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Major histocompatibility complex (MHC) class II molecules are ligands for CD4+ T cells
and are critical for initiating the adaptive immune response.This review is focused on what
is currently known about MHC class II organization at the plasma membrane of antigen
presenting cells and how this affects antigen presentation to T cells. The organization and
diffusion of class II molecules have been measured by a variety of biochemical and micro-
scopic techniques. Membrane lipids and other proteins have been implicated in MHC class
II organization and function. However, when compared with the organization of MHC class
I or TCR complexes, much less is known about MHC class II. Since clustering of T cell
receptors occurs during activation, the organization of MHC molecules prior to recognition
and during synapse formation may be critical for antigen presentation.

Keywords: MHC class II, diffusion, clustering, antigen presentation, microscopy, fluorescence

INTRODUCTION
Major histocompatibility complexes (MHC) class II molecules are
comprised of two membrane bound chains loaded with a degen-
erate short peptide that provide both stability to the complex and
diversity of unique complexes. These peptides are derived from
self-proteins or from foreign proteins from pathogens, micro-
biota, and other organisms. CD4+ T cells recognize the peptide-
loaded complexes through their T cell receptors (TCRs), which
are optimized for binding MHC class II (MHC II) molecules,
but diversified to recognize a repertoire of peptides TCR trigger-
ing is the critical checkpoint that determines which T cells are
selected for activation and mobilization for the adaptive immune
response. In vivo, T cells typically encounter these complexes in
secondary lymphoid organs on the surfaces of professional antigen
presenting cells (APCs) such as dendritic cells (DCs), B cells, and
macrophages, as well as some mesenchymal cells such as lymphatic
endothelial cells and stromal nodal cells. These encounters with
MHC II are continuously occurring as T cells and some APCs are
in constant cell migration, plasma membranes brushing up against
each other in a crowded cell environment. The presence of addi-
tional cues, including chemokines, inflammatory cytokines (1, 2),
and adhesion molecules and co-stimulatory ligands on APCs, can
alert and direct T cells to activated APCs. In contrast, the absence
of these cues can retard full T cell activation and induce tolerance.

The aim of this review is to present a comprehensive overview
of what is currently known about MHC II organization at the
plasma membrane of APC and how this affects antigen pre-
sentation to T cells. During the last 20 years, TCR organization
and the consequences of clustering upon activation have received
considerable attention. Compared to MHC class I (MHC I) (3),
much less is known about MHC II organization and how it may
or may not impact recognition by CD4+ T cells. Based on the
recent findings on TCR clustering and 2D kinetics, it is likely
that any perturbation of MHC II surface organization will have
an impact on the quality of T cell activation. Many factors may

contribute to the organization of MHC II molecules. These include
accessory proteins, protein–lipid interactions, and the interplay of
the cytoskeleton with plasma membrane. In addition, there are
dynamics of trafficking that can alter the structure temporally.
How the techniques and methodologies employed may contribute
to our understanding of MHC II surface organization will also be
discussed.

MHC CLASS II MOBILITY AND DIFFUSION
As MHC II molecules are transmembrane proteins embedded
within the plasma membrane, their movement is restricted by
the lipid bilayer. MHC II molecules can move along the plane of
the plasma membrane surface, known as lateral diffusion, or they
can rotate around an axis perpendicular to the plasma membrane
plane, known as rotational diffusion (Figure 1). These movements
have speeds associated with them, referred to as diffusion coeffi-
cients, which are dependent on many factors intrinsic and extrinsic
to the protein. In a living cell membrane, these include the size or
oligomer status of the molecule or complex, the lipid environment
and interactions with other proteins in and around the membrane,
including the actin cytoskeleton. In general, larger complexes move
more slowly, and interactions with other components typically
impede mobility as well. By measuring the diffusion,one can inves-
tigate the organization of the molecules and the interactions that
govern the protein mobility. Furthermore, MHC II mobility is
likely to influence the efficiency of TCR binding (discussed later).

To determine MHC II lateral movement and organization at the
plasma membrane, several quantitative and qualitative approaches
have been employed including imaging. Fluorescence recovery
after photobleaching (FRAP) is one commonly used technique,
which can determine the fraction of molecules that are moving vs.
bound/immobile molecules (mobile fraction) and the speed (Dlat)
of the mobile molecules (Figure 2). Both parameters can inform
and are affected by the organization of the molecules, their associa-
tion with other surface molecules, and engagement of cytoskeletal

www.frontiersin.org April 2014 | Volume 5 | Article 158 | 1

http://www.frontiersin.org/Immunology
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/about
http://www.frontiersin.org/Journal/10.3389/fimmu.2014.00158/abstract
http://www.frontiersin.org/people/u/119003
mailto:david.fooksman@einstein.yu.edu
mailto:david.fooksman@einstein.yu.edu
http://www.frontiersin.org
http://www.frontiersin.org/Antigen_Presenting_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fooksman Organizing MHC class II presentation

FIGURE 1 | Mobility of MHC molecules in the membrane. Diagram
illustrating lateral diffusion and rotational diffusion of membrane proteins
such as MHC class II on the plasma membrane. Equations relating the size

of the molecule and their diffusion rates are shown for each motion. For
example, increasing the radius of a complex to 3× will change the Drot

by 1/9×.

FIGURE 2 | Measuring MHC lateral diffusion. (A) A diagram of single
molecule imaging. A small fraction of molecules is labeled to ensure that
only single molecules are visualized. High-speed cameras capture the
position of the molecules, which can be used to track the speed and
identify obstacles such as actin cytoskeleton forming “corrals.” By
imaging at millisecond speeds can capture the tracks of molecules in
between and during hops between actin corralled regions of the
membrane. (B) A diagram of a FRAP experiment (1) using a low-power,
attenuated laser, a region (~300 nm or larger) of the membrane is
monitored for fluorescence of molecules using various detection

instruments. (2) A pulse of non-attenuated high laser power is delivered
to the spot, quickly photobleaching a population of molecules in the
region. (3) The low-power monitoring is restored and the recovery of
mobile fluorescent molecules to the region. The fluorescence intensity
(in red) is plotted vs. time, to show the three time segments. Based on
the final recovery (4) vs. the initial intensity (5), we can compute the
mobile fraction. The fit of the recovery can be used to calculate a
diffusion coefficient for lateral mobility. As the spot sizes are always
larger than size actin meshwork, the rate of diffusion and recovery is
sensitive to interactions with the cytoskeleton.

elements (4). This is true even for the smallest bleach spots (that
are diffraction-limited) and provides an ensemble average speed
for all molecules. In contrast, high-speed imaging of single mol-
ecules has been used to measure diffusion of individual MHC II

complexes. Although these approaches are more technically chal-
lenging, the advantage is that one can measure micro diffusion,
mobility at short timescales (tens of milliseconds), which can
resolve the contributions of the actin meshwork on the movement
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Fooksman Organizing MHC class II presentation

of the molecules (5). This distinction can be useful if the cytoskele-
ton is inhibiting diffusion by corralling molecules, or by increas-
ing the local concentration of molecules thereby stabilizing weak
protein–protein interactions.

Several groups (6–9) have measured MHC class II mobility by
single molecule tracking, which resolves dynamics at intervals in
the tens of milliseconds. Based on measurements for the diffu-
sion of MHC class II expressed on CHO cells, as GPI-anchored
or transmembrane molecules, most MHC molecules appear to
be highly mobile and diffusing at rates similar to GPI-anchored
proteins. Typically, transmembrane proteins, which can engage
proteins on both leaflets of the membrane, diffuse more slowly
than GPI-anchored proteins. Because this is not observed for
MHC II molecules, it suggests they do not have strong interactions
with the actin cytoskeleton or other membrane proteins. How-
ever, FRAP measurements of MHC class II mobility on primary
B cells and B cell lines showed considerably slower diffusion, with
more immobile molecules on the plasma membrane [summarized
nicely in Table 1 of Ref. (7)]. This may be the result of technical
differences in methodology or perhaps B cells express additional
components that can interact with class II molecules causing a
reduced mobility. CHO cells are model cells often used for reduc-
tionist studies for technical reasons, but they may not reflect the
physiological behavior of these proteins on professional APCs.

MHC SELF-ORGANIZATION
It remains unclear if MHC class II molecules are found as
monomers or associated in clusters on the plasma membrane.
FRET measurements between MHC II surface molecules on B
cell lines indicate clustering but these experiments were per-
formed with intact antibodies which may induce formation of
dimers, under non-saturating staining conditions (10). Superanti-
gen staphylococcal enterotoxin A, which can activate T cells in an
antigen-independent manner, has been shown to induce clusters
of MHC II molecules (11). This suggests that the clustered state of
MHC II may regulate the sensitivity of antigen presentation as we
and others have reported for MHC I (3, 12).

Measuring the size of MHC II clusters in live cell membranes
can be challenging. The size of MHC clusters can be approximated
by the mobility of the complex. Originally, Saffman and Delbruck
described lateral diffusion to be inversely related to ln (radius)
of the molecule in a membrane (13) (Figure 1). This has been
challenged by more recent studies (14, 15) and remains unclear.
However, the rotational diffusion is inversely proportional to the
radius squared (13). Typically, single chain proteins in the mem-
brane rotate on the order of 10−5 s. As the radius of a molecule
or complex increases, the speed of rotation will reduce greatly,
making it highly sensitive to any change in clustering or complex
formation. Changes in rotation will alter the rate of binding to
other molecules (16).

Previously, we measured the rotation of MHC I clusters to
determine the size of large cluster generated by engineered heavy
chains with multiple dimerization domains in the C terminal
tail (17). Using polarized FRAP, we were able to detect the rota-
tion of large clusters of MHC I after cross-linking them in live
cells. There are technical obstacles to making such measurements

in vivo, in particular, having a rigid fluorophore that can report
on the movement of the complex and not simply the movement
of a dye conjugate or fluorescent protein attached by a flexible
linker. We embedded the GFP motif within the C-terminus fol-
lowed by crosslinkable domains that where rigid once bound by
the crosslinker molecule. Anisotropy has been used to measure
to other ligand–receptor complexes (18) and the oligomeriza-
tion of the EGF receptor (19). In principle, measuring changes in
anisotropy using single particle tracking can be applied to study of
the binding or unbinding of MHC molecules by TCR on opposed
membranes.

How might clusters of MHC II affect TCR recognition? TCR
microclusters are important during early events of T cell activation
and antigen recognition (20). Activated T cells have pre-clustered
TCR on their cell surface, which enhance binding of peptide–MHC
I complexes (21). Clustering of MHC II monomers would change
their lateral diffusion and their rotation from tens of microseconds
into the millisecond timescale, making them essentially rotation-
ally immobile, in comparison to the TCRs on the opposing surface
(Figure 1). Slower rotating clusters of ligands or receptors should
have slower rates of association and dissociation (16), which in the-
ory, could facilitate rebinding events and may alter the duration of
TCR signaling.

MHC–PROTEIN INTERACTIONS
Upon maturation, DCs and B cells express higher surface levels
of MHC I and II molecules, B7-family co-stimulatory molecules
and adhesion molecules, which enhances antigen presentation.
MHC class II molecules associate with various membrane pro-
teins on the cell surface, including ICAM-1 and MHC I based on
FRET measurements (22). Recruitment of ICAM-1 and ICAM-3
to the immunological synapse can also drive MHC class II accu-
mulation, indicating a protein–protein interaction (23). Changes
in MHC class II levels during maturation are the result of a
reduced endocytosis (24) of molecules and a change in ubiquiti-
nation, which promotes plasma membrane tropism vs. endosome
or multi-vesicular body localization (25). Trafficking of vesicles
densely packed with MHC class II complexes, arrive at the plasma
membrane as clusters (26), as is the case for class I molecules (27).
These structures dissipate over time but can provide hotspots of
nascent ligands for binding TCR.

ACTIN
The role of actin in MHC mobility and presentation is complex.
Typically, the cortical actin meshwork can provide barrier to mem-
brane mobility or even immobilize certain proteins (5). Treatment
with cytochalasin D did not affect the diffusion of the MHC class
II molecules (6–9) in CHO cells. Similarly, inhibition of actin by
cytochalasin D treatment did not affect T cell activation (28) using
the CH27 B cell line. However, blockade of actin with latrunculin
B in CH27 cells reduced synapse recruitment of PKC-theta on
T cells (29). Treatment with latrunculin A also increased class II
diffusion (7). These contrasting results may reflect differences in
cell types used or differences in experimental design. For example,
latrunculins depolymerize actin filaments, while cytochalasin D
blocks actin polymerization.

www.frontiersin.org April 2014 | Volume 5 | Article 158 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Antigen_Presenting_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fooksman Organizing MHC class II presentation

LIPID DOMAINS AND OTHER MICRODOMAINS
Like many other membrane ligands and receptors, there has been
interest in how lipid rafts affect MHC class II organization. Raft
lipids and raft-associated proteins are found in the detergent-
insoluble fraction of a sucrose gradient in contrast to other mem-
brane proteins and lipids that can distribute through the gradient
as a function of their molecular weight or specific gravity. These
experiments are notoriously controversial as they require specific
detergents to separate the fractions, and these raft domains are
not readily visible by imaging without the aid of fluorescent lipid
probes that tend to aggregate and possibly nucleate these domain
structures (30, 31). The lifetime and size of these structures in live
membranes may be much smaller when unperturbed.

A proportion of MHC class II can be found in lipid rafts as
measured by detergent extraction followed by sucrose gradient
centrifugation (32, 33). The fraction of detergent-insoluble MHC
II is reduced upon DC maturation (34). Disruption of membrane
cholesterol or membrane structure with methyl-β-cyclodextrin or
nystatin reduces MHC II association with raft lipids and correlates
with reduced antigen presentation. Typically, cross-linking mem-
brane receptors can induce the accumulation of these molecules
into the detergent resistant fraction associated with lipid rafts.
Lipid composition affects MHC presentation, through cholesterol
binding (35, 36). We do not know if APC membrane composi-
tion directly affects T cells, or whether the changes are indirectly
contributing to MHC mobility, protein–protein interactions, or
other biological parameters (31). Nevertheless, it is clear that cer-
tain membrane proteins are sensitive to the lipid environment and
disruptions in lipid organization affect T cell recognition.

Various tetraspanins have also been implicated in MHC class
II processing in endosomes and presentation. Within endosomal
compartments, CD9, CD63, and CD81 all were important for con-
trolling surface expression of MHC II (37). Tetraspanins can also
associate with class II molecules on the surface (38). Vogt and col-
leagues (39) have reported that about 10% of class II molecules
are found in “CDw78 microdomains” that are not lipid raft asso-
ciated, and can be stained with the antibody CDw78. Although
the exact determinant or epitope of the antibody is unclear, it
seems to recognize multimeric class II molecules or complexes
with tetraspanins. Cross-linking MHC II and CD48 on the sur-
face (29) can recruit glycosphingolipid-rich domains and induce
the accumulation of f-actin and phosphotyrosine at the plasma
membrane of the APC.

MHC MOLECULES ON DENDRITIC CELLS
There is a dearth of measurements of MHC class II diffusion and
the role of actin on DCs, which are the most potent APCs in
the body. As DC mature, many changes in cell morphology are
induced including increased membrane protrusions and ruffling
and increased polymerized actin (40) leading to more dendrite
activity and better presentation. These morphological changes are
most likely aimed at enhancing antigen presentation and engage-
ment with T cells, but this is only speculation. In one study, knock
down of gelsolin, an actin regulator protein was found to have
no effect on antigen presentation in DCs (41) based on in vitro
assays of antigen uptake and presentation. It is unknown if DC
maturation alters MHC class II mobility and organization while

upregulating ligand numbers on the surface. Moreover, it may be
interesting to see whether MHC class II mobility varies on DC
subpopulations, which have different potentials for activating or
tolerizing T cells.

Dendritic cells present antigens to highly motile antigen-
specific T cells in a dynamic environment. In vivo, the dosage and
potency of peptide–MHC complexes on DCs can mediate T cell
arrest or continued scanning, thus influencing the balance between
tolerance and activation (42–45). In these complex environments,
the organization of MHC molecules can tip the balance between
T cell recognition or neglect.

RELATIONSHIP BETWEEN TCR TRIGGERING AND MHC
ORGANIZATION
T cell triggering has been of great interest for several decades with
too many seminal findings to discuss here. With the improvements
in high resolution imaging, artificial APCs based on planar bilayer
substrates or engineered cell lines, recent studies have been able to
better determine biophysical and molecular components of T cell
activation. These discoveries on the T cell side may suggest how
the structure and organization of MHC molecules might influence
TCR recognition.

In the past decade, we have determined that TCR microclusters
are formed when agonist peptide–MHC complexes are presented
to T cells (46). These microclusters are the signaling quanta for the
T cell, comprised of multiple TCRs, associated with co-receptors
CD4 or CD8, signaling kinases such as Lck and Zap-70, with some
complexes engaging adaptor molecules such as SLP-76 and LAT,
leading to the activation of signaling cascades, fluxing of calcium,
and ultimately gene expression. TCR microclusters are maintained
and trafficked along the plasma membrane through actin poly-
merization and contractions of actin by myosin IIa until they
are internalized and degraded in multi-vesicular body pathways.
From formation until degradation, these microclusters generate
active signaling mediated by the kinases and adaptors associated
with them. Sustained signaling is dependent on the continued
formation of microclusters and the lifetime of the microcluster
and factors that impede either reduce total signaling. For exam-
ple, blocking MHC ligands with antibody after initial formation of
microclusters inhibits the generation of new clusters (20). Inter-
fering with the actin cytoskeleton with latrunculin A disperses
clusters and terminates signaling. In contrast, blocking internaliza-
tion and degradation of microclusters, such as by interfering with
Tsg101 mRNA, enhances T cell signaling (47). Based on these stud-
ies, we can postulate that factors controlling the distribution and
diffusion of MHC and co-stimulatory molecules on professional
APCs could have consequences on the lifetime or formation of
TCR microclusters. Cytoskeleton engagement or diffusion barri-
ers on the APCs could block MHC escape from TCR microclusters,
thereby enhancing T cell signaling.

There has been considerable interest in understanding the basis
of how MHC recognition induces TCR triggering. It is well known
that soluble antibody against CD3 subunits can induce T cell acti-
vation, either by clustering receptors or inducing some mechanical
force. However, at longer distances between antibody Fab frag-
ments, TCR triggering does not occur (48). A recent study (49)
investigated the stoichiometry of MHC and TCR interactions
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by using lipid-tethered MHCs on planar bilayers with defined
concentration that were confined to grids patterns. From these
experiments they determined that a minimum of two agonist
peptide–MHC complexes are required per grid, to be in contact
with a TCR microcluster and trigger calcium signaling. Vale and
colleagues using TCR zeta chain fused to a mutated FK506-binding
domain, or FKBP, could induce T cell signaling via Zap-70 in the
absence of MHC binding, antibody cross-linking or any other
extracellular stimulus simply by clustering the receptor (50) via
FKBP dimerization. These two results indicate that TCR trigger-
ing may simply require clustering and that two TCR units with
their associated CD3 chains may be the minimal structure required
for activation. Based upon these studies, a clustered presentation
of MHC molecules could potentially enhance TCR signaling by
recruiting additional TCRs into a complex.

In contrast, work focused on understanding the biophysical
parameters of MHC–TCR binding that correlate with triggering
has questioned long standing paradigms previously held. Initial
measurements of MHC–TCR binding, have correlated slower off-
rates of binding (or long half-life of interaction) with better T
cell activation (51), with antagonists, in general, having interme-
diate off-rates compared to agonists and null peptides (52). These
measurements were conducted in solution in 3D, with all forms
of motion for both molecules in play. In recent years, focus has
shifted to trying to understand binding with motion limited to
lateral and rotation diffusion in the plasma membranes. Stud-
ies (53, 54) using various optical and mechanical assays to study
these interactions have demonstrated that MHC and TCR bind-
ing behaves quite different under these conditions. TCR–MHC
on-rates are faster than in 3D solution, as these molecules tran-
sit in parallel sheets. MHC molecules with agonist peptide have
off-rates comparable to weaker agonist ligands but even faster
on-rates, driving activation. These measurements have implica-
tions with regard to MHC mobility and cluster formation. If
fast binding is critical, clusters of MHC may actually inhibit the
efficiency of recognition, particularly clusters containing various
peptides.

CONCLUDING REMARKS
Further investigation is required to understand the organization
of MHC class II molecules, particularly on real APCs. Compared
to MHC I or TCR organization, much less is known about class II
organization and how it may impact antigen presentation. Based
on the recent findings on TCR clustering and 2D kinetics, it is
likely that any perturbation of MHC class II surface organization
will have an impact on T cell recognition, but will it enhance or
inhibit? Do DCs regulate MHC class II organization in responses to
maturation or inflammation? Can pathogens target organization
to modify antigen presentation as they seem to do for MHC class
I molecules (12)? By modulating MHC II organization, we should
be able to better control T cell activation to generate more effective
anti-tumor responses and long-lived immunological memory in
the future.
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