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It is believed the immune system can contribute to oncogenic transformation especially in
settings of chronic inflammation, be activated during immunosurveillance to destroy early
neoplastic cells before they undergo malignant outgrowth, and finally, can assist growth
of established tumors by preventing clearance, remodeling surrounding tissue, and pro-
moting metastatic events. These seemingly opposing roles of the immune system at the
different stages of cancer development must all be mediated by innate signaling mecha-
nisms that regulate the overall state of immune activation. Recently, the cytosolic nod-like
receptor (NLR) pathway of innate immunity has gained a lot of attention in the tumor
immunology field due to its known involvement in promoting inflammation and immunity,
and conversely, in regulating tissue repair processes. In this review, we present all the
current evidence for NLR involvement in the different stages of neoplasia to understand
how a single molecular pathway can contribute to conflicting immunological interactions
with cancer.
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INTRODUCTION
The pervading conception of the immune system today depicts it
simply as the body’s means of warding off infection. In her Anthro-
pology of Immunology, Martin eloquently describes “the body as
nation state at war over its borders, containing internal surveil-
lance systems (encompassed in the immune system) to monitor
foreign intruders” (1). However, this “infection-centric” view does
not consider profound facets of the immune system, now well
established in the literature, and largely forgotten since the earli-
est immunologists predicted their existence. As early as the 1890s,
Ilya Metchnikoff conceived of the theory of “physiological inflam-
mation,” in which the immune system, especially phagocytic cells,
were essential for maintaining homeostasis within all tissues of the
body (2). He postulated that phagocytic cells uphold the balance
between competing cell types and organs as they arise within a
multicellular organism, establishing a unified “organismal iden-
tity” (2). This did not ignore the role of phagocytes in fighting
infection, but suggested a “wide functional spectrum, of which
host defense against pathogens was only one aspect” (2). Included
were roles in regulating tissue development, clearance of damaged
tissue, promotion of wound repair after any insult, be it infectious
or sterile, and resolution of unwarranted inflammatory processes.

There is no better example of a question of organismal identity,
of the need for a restoration of homeostasis, or of cell types or tis-
sues in competition with one another, than that of cancer. Because
they are initially derived from self-tissue, transformed cells pose
a dilemma – to destroy or repair? It seems the immune system is
responsible for answering this question, and is now known to be
intimately involved in the oncogenic process from the very emer-
gence of the first transformed cells through to malignant disease
(3–5). Due to the nature of the predicament at hand, the immune

system has been described to have conflicting roles depending on
which stage of cancer progression is being studied (6). How the
opposing immunological phenotypes in cancer are controlled is
not well known, but nod-like receptors (NLRs) have been impli-
cated in various stages of the disease process and have the required
capacity to act as key regulators of physiological and pathologi-
cal inflammation (7–9). NLRs are initiators of the inflammasome
pathway, a cytosolic signaling apparatus that canonically acti-
vates caspase-1, and IL-1β and IL-18 thereafter (10). NLRs can
respond to both pathogen- and danger-associated molecular pat-
terns (PAMPs and DAMPs, respectively), and the pathway has been
shown to have important roles in mounting immune responses to
both microbial pathogens and damaged self, as well as regulating
tissue repair after damage (11, 12). Here, we will review the evi-
dence for NLR involvement in the initial emergence of neoplastic
lesions, in the control and destruction of transformed cells during
a phase of immunosurveillance, and finally the immune shift to
supporting growth of established disease. We will argue that the
conflicting roles of the immune system during oncogenesis can
be reconciled within the framework of Metchnikoff ’s theory of
immune control of tissue homeostasis, and that NLRs and their
downstream signaling elements serve as key molecular switches in
this process.

EMERGENCE OF TRANSFORMATION
Schreiber and colleagues categorized immune interaction with
cancer into three stages of immunoediting: elimination by
immunosurveillance mechanisms; equilibrium, when cancer
attains a latent balance between aberrant growth and destruction;
and escape, when the tumor overcomes suppression as an edited
malignancy (13). Although overlooked in the “Three E’s model”
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of immunoediting, the involvement of inflammatory processes in
the initial emergence of cancer is well established within the liter-
ature. Chronic inflammation is a major risk factor for neoplasia
in the clinic, working to both disrupt the microenvironment to
favor neoplastic outgrowth, and contribute to genetic instability
and altered turnover rates of stromal cells, promoting accelerated
emergence of malignant clones (14). Many studies have now impli-
cated the inflammasome pathway and the NLRs in this context, but
with contrasting influences depending on the context and specifics
under scrutiny.

A predominant model used to study NLR and inflammasome
contributions to carcinogenesis is the AOM/DSS model (15). DSS
causes damage to the colonic epithelium, while AOM causes G-to-
A mutations in DNA of cells undergoing DNA replication. Defi-
ciency in NLRP6, an NLR primarily expressed in colonic myofi-
broblasts, resulted in decreased repair of the intestinal epithe-
lium following DSS treatment, but conversely, was associated
with increased epithelial colonocyte proliferation and transcript
expression of molecules involved in cell cycle progression (16).
Another study showed prolonged colitis and epithelial destruction
in Nlrp6−/− mice after DSS treatment was related to alterations
in commensal microbiota, and was phenocopied when mice were
deficient in any of the NLRP6 inflammasome components ASC (a
common adapter to many inflammasomes), and caspase-1 (17).
The IL-18 cytokine, cleaved into its biologically active form by
activated caspase-1, has emerged as a key cytokine downstream of
inflammasome activation that enables epithelial repair after dam-
age, but also prevents cancer progression through its induction
of the tumor suppressors STAT1 and IFN-γ (18). When treated
with AOM/DSS, the resulting increased epithelial proliferation
and exacerbated inflammation in Nlrp6−/− mice led to acceler-
ated outgrowth of colonic cancer (16). In addition to NLRP6,
loss of NLR family members NOD1, NOD2, NLRP3, NLRC4, and
NLRP12 has resulted in similar exacerbated colitis and accelerated
rates of cancer (19–24). Together, results from these gut stud-
ies suggest NLRs and their associated inflammasome components
are essential for controlling wound repair responses and prevent-
ing transformative events and unwarranted epithelial proliferation
early in potentially neoplastic settings (20). Much work needs to
be done to clarify the mechanisms of NLR regulation in these
processes, especially their connection to regulation of epithelial
regrowth.

Paradoxically, over-expression of NLR pathway components
also drives cancer rather than suppresses its emergence. As might
be predicted from the above evidence, the derepression of caspase-
1 that occurs in Casp12−/− mice results in accelerated recovery
from colitis after DSS. However, after AOM/DSS, these mice have
accelerated rather than decreased colorectal cancer development, a
pathology linked to increased levels of inflammatory cytokine gene
expression including Il1b (25). In a model of HCV infection, IL-1β

production downstream of NLRP3 by hepatic macrophages was
linked to chronic hepatitis (26). Similarly, CCl4 treated Nlrp3−/−

and Asc−/− mice exhibited reduced levels of liver fibrosis, and wild-
type hepatic stellate cells treated with monosodium urate crystals
upregulated the Tgfb and Col1a genes in an inflammasome-
dependent manner (27). Thus in the liver, NLRs contribute to
chronic inflammatory processes, both infectious and sterile, that

result in the hepatitis and fibrosis commonly found prior to
hepatocellular carcinoma.

IL-1β has many pleiotropic effects involved in inflammation,
immunosuppression, cell proliferation and differentiation, tis-
sue regeneration, tumor-promotion, and chemoresistance (28).
In addition to its roles in hepatic carcinoma, the cytokine has
been implicated in accelerating tumor development in mam-
mary epithelial (29), gastric (30), and skin (31) cancer mod-
els, further establishing its role as an inflammatory instigator
of oncogenesis. Drexler et al. were able to show both anti- and
pro-tumorigenic effects of ASC in a single model of chemically
induced skin carcinogenesis (31). ASC expression in infiltrating
myeloid cells helped drive carcinogenesis, while ASC expression
in keratinocytes suppressed epithelial cell proliferation and car-
cinogenesis (although in a caspase-1-independent manner). While
the specific NLR implicated in these opposing roles of ASC was
not identified, involvement of the inflammasome pathway was
strongly implicated.

These studies all demonstrate opposing roles of the inflamma-
some in the early initiation of neoplastic disease. NLR activation
can inhibit malignant transformation by controlling epithelial cell
regeneration, but can also contribute to chronic inflammation that
eventually results in carcinogenesis. The NLRs mediate a fine bal-
ance between inflammation and repair to maintain homeostasis
in each tissue. If tipped in either direction, malignancy can result.

ELIMINATION OF TRANSFORMED CELLS
Once a transformed cell appears, it immediately presents a unique
challenge to the immune system. Its uncontrolled proliferation
threatens the evolutionarily defined healthy function of the tissue
of its origin. Although derived from self, it no longer obeys the rules
of organismal identity. From observations of homograft rejection,
and increased cancer incidence in immunocompromised individ-
uals, Lewis Thomas and Sir MacFarlane Burnett postulated the
theory of immunosurveillance – the ability of the immune sys-
tem to recognize and destroy abnormal self despite its ontogenic
origins (32). Schreiber and others have built a strong case for the
existence of adaptive immunosurveillance, and now evidence is
emerging in spontaneous models of neoplasia (33–36).

Every adaptive response requires innate priming, thus innate
immunity must be involved. Some studies have shown innate
cell involvement (34, 37, 38), but thorough examinations of the
molecular pathways that enable immune activation against tumor
antigens are scarce. However, there are a few studies directly
demonstrating NLRs can be involved in immunosurveillance. In
an allograft model, Ghiringelli et al. show that chemotherapeu-
tic killing of tumor cells causes a release of ATP that binds the
P2RX7 purinergic receptor on dendritic cells (DCs), eventually
leading to the activation of the NLRP3 inflammasome in these cells
(37). By synergizing with HMGB1, released from dying tumor cells
and signaling through toll-like receptor (TLR) 4, activated DC are
licensed to prime an anti-tumor immune response in a caspase-1-
and IL-1β-dependent manner. Another study found that extracts
from an anti-tumorigenic mushroom functioned by activating the
same P2RX7/NLRP3 pathway in macrophages, but did not draw
a direct link to altered tumor kinetics (39). Although these con-
clusions derive from experimental models, anthracycline-treated
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breast cancer patients with mutations in the P2rx7 gene were
found to develop metastatic disease faster than those with nor-
mal P2rx7 genes, suggesting the NLRP3-dependent pathway may
be activated in humans with spontaneous disease (37). In addition
to NLRP3, in 2012 we published on the ability of flagellin to syner-
gistically activate TLR5 and the NLRC4 inflammasome, resulting
in effective priming of CD4 and CD8 immunity against subcu-
taneously implanted allografts in mice (40). Besides priming of
adaptive immunosurveillance, NLRs have been implicated in anti-
tumor immunity through the link between IL-18 and increased
NK cell activity against tumors (41–44). However, these latter find-
ings were made in the presence of exogenous administration or
expression of IL-18 above normal levels.

All these studies involve some artificial intervention that
enhances NLR activity, but present a strong case for the ability
of the pathway to influence immunosurveillance. It remains to
be shown if the inflammasome pathway is involved in intrinsic
immunosurveillance mechanisms, or is activated at this early stage
of disease in any capacity. It is difficult to capture the elimination
phase due to its transience and lack of overt disease phenotypes.
Spontaneous models with a definable pre-malignant stage must be
employed to further analyze which innate signaling pathways, and
in which cell types, are naturally engaged to clear transformed cells
before they cause disease. Selectively enhancing this engagement
could greatly benefit therapeutic intervention. Additionally, these
studies suggest a critical function of the inflammasome in priming
adaptive immunity against transformed self-cells. It remains to be
shown if this ability is mediated entirely through cytokine produc-
tion, or if the inflammasome can influence T cell priming in a more
direct manner. Conversely, it is possible there are strictly innate-
mediated immunosurveillance or tumor-suppressing mechanisms
engaged that help inhibit malignancy without priming T or NK
cells (45). NLR involvement in these processes is unknown.

MAINTENANCE OF ESTABLISHED DISEASE
Malignant disease is the result of failed immunosurveillance mech-
anisms. The editing process selects for clones of the rapidly
dividing and mutating transformed cell that are progressively
less immunostimulatory (13). Eventually, the developing tumor
attains a phenotype that no longer incites immune destruction
and can grow uncontrolled. Furthermore, established tumors are
known to usurp immune mechanisms to not only prevent destruc-
tion, but facilitate growth (46). Tumors have been described as
wounds that will not heal due to their self origin, the stress they
undergo as they rapidly expand, and their elicitation of reparative
and protective immune functions (47, 48).

In light of this analogy, it is not surprising to find NLRs acti-
vated in malignant disease, in this context attempting to repair
the “wound” to restore homeostasis and protect it from further
immune destruction. A host of evidence supports various roles for
NLR-activated IL-1β in malignancy, notably in humanized models
(49, 50). Okamoto et al. found that malignant human melanoma
cells spontaneously activated their intrinsic NLRP3 inflamma-
some, resulting in caspase-1 cleavage and spontaneous secretion of
IL-1β (51). This secreted IL-1β became increasingly autonomous
with later stage disease, implicating it as an evolutionarily advan-
tageous trait for the developing tumor. In vitro, the inflammasome

pathway and IL-1β were shown to increase macrophage chemo-
taxis and angiogenesis, both features linked to worse prognosis in
various cancers (52). Another study found that IL-1β and caspase-
1-deficient mice were much less susceptible to melanoma liver
metastases by an injected allograft, improving their overall sur-
vival (53). In vitro, secreted factors from the melanoma cell line
induced IL-18-dependent upregulation of VCAM-1 on hepatic
sinusoidal endothelial cells, as well as IL-1β secretion. In opposi-
tion to the results in the previous section, endogenous IL-18 from
melanoma cells was also found to inhibit NK cell-mediated killing
of melanoma cells by upregulating Fas ligand expression (54).
Additionally, IL-18 was found to enhance immunosuppression of
NK cells by inducing upregulation of the inhibitory molecule PD-1
(55).

Nod-like receptors are also implicated in the ability of myeloid-
derived suppressor cells (MDSCs) to inhibit anti-tumor immuno-
surveillance. Related to the gut studies in the first section, IL-1β

over-expression in the stomach was shown to induce inflamma-
tion and cancer (30). This was associated with an increase in
MDSC numbers homing to the stomach in an IL-1R and NF-κB-
dependent fashion. In a model of DC-based vaccination against
melanoma, van Deventer et al. demonstrated that Nlrp3−/− mice
had improved outcomes due to decreased numbers of MDSCs
homing to the tumor site (56). However, they did not observe
a change in MDSC function, such as the ability to suppress T
cell responses. Finally, chemotherapy was found to trigger cathep-
sin B release within MDSCs, triggering NLRP3 within the same
cells (57). The resultant IL-1β production induced IL-17 secretion
by CD4 T cells. Allograft tumor growth was slower in Il17a−/−,
Il1r1−/−, Nlrp3−/−, and Casp1−/− mice after chemotherapy treat-
ment, demonstrating all elements in this pathway play a part in
tumor protection although the exact mechanism is unclear.

This evidence clearly implicates the NLRs and inflammasome
pathway in tumor-promotion and defense. They directly facilitate
tumor cell growth and metastasis, and help prevent any anti-tumor
immune responses. It is curious to speculate how accurate the
analogy of tumor to “unhealing wounds” is with regards to NLR
involvement. Are NLRs engaged in the same way by malignant
disease as they are by damaged tissues prior to malignant transfor-
mation, in both cases inducing repair and protective properties?
Fitting with the tumor editing hypothesis, any pro-inflammatory
DAMPs or other signals resulting from initial transformation that
would trigger tumor clearance have in theory been selected away,
leaving only those characteristic of damaged self in need of repair.
Inflammasome involvement in such diverse functions as tissue
repair, immune suppression, and inflammation warrants a search
for more inflammasome-activated targets besides IL-1β and IL-18
that could fine-tune downstream effector mechanisms. Are these
two cytokines alone able to control such diverse effects, or are they
working in collaboration with many other pathways, the overall
milieu defining the result? Concerted efforts to consolidate infor-
mation across tumor models and treatments, being mindful of
cell-type specificity, will help clarify these points.

CONCLUSION
We have now seen how NLRs switch roles in every stage of cancer
progression (Figure 1). In each, the NLRs can be conceptualized
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FIGURE 1 | Nod-like receptors contribute to the emergence,
elimination, and maintenance of cancer. The first transformed cells
emerge under some form of oncogenic stimulus such as chronic
inflammation. At this stage, NLRs have been found to regulate repair of
damaged tissue, especially the rate or re-epithelialization, as well as the
degree of inflammation to most appropriately clear invading pathogens.
Over or under-expression of NLRs and their downstream signaling
molecules can lead to increased incidence of cancer emergence. After a
transformed cell emerges, NLRs are thought to contribute to
immunosurveillance and destruction of newly transformed cells, especially
in combination with chemotherapeutics or other immunological
interventions. Finally, once a malignant cancer clone escapes suppressive
mechanisms, NLRs support the tumor by facilitating neovascularization,
aiding metastasis, and promoting MDSCs and other immunosuppressive
functions.

as attempting to restore homeostasis. First, in situations where
damage to self has occurred, the NLRs contribute both to fight-
ing off infection and repairing the damaged epithelial layers.
The latter implicates an ability of the NLR pathway to regulate
growth of surrounding tissues, with a strong link to IL-18. These
processes require perfect coordination to maintain equilibrium
in the tissue. The fact that too much or too little NLR signal-
ing in this type of setting can result in neoplasia betrays how
essential this pathway is to maintaining balance and organismal
integrity. Second, when the very idea of self is challenged by onco-
genic mutations, again NLR signaling is observed. Presumably
here in early pre-neoplastic situations, NLR activation functions as
an innate defense against localized transformation events. When
clinical pathology is observed, these endogenous protective func-
tions of the NLR have failed. Therapeutic enhancement of this
activation has been shown to be beneficial in mouse models,
especially in concert with activation of other inflammatory path-
ways such as TLRs. Thus, development of therapies that employ
NLRs could have great impact in the clinic, especially if used
very early in neoplasia. Finally, after tumors become established
and are immunologically indistinguishable from other self-tissues,
NLR activation reverts to helping protect and maintain this neo-
self, establishing a new, pathological state of homeostasis. Malig-
nant disease is extremely hard to treat in part because of this
unique pseudo-self phenotype and consequent immunoprotec-
tive state, reiterating the need for early intervention for successful
treatment. Metchnikoff ’s prescient description of physiological
inflammation is thus embodied within the recently discovered
NLR pathway. Theories from this founding father of immunology
can still help us conceptualize the perplexing and, in the case of
NLRs and cancer, diametrically opposed functions of the immune
system.
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