Table 1). Serum antimitochondr-
ial antibodies (AMA) were positive at indirect immunofluores-
cence in all patients with PBC and none of the healthy twins
and sisters. In these subjects, PBC was excluded when serum
AMA was negative and serum alkaline phosphatase was within
normal range on two different occasions. Genomic DNA was iso-
lated from peripheral blood mononuclear cells (PBMCs) using the
QIAamp Blood Midi Kit (Qiagen, Valencia, CA, USA) and stored
at −20°C until used. Additional blood samples were obtained
using Tempus™ Blood RNA Tubes (Applied Biosystems, Fos-
ter City, CA, USA) that were stored at −20°C until mRNA was
extracted using the RNeasy Mini Kit (Qiagen, Valencia, CA, USA)
and then stored at −80°C. This study was performed in com-
pliance with the ethical standards of medicine and, following
approval by the local IRB, informed consents were obtained from
all patients and controls in accordance with the Declaration of
Helsinki.

METHYLATED DNA IMMUNOPRECIPITATION AND METHYLATION
ANALYSIS
DNA samples of three MZ twin sets (#1/2, 9/52, and 24/57; see
Table 1) were sonicated and then immunoprecipitated with a
monoclonal antibody that specifically recognizes 5-methylcytidine
(Roche NimbleGen, Madison, WI, USA). DNA fragments were
converted into PCR-amplifiable OmniPlex™ Library molecules
flanked by universal primer sites and the library amplified by PCR
using universal primers and a limited number of cycles. Immuno-
precipitated and reference DNA were tagged, respectively, with
cyanine-5 (Cy5) and cyanine-3 (Cy3)-labeled random 9-mers and
then hybridized by the NimbleGen Array Hybridization Kit (Roche
NimbleGen, Madison, WI, USA).

A four-plex array was custom-designed to include 998 X chro-
mosome and 18,086 randomly selected autosomal chromosome
promoter sites (Roche NimbleGen, Madison, WI, USA) and sam-
ples analyzed following the manufacturers protocols. First, Nim-
blescan software (Roche NimbleGen, Madison, WI, USA) was
utilized for DNA methylation data analysis using a threshold
p-value of 0.05 equivalent to 1.31 based on the Gaussian dis-
tribution of data. Second, exclusive elements corresponding to

Table 1 | Summary of the patients with PBC and the corresponding

healthy sibling and twin sisters utilized in the study.

PBC

case #

Age

(years)

Serum

AMA

Control #

(twin/sibling)

Age Serum

AMA

2 60 Pos 1 (MZ twin) 60 Neg

9 60 Pos 52 (MZ twin) 60 Neg

24 64 Pos 57 (MZ twin) 64 Neg

4 62 Pos 10 (Sister) 59 Neg

5 55 Pos 14 (Sister) 59 Neg

6 52 Pos 11 (Sister) 55 Neg

12 61 Pos 7 (Sister) 64 Neg

13 70 Pos 8 (Sister) 68 Neg

15 54 Pos 16 (Sister) 57 Neg

27 45 Pos 26 (Sister) 43 Neg

34 41 Pos 33 (Sister) 45 Neg

35 64 Pos 50 (Sister) 60 Neg

specific microarray probes were identified in affected and healthy
subjects and peaks found only in either group were selected
for further analysis. Third, elements of interest were inserted
into the UCSC Genome Browser (GRCh36/hg19) to identify
corresponding genes.

COPY NUMBER VARIATION ANALYSIS
Copy number variation analysis was performed on genomic DNA
from one MZ twin set (#1/2; see Table 1) using the Infinium R HD
Assay Super platform (Illumina, San Diego, CA, USA): in partic-
ular, we utilized the HumanOmni1-Quad BeadChip that includes
markers derived from the 1000 Genomes Project, all three HapMap
phases, and recently published studies (7, 9, 24, 25) as well as ade-
quate tools for quality control, CNV calling, and validation. The
protocol included the initial DNA preamplification, fragmenta-
tion, and precipitation. Data obtained from four-plex chips were
analyzed using iScan and Illumina BeadArray system (Illumina,
San Diego, CA, USA) followed by the GenomeStudio software
(Illumina, San Diego, CA, USA). The position of each probe and
the number of copies for each probe were determined using the
PennCNV platform based on a hidden Markov model algorithm
(26). The UCSC Genome Browser was then used to determine the
genes involved and the number of CNV.

MICROARRAY GENE EXPRESSION ANALYSIS
We utilized RNA samples from eight pairs of sisters of similar
age (Table 1) discordant for PBC. In the first part, we performed
a whole-genome microarray comparison of transcripts to detect
consistently up- or down-regulated genes in affected subjects.
We obtained biotin-labeled cRNA using the Illumina R TotalPrep
RNA Amplification Kit (Illumina, San Diego, CA, USA) and used
the whole-genome Gene Expression Direct Hybridization Assay
(Illumina, San Diego, CA, USA) including 24,500 transcripts.
Microarrays were scanned using the BeadArray Reader (Illumina
Inc., San Diego, CA, USA) and data were processed using Bead-
Studio software (Illumina Inc.). Expression data were quantified
using a cut-off for significant gene differences of p < 0.05 with a
twofold difference in expression as described elsewhere (27).
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RT-PCR EXPRESSION ANALYSIS
Real-time PCR was utilized to analyze samples prepared from 1 µg
total RNA according to high-capacity cDNA reverse transcription
kit (Applied Biosystems, Foster City, CA, USA) in seven pairs of
sisters of similar age (#15/16, 5/14, 6/11, 7/12, 8/13, 26/27, 33/34;
see Table 1). Micro-fluidic real-time quantitative PCR cards were
customized to include single-plex assays for all candidate genes
obtained with DNA methylation, CNV, and GEX analyses. Genes
reported by GWAS studies were also included among the candi-
dates (7, 9, 24, 25). All samples were analyzed in duplicate, and
included 94 candidate genes and the 18S and β-actin housekeep-
ing genes. Analyses were performed using the ABI Prism 7900HT
Sequence Detection System (SDS 2.2.2 software, Applied Biosys-
tems, Foster City, CA, USA). PCR cycle conditions included 50°C
for 2 min, 94.5°C for 10 min, and 40 cycles of 97°C for 30 s fol-
lowed by 59.7°C for 1 min. The preliminary study of all 10 samples
defined the maximum allowable cycle threshold (CT) that was
set at 38 while outliers exceeding this threshold were excluded
from the statistical analysis and no adjustment of p-value was
performed. Internal controls for calculating expression levels of
candidate genes were 18S and ACTB (beta-actin). The analysis
has been performed with Data Assist version 3 statistical software
(Applied Biosystems). The software exports data from real-time
PCR and performs relative quantification analysis. The data assist
analysis contains: C t data, sample design, assay design, average of
C t values of replicates, ∆C t, normalized versus endogenous con-
trols C t values± SD and fold change (RQ) files, which displays RQ
min and RQ max for each sample. p-Value is calculated from ∆C t

files.
A heat map is used to visualize the data and illustrates, for all

case/control sibling pairs, GEX in red/green color based on ∆C t

values using Pearson’s correlation. The neutral/middle expression
was set as the median of all the ∆C t values from all samples, the
red indicated an increase with a ∆C t value below the middle level
and the green indicated a decrease with ∆C t above the middle
level.

PATHWAY ANALYSIS
Gene networks were generated through the use of Ingenuity
Pathways Analysis software 8.0. Edition (Ingenuity Systems, http:
//www.ingenuity.com). Each gene identified was mapped to its
corresponding gene object in the Ingenuity Pathways Knowledge
Base and overlaid onto a global molecular network. The SDS 2.2.2
software (Applied Biosystems, Foster City, CA, USA) was used to
determine changes in expression of a target in an experimental
sample relative to the same target in a reference sample with the
Student’s t -test and p-value <0.05 were considered statistically
significant. We utilized Data Assist Software version 3 statistical
software (Applied Biosystems) and Stata 8.0 for MacIntosh (Stata
Corp, College Station, TX, USA) for statistical analyses.

RESULTS
DNA METHYLATION
DNA methylation comparison showed 60 differentially methy-
lated regions (DMR) in affected compared to the non-affected
twin (p < 0.05 for each of the three discordant twin pairs). These
DMR corresponded to 51 genes on the X chromosome and 9

genes on autosomal chromosomes, listed in Table 2. For each
DMR, the PBC proband was hypermethylated compared with the
non-affected twin.

COPY NUMBER VARIATIONS
Ten CNV were discordant between affected and the non-affected
twin in one twin set. The healthy twin had four CNVs that were
missing in the affected twin and six CNVs were present only in
the affected twin. The CNVs were found in the following genes:
RYBP ring 1, YY1 binding protein, HERV-V2 envelope glyco-
protein ENVV2, POTEK P ankirin domain family member K
pseudogene, THSD7A thrombospondin type 1 domain containing
7A=KIAA0960, GOLGA8A golgin A8 family member A, BPTF
bromodomain PHD finger transcription factor, and C17orf58
open reading frame. Two additional CNV did not correspond to
known genes.

MICROARRAY GENE EXPRESSION
Gene expression analysis using the genome-wide microarray
showed two genes significantly down-regulated in PBC com-
pared to the healthy sister in each of the eight discordant sis-
ter pairs. These genes were IFIT1 (interferon-induced protein
with tetratricopeptide repeats; chromosome 10q23.31) and IFI44L
(interferon-induced protein 44-like; chromosome 1p31.1) and
both are interferon-induced (28).

RT-PCR ANALYSIS
To provide additional support for our initial findings, we used RT-
PCR to evaluate expression of each of the candidates that emerged
from the DNA methylation (60), CNV (10), and expression stud-
ies (2), as well as previously reported GWAS in seven pairs of
discordant sisters of similar age (Table 1) (7–9, 12, 13, 24, 25).
Our data assist analysis contained: C t data, sample design, assay
design, average of C t values of replicates, ∆C t, normalized ver-
sus endogenous controls C t values± SD and fold change (RQ)
files, which displays RQ min and RQ max for each sample. p-
Value was calculated from ∆C t files. Data assist v3.0 software
was used with results exported from real-time PCR and for rel-
ative quantification analysis. Graphic result in heat map visualized
analyzed data (Figure 1). Heat map showed, for all case/control
sibling pairs, genes expression in red/green color based on ∆C t

values using Pearson’s correlation. The neutral/middle expression
was set as the median of all the ∆C t values from all samples,
the red indicated an increase with a ∆C t value below the middle
level and the green indicated a decrease with ∆C t value above
the middle level. The heat map from all samples is represented in
Figure 1. Among the entire set of candidate genes, we found five
genes that were underexpressed in at least three of seven sibling
pairs with FC < 0.5 (CXCR5, HLA-B, IFI44L, IFIT1, SMARCA1)
and one overexpressed gene in at least three of seven pairs with an
FC > 2 (IL6). Additional 11 genes showed a widely variable expres-
sion profile in each sibling pair (CD80, FAM104B, HLA-DQB1,
HLA-DRB1, HLA-G, MTCP1, NHS, PIN4, PRPF38A, THSD7A,
and TNFAIP2) (Table 3; Figure 2).

PATHWAY ANALYSIS
Pathway analyses were performed using the 17 resulting genes from
our study and demonstrated that the most representative functions
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Table 2 | Differentially methylated genes in PBC-discordant MZ twins.

Gene Chr/base pair (bp)a Description/function Localizationb

ABCD1 chrX:152989993–152991024 ATP-binding cassette, sub-family D (ALD), member 1 PM

ATP12A chr13:25254828–25254890 ATPase, H+/K+ transporting, non-gastric, alpha polypeptide PM

ATP5A1 chr18:43678161–43678731 ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1,

cardiac muscle

C

BCAP31 chrX:152989493–152990063 B cell receptor-associated protein 31 C

BGN chrX:152760629–152761596 Biglycan E

BRCC3 chrX:154299261–154299925 BRCA1/BRCA2-containing complex, subunit 3 N

CFP chrX:47483418–47483642 Complement factor properdin E

CHST7 chrX:46434647–46434858 Carbohydrate (N -acetylglucosamine 6-O) sulfotransferase 7 C

CTAG1A, CTAG1B chrX:153813591–153814161 Cancer/testis antigen 1A, B C

DDX41 chr5:176943911–176944481 DEAD (Asp–Glu–Ala–Asp) box polypeptide 41 N

FAM104B chrX:55187570–55188140 Family with sequence similarity 104, member B U

FGD1 chrX:54521696–54522266 FYVE, RhoGEF, and PH domain containing 1 C

FUNDC2 chrX:154255133–154255703 FUN14 domain containing 2 C

GAGE12B, 12I,

2A, 5, 7, 8

chrX:49315376–49315946 G antigen 1, 5, 7 U

GTPBP6 chrX:230686–231256 GTP-binding protein 6 (putative) U

HCCS chrX:11129525–11129638 Holocytochrome c synthase C

HOXD4 chr2:177016716–177017157 Homeobox D4 N

IDH3G chrX:153059742–153059944 Isocitrate dehydrogenase 3 (NAD+) gamma C

IDS chrX:148586616–148587185 Iduronate 2-sulfatase C

IRAK1 chrX:153285317–153285887 Interleukin-1 receptor-associated kinase 1 PM

KBTBD6 chr13:41706829–41707399 Kelch repeat and BTB (POZ) domain containing 6 U

MAGEA3 chrX:151938154–151938356 Melanoma antigen family A, 3 U

MAGEA6 chrX:151867135–151867705 Melanoma antigen family A, 6 U

MAGEA9 chrX:148793401–148793568 Melanoma antigen family A, 9 U

MAGED4B chrX:51928209–51929228 Melanoma antigen family D, 4B U

MTCP1 chrX:154299410–154299612 Mature T cell proliferation 1 C

MTM1 chrX:149737348–149737918 Myotubularin 1 C

MTMR8 chrX:63614954–63615524 Myotubularin-related protein 8 U

NHS chrX:17393481–17393959 Nance–Horan syndrome (congenital cataracts and dental anomalies) N

ORC1L chr1:52869831–52870401 Origin recognition complex, subunit 1 N

CDK16 chrX:47078470–47079428 Cyclin-dependent kinase 16 C

PDZD4 chrX:153095693–153096406 PDZ domain containing 4 C

PHF16 chrX:46772444–46773014 PHD finger protein 16 N

PRKX chrX:3631431–3632001 Protein kinase, X-linked C

(Continued)

Frontiers in Immunology | Inflammation March 2014 | Volume 5 | Article 128 | 4

http://www.frontiersin.org/Inflammation
http://www.frontiersin.org/Inflammation/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Selmi et al. Twins and PBC

Table 2 | Continued

Gene Chr/base pair (bp)a Description/function Localizationb

PRPF38A chr1:52869831–52870401 PRP38 pre-mRNA processing factor 38 (yeast) domain containing A N

RIBC1 chrX:53449681–53450600 RIB43A domain with coiled-coils 1 U

RNF128 chrX:105970276–105970478 Ring finger protein 128 C

SCLY chr2:238969783–238970252 Selenocysteine lyase C

SHROOM4 chrX:50557007–50557209 Shroom family member 4 PM

SLC10A3 chrX:153718280–153718749 Solute carrier family 10 (sodium/bile acid cotransporter family), member 3 PM

SLC9A6 chrX:135067977–135068547 Solute carrier family 9 (sodium/hydrogen exchanger), member 6 PM

SLITRK2 chrX:144903417–144903908 SLIT and NTRK-like family, member 2 U

SLITRK4 chrX:142722571–142723141 SLIT and NTRK-like family, member 4 U

SMARCA1 chrX:128657308–128657936 SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin,

sub-family A, member 1

N

SSR4 chrX:153060191–153060761 Signal sequence receptor, delta (translocon-associated protein delta) C

TAF9B chrX:77394695–77395265 TAF9B RNA polymerase II, TATA box-binding protein-associated factor, 31 kDa N

TCEAL6 chrX:101397122–101397692 Transcription elongation factor A (SII)-like 6 U

TUSC3 chr8:15397909–15398479 Tumor suppressor candidate 3 PM

UBL4A chrX:153714886–153715456 Ubiquitin-like 4° U

VCX2, VCX3A chrX:6451316–6452154 Variable charge, X-linked 2, X-linked 3A U, N

YIPF6 chrX:67718891–67718965 Yip1 domain family, member 6 C

ZIC3 chrX:136649002–136649910 Zic family member 3 (odd-paired homolog, Drosophila) N

ZNF182 chrX:47862911–47863428 Zinc finger protein 182 N

Of note, all regions were hypermethylated in the PBC proband and only SMARCA1 was differentially expressed in RT-PCR.
aPositions of each gene based on GRCh37/hg19.
bFor each gene product the localization is specified as nuclear (N), cytoplasmic (C), plasma membrane (PM), extracellular (E), unknown (U).

and diseases were inflammatory, immunological, and connective
tissue disorders. Furthermore the top canonical pathways involved
were: T helper cell differentiation (p= 3.98E−19), dendritic cell
maturation (p= 1.39E−13), altered T and B cell signaling in
rheumatoid arthritis (p= 1.02E−12), type I diabetes mellitus sig-
naling (p= 1.04E−11), and the crosstalk between dendritic cells
and natural killer cells (p= 5.98E−11) (Table 4).

DISCUSSION
Primary biliary cirrhosis is considered a prototypic autoimmune
disease because of the clinical homogeneity between patients and
the relative consistency in natural history and pathology. Although
relatively uncommon, several independent GWAS (7–13) have
identified associations with transcription factors that further sug-
gest a potential role for epigenetic shifts and thus our approach
using this unique collection of DNA is a particularly impor-
tant resource. We are aware of the numerous limitations of our
study and that the observed changes in GEX may be stochas-
tic rather than secondary to disease progression or involved in
pathways involved in PBC pathogenesis, as suggested for other

autoimmune diseases (29–32). The latter includes the possibility
of portal hypertension and resulting leukopenia.

We identified 60 DMR and 10 CNV between discordant MZ
twins with 14 (20%) also differently expressed between PBC cases
and control sisters, thus being stronger candidates as PBC bio-
markers or determinants. One of the strengths of our study is the
confirmation of identified genes by quantitative PCR and that this
approach was extended also to genes identified in recent GWAS
allowing identification of six genes differently expressed in PBC
mononuclear cells. First, these genes support a down-modulation
of Th2-cytokines such as IFIT1, an interferon type I signature
represented by IFI44L, in favor of a fibrogenic phenotype as repre-
sented by the IL6 up-regulation (33). Regarding this last observa-
tion, we note the apparent discrepancy between DNA methylation
and GEX of IL6 but we recognize that methylation does not
fully correlate with GEX, and the difference could be explained
by different mechanisms such as allele-specific methylation (34,
35) (Table 4). Second, a single DMR-associated gene, i.e., hyper-
methylated SMARCA1, manifested a reduced GEX confirmed in
our RT-PCR study of sibling pairs. SMARCA1 is a transcription
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regulator that modulates the chromatin structure and is involved
in apoptosis, DNA damage, and differentiation. Moreover, the gene
encodes for a member of the SWI/SNF family of proteins, which

FIGURE 1 | Heat map showed, for all case/control sibling pairs, genes
expression in red/green color based on ∆C t values using Pearson’s
correlation. The red indicated an increased expression with a ∆C t value
below the middle level and the green indicated a decreased expression
with ∆C t value above the middle level.

are master regulators of GEX, regulating expression among oth-
ers FOS, CSF-1, CRYAB, MIM-1, p21 (also known as CDKN1A),
HSP70, VIM, and CCNA2; SWI/SNF has also been reported to
modulate alternative splicing (36). Third,5/7 sibling pairs had con-
sistent dysregulation of CXCR5 being down-regulated in PBC lym-
phocytes, which may reflect a compartmentalization of CXCR5+
cells within the liver or may reflect the chronic activation of B cells,
as reported in rheumatoid arthritis (37). In fact, the chemokine
receptor CXCR5 is expressed by B and T cells and controls their
migration within lymph nodes while its ligand BCA-1/CXCL13 is
present in lymph nodes and spleen and also in the liver. A down-
regulation of CXRC5 is correlated with an increased production
of IL-2, which may cause the production of immunoglobulins by
B cells; IL-2 is normally produced by T cells during an immune
response. IL-2 is also necessary during T cell differentiation in Treg,
which are involved in self antigens recognition, which could result

FIGURE 2 | Expression fold changes at RT-PCR of the six genes found
differences in PBC versus healthy sibling pairs analysis subjects.

Table 3 | Genes showing consistent differences in DNA methylation, CNV, or expressiona.

Analysis ID Statusb Entrez gene name Chr/base pair (bp) Localizationc

GWAS CXCR5 Down-regulated in

three sibling pairs 0.44

Chemokine (C–X–C motif) receptor 5 chr11: 118764101–118766980 PM

GWAS HLA-B Down-regulated in

three sibling pairs 0.14

Major histocompatibility complex, class I, B chr6: 31321649–31324989 PM

GEX IFI44L Down-regulated in four

sibling pairs 0.32

Interferon-induced protein 44-like chr1: 79086088–79111830 U

GEX IFIT1 Down-regulated in

three sibling pairs 0.26

Interferon-induced protein with tetratricopeptide

repeats 1

chr10: 91152303–91166244 C

GWAS IL6 Up-regulated in three

sibling pairs 2.5

Interleukin 6 (interferon, beta 2) chr7: 22766798–22771620 E

MeDIP SMARCA1 Down-regulated in

three sibling pairs 0.33

SWI/SNF-related, matrix-associated, actin-dependent

regulator of chromatin, sub-family a, member 1

chrX: 128484989–128485617 N

aList of genes evaluated with RT-PCR.

Each of the tested genes showed consistent differences in methylation (MeDIP), copy number variation (CNV), or gene expression (GEX) (in the current study) or

were candidate genes from genome-wide association studies (GWAS) studies.
bStatus: Log(RQ) is the logarithm of fold change= , which identifies the expression ratio: a positive Log(RQ) implies that the gene is up-regulated.
cFor each gene product the localization is specified as nuclear (N), cytoplasmic (C), plasma membrane (PM), extracellular (E), unknown (U).
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Table 4 | List of PBC-associated genes analyzed with ingenuity

pathways analysis software 8.0 IPA.

Genes IPA findings

IL6 Up-regulation of human IL6 protein in serum is associated

with human PBC

IL4 Up-regulation of human IL4 mRNA in liver is associated with

human PBC

IL17A Up-regulation of human IL-17 (IL17A) mRNA in liver is

associated with human PBC

IL13 Up-regulation of human IL13 mRNA in liver is associated with

human PBC

IL12RB2 Mutant human IL12RB2 gene (SNP substitution mutation

(rs3790567) is associated with human PBC

(p-value=2.76E−11)

IL12 Mutant human IL12A gene [SNP substitution mutation, allelic

variations: A/G (rs4679868)] is associated with human PBC

Mutant human IL12A gene (SNP substitution mutation

(rs574808) is associated with human PBC

(p-value=1.88E−13)

HLA-

DQB1

Mutant human HLA-DQB1 gene (SNP substitution mutation

(rs9275312) is associated with human PBC

Mutant human HLA-DQB1 gene (SNP substitution mutation

(rs2856683) is associated with human PBC

(p-value=1.78E−19)

Mutant human HLA-DQB1 gene (SNP substitution mutation

(rs7775228) is associated with human PBC

Mutant human HLA-DQB1 gene (SNP substitution mutation

(rs9275390) is associated with human PBC

Mutant human HLA-DQB1 gene (SNP substitution mutation

(rs9357152) is associated with human PBC

HLA-

DPB1

Mutant human HLA-DPB1 gene (SNP substitution mutation

(rs9277535) is associated with human PBC

Mutant human HLA-DPB1 gene (SNP substitution mutation

(rs2281389) is associated with human PBC

Mutant human HLA-DPB1 gene (SNP substitution mutation

(rs660895) is associated with human PBC

Mutant human HLA-DPB1 gene (SNP substitution mutation

(rs9277565) is associated with human PBC

CTLA4 Mutant human CTLA4 gene is associated with human PBC

Of these, IL6 was found differentially expressed by RT-PCR in discordant sisters.

in autoimmunity (38). Of note, following B cell activation and dif-
ferentiation into plasma cells and memory cells, CXCR5 becomes
down-regulated while the same effect is induced in vitro following
anti-CD40 stimulation (39) and CD40L methylation appears to
be altered in PBC (40). Fourth, HLA-B is also down-regulated in
PBC, similar to several types of cancer (41–43).

The majority of the identified genes map on the X chromosome,
in agreement with the female predominance of the disease, and
are involved in many cellular pathways. Our group in a previous

work assessed the expression of 125 genes with variable X inacti-
vation status and found that two genes (CLIC2 and PIN4) were
consistently down-regulated in PBC affected twin of discordant
pairs (17). Three genes are differentially methylated in lympho-
cytes of patients with PBC and systemic sclerosis (32) and may
thus be representative of general autoimmunity or fibrosis devel-
opment; these genes include MTM1 hypermethylated in PBC and
in systemic sclerosis while SSR4 and IGH3G are hypomethylated
in both diseases. Of note, a recent study reported the up-regulation
of the X-linked costimulatory molecule CD40L (40) but our data
failed to confirm such hypomethylation in our cohort. The CNV
differences observed in our MZ twin set warrant some further
observations as the de novo post-twinning CNV frequency was
estimated to be as high as 5% on a per-individual basis or 10% per
twinning event (21). While the impact of CNV on GEX can vary
(44), it would be of great interest to obtain parental information to
determine the origin and timing of CNV in the offspring. On the
other hand, there are several limitations to our data. PBC is rela-
tively uncommon and our DNA collection reflects a several-year
worldwide search; it is nonetheless a limited dataset. In addition,
there is only limited information available using PBMC. PBC is an
organ-specific disease affecting small intrahepatic bile ducts and
thus studies of the portal infiltrating lymphocytes will provide
a more valuable resource as would a detailed and well-defined
lymphoid cell populations. These comments notwithstanding, the
data obtained are intriguing and consistent with our thesis that
one explanation for discordant MZ twins is DNA changes on
the critical genomic element involved in disease susceptibility
and these observations should be recapitulated also in unre-
lated pairs of patients and controls. With the increased interest
in the balance between genetic susceptibility, it becomes criti-
cal for research groups to combine resources and improve access
to clinical material and data that permits more extensive stud-
ies and the potential for more powerful statistical analysis and
interpretation.
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