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Clearance of apoptotic cells by macrophages occurs as a coordinated process to ensure
tissue homeostasis. Macrophages play a dual role in this process; first, a rapid and efficient
phagocytosis of the dying cells is needed to eliminate uncleared corpses that can promote
inflammation. Second, after engulfment, macrophages exhibit an anti-inflammatory phe-
notype, to avoid unwanted immune reactions against cell components. Several nuclear
receptors, including liver X receptor and proliferator-activated receptor, have been linked to
these two important features of macrophages during apoptotic cell clearance. This review
outlines the emerging implications of nuclear receptors in the response of macrophages to
cell clearance. These include activation of genes implicated in metabolism, to process the
additional cellular content provided by the engulfed cells, as well as inflammatory genes,
to maintain apoptotic cell clearance as an “immunologically silent” process. Remarkably,
genes encoding receptors for the so-called “eat-me” signals are also regulated by activated
nuclear receptors after phagocytosis of apoptotic cells, thus enhancing the efficiency of
macrophages to clear dead cells.
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APOPTOTIC CELL RECOGNITION AND CLEARANCE
Macrophages are professional phagocytes that clear unwanted
cells both in the steady-state and during the resolution phase of
the immune response. Phagocytosis of apoptotic cells is crucial
for development and reproduction. It is also important for the
regulation of the immune system because, unlike other phago-
cytic processes such as phagocytosis of necrotic cells or bacteria,
clearance of apoptotic cells does not lead to a pro-inflammatory
response in macrophages (1). Apoptotic cell clearance occurs in
four steps: sensing of the apoptotic cell, recognition, engulfment
of the corpse, and processing of the engulfed material (2). In the
last few years, many novel molecules and signaling pathways have
been described as key regulators of these steps. In the first step,
recognition of the target cell occurs via the so-called “find-me”
signals that are released by the apoptotic cell and promote the
migration of the phagocyte (3). Examples of these soluble “find-
me” signals are the nucleotides ATP and UTP (4), fraktalkine
(CX3CL1) (5), and lysophosphatidylcholine (LPC) (6). Apoptotic
cells exhibit “eat-me” signals in their surface that are recognized
by the phagocyte, either directly or through bridging molecules.
The best described “eat-me” signal is phosphatidylserine (PtdSer)
exposed in the outer leaflet of the membrane of apoptotic cells
(7). Scavenger receptors such as CD36; tyrosine kinases, such as
Mertk; or immunoglobulin and mucine domain-containing mol-
ecules, such as TIM-4, are membrane receptors that recognize
PtdSer (8–10). This recognition may be direct or through soluble

factors, such as MFG-E8, Gas6, ProteinS, or the C1q opsonin. The
signaling pathways triggered during engulfment then lead to reor-
ganization of the cytoskeleton, and promote internalization of the
dying cell (2).

In order to maintain homeostasis, the engulfed material needs
to be processed by the phagocyte. When apoptosis occurs, the
number of dying cells is typically higher than the number of
phagocytes present in the tissue. This disproportion is evident
during the resolution phase of inflammation, during the negative
selection in the thymus or during germinal center reactions (9,
11–14). However, in all these cases very few if any apoptotic cells
can be detected because tissue-resident and recruited macrophages
are extremely efficient at clearing up all dying cells, and efficiently
processing the extra cargo ingested to prevent the generation of
an inflammatory response. This processing entails production of
anti-inflammatory cytokines, such as IL-10 and TGF-β1, which
are important to initiate the resolution phase or to maintain the
process immunologically silent (1, 15, 16). In support of this con-
cept, deficiency in the phagocytosis of apoptotic cells is one of
the hallmarks of patients with systemic lupus erythematosus (17).
However, the transcriptional regulators of the inflammatory routes
triggered by apoptotic cell clearance have only recently begun to
be elucidated.

In order to maintain a normal metabolic rate the engulfing
phagocyte must process the extra metabolites provided by the
ingested apoptotic cells, as excessive metabolite accumulation may
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be noxious. Cholesterol efflux is induced in phagocytes by apop-
totic cells exposure, and is dependent on phosphatidylserine recog-
nition (18). Expression of genes implicated in cholesterol efflux,
such as ATP-binding cassette (ABC) transporter genes, is fur-
ther up-regulated via activation of nuclear receptors (15, 18–20).
This metabolic response is thought to maintain cholesterol lev-
els within the phagocyte. However, macrophages generally ingest
more than one apoptotic cell and phagocytosis further enhances
recognition and engulfment of apoptotic targets (15, 19). Thus,
the extra load of cellular components within the phagocyte might
also have energetic benefits for the cell, as it needs energy to con-
tinue phagocytizing more cells. Park and collaborators defined an
inverse relationship between mitochondrial membrane potential
and phagocytosis, in which macrophages with low mitochon-
drial membrane potential are prone to engulf apoptotic cells.
The authors showed that the mitochondrial membrane potential
increases in the phagocyte after engulfment of apoptotic cells, to
later return to baseline levels. Restoration of baseline potentials is
ensured by Ucp2, a mitochondrial membrane protein whose levels
also increase after engulfment. Ucp2 therefore acts as a“sensor” for
phagocytosis that, by maintaining the mitochondrial membrane
potential at basal levels, allows continued phagocytosis (21).

Nuclear receptors are a superfamily of ligand-activated tran-
scription factors implicated in metabolic and inflammatory path-
ways (22). Their key roles in macrophage biology led us and
others to explore their activity in apoptotic cell clearance. This
review discusses the importance of nuclear receptors during
the phagocytosis of apoptotic cells. We will emphasize how the
processing of apoptotic cells, through regulation of metabolic
genes and anti-inflammatory pathways, is essential to maintain
homeostasis.

NUCLEAR RECEPTORS AT THE INTERFACE OF METABOLISM
AND IMMUNITY
Nuclear receptors share a highly conserved amino-terminal acti-
vation domain, a carboxy-terminal ligand binding domain, a zinc-
finger DNA-binding domain, and a second activation C-terminal
domain (22). Since Mangelsdorf and collaborators first proposed
in 1995 a classification of nuclear receptors based on their lig-
ands and DNA-binding modalities (23), several categories have
been proposed (24, 25). A simplistic classification of two types
of nuclear receptors is described in the Nuclear Receptors Signal-
ing Atlas resource, NURSA (for more detailed information visit
NURSA website: www.nursa.org). In the type I category, hormone
receptors undergo nuclear translocation upon ligand activation
and bind as homodimers to inverted DNA repeat sequences. This
category includes estrogen, glucocorticoid, progesterone, miner-
alocorticoid, and androgen receptors. Type II nuclear receptors
are retained in the nucleus and bind as heterodimers with a differ-
ent nuclear receptor, the retinoid X receptors (RXR), to direct DNA
repeats. Thyroid hormone receptor, Liver X Receptors (LXRs),
Peroxisome proliferator-activated receptors (PPARs), or Vitamin
D receptors (VDRs), among others, fall into this category. Glu-
cocorticoid receptors, LXRs and PPARs have been linked to the
phagocytic capacity and phenotypic polarization of macrophages
in vitro (26–29). However, the mechanism by which gene reg-
ulation by these nuclear receptors impacts tissue homeostasis

in vivo during apoptotic cell clearance is only now starting to be
uncovered.

Proliferator-activated receptors are comprised of three iso-
forms (PPARα, PPARγ, and PPARδ), and are expressed in multiple
cell types and tissues. Their endogenous ligands are lipids, such as
unsaturated fatty acids, VLDL, and LDL (22). They are essential
for fatty acid metabolism by controlling the expression of genes
involved in transport, synthesis, activation, and oxidation of fatty
acids (30). PPARα activity is mostly restricted to the metabolism
of fatty acids, although remarkable immune-regulating properties
have been attributed to PPARα due to its capacity to regulate Cpt1,
a gene involved in T cell function (31).

PPARδ and PPARγ, like other lipid-activated nuclear recep-
tors, are involved in the regulation of inflammatory genes
in macrophages. PPARδ is ubiquitously expressed and exhibit
pleiotropic functions that range from metabolism, development,
and reproduction to inflammation (32). PPARδ represses the
expression of inflammatory genes through sequestration of the
transcriptional repressor BCL-6 (33). It has been implicated in
the phagocytosis of apoptotic cells and prevention of systemic
autoimmune diseases (19). Analogous functions in apoptotic cell
clearance and autoimmune processes have been described for
PPARγ in macrophages (20). Its importance in lipid metabolism is
underlined by the variety and function of its target genes, includ-
ing the scavenger receptor CD36, lipoprotein lipase (LPL), and the
nuclear receptor LXRα (34, 35).

LXRα and LXRβ, the two isoforms of LXR, are physiologically
activated by oxidized forms of cholesterol. LXRβ is ubiquitously
expressed, whereas LXRα is expressed mainly in myeloid cells,
intestine, adipose tissue, adrenal glands, and liver. Both isoforms
regulate a variety of genes implicated in cholesterol efflux, includ-
ing the ABC transporters ABCA1 and ABCG1. Accordingly, they
have been shown to be important in the prevention of metabolic
diseases such as atherosclerosis (22). LXRs can also be pharma-
cologically activated by potent synthetic agonists that functionally
mimic their endogenous ligands.

Elegant studies in the last 10 years have shown that in
macrophages previously challenged with inflammatory stimuli,
LXRs can act as trans-repressors of pro-inflammatory genes,
by binding to other transcription factors and promoting their
deactivation (36–39). Thus, like PPARs, LXRs generate cross-talk
between inflammation and metabolism. Several studies have now
uncovered important roles for these receptors beyond the regula-
tion of inflammatory gene expression and innate immunity. LXRβ

has been implicated in the proliferation of T cells, thus influenc-
ing adaptive immunity (40). In addition, we have demonstrated
that LXRα is essential for the development of two populations of
macrophages in the marginal zone of the spleen that are important
for immune responses against T cell-independent antigens (41).

The above described pleiotropic functions of PPARs and LXRs
position them as excellent candidates to influence macrophage
responses during apoptotic cell clearance, in which regulation of
metabolic and inflammatory genes is crucial.

PPARs AND AUTOIMMUNITY
Initial evidence implicating PPARγ in apoptotic cell clear-
ance was obtained in the context of reactive oxygen species

Frontiers in Immunology | Inflammation May 2014 | Volume 5 | Article 211 | 2

www.nursa.org
http://www.frontiersin.org/Inflammation
http://www.frontiersin.org/Inflammation/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A-Gonzalez and Hidalgo Nuclear receptors and clearance of apoptotic cells

(ROS) production by macrophages (27). In PMA-stimulated
macrophages, the production of ROS was attenuated when fed
with apoptotic cells. This anti-inflammatory effect was linked
to the activity of PPARγ after apoptotic cell clearance. Elec-
trophoretic mobility shift assays revealed transient activation
of this nuclear receptor after apoptotic cell recognition (27).
Although Mukundan and collaborators later showed that PPARγ

transcripts in bone marrow-derived macrophages were not reg-
ulated upon phagocytosis (19), several subsequent reports have
confirmed a role for PPARγ activation in apoptotic cell clear-
ance (20, 42). In support of the relevance of PPARγ in apop-
totic cell phagocytosis by macrophages in vivo, mice with condi-
tional deficiency in the receptor in macrophages show a delay in
phagocytosis of apoptotic cells and develop autoimmune kidney
glomerulopathy (20).

Mice deficient in PPARδ, either globally or restricted to
macrophages, also develop a lupus-like autoimmune phenotype
characterized by increased levels of autoantibodies in serum
and glomerulonephritis (19). This inflammatory phenotype was
associated with defective clearance of apoptotic cells by PPARδ-
deficient macrophages. Genomic analysis uncovered a number of
target genes that were regulated after phagocytosis in a PPARδ-
dependent manner. These genes included the C1qb opsonin,which
mediates binding of PtdSer to its receptor on the membrane of the
phagocyte, and was described as a direct target of PPARδ–RXRα

heterodimers. Through this mechanism, phagocytosis is promoted
by clearance itself, as double feeding experiments demonstrated
that macrophages increased their phagocytic capacity following
successive rounds of apoptotic cell feeding (19).

Similarly, RXRα- and PPARγ-deficient macrophages showed
impaired apoptotic cell clearance. In addition, engulfment of
apoptotic cells failed to down-regulate inflammatory cytokines in
LPS-stimulated macrophages derived from RXRα- and PPARγ-
deficient mice. As noted above, these mice develop glomeru-
lopathy and proteinuria, both hallmarks of kidney autoimmune
disease (20). As with PPARδ, the activity of these nuclear recep-
tors is induced after phagocytosis of apoptotic cells, thereby
promoting the transcription of genes encoding membrane recep-
tors and opsonins required for further recognition and engulf-
ment of apoptotic cells. These studies underscore the importance
of nuclear receptors in phagocytosis, in part by priming the
macrophage for continued engulfment of apoptotic targets.

LXRs AND APOPTOTIC CELL CLEARANCE: BEYOND
MACROPHAGE HOMEOSTASIS
In human macrophages, LXR activation regulates the expression
of LXRα (43) and PPARγ (44), thereby creating a positive feed-
back loop that enhances the phagocytic capacity of macrophages.
However, this is not the only role of LXRs in apoptotic cell
clearance in human macrophages. Though not a direct target gene
of LXRα, Transglutaminase 2 (Tgm-2), which encodes a protein-
crosslinking enzyme implicated in the phagocytosis of apoptotic
cells (45), is regulated in human macrophages after engulfment of
apoptotic targets in an LXRα-dependent manner (29). Together
with the activity of PPARs during apoptotic cell clearance, these
observations establish LXRs and PPARs as molecules that influence
the “appetite” of macrophages.

As described above, LXRs are physiologically activated by oxi-
dized forms of cholesterol and are key regulators of cholesterol
metabolism by controlling the expression of genes responsible
for cholesterol efflux, such as ABCA1. This raises the question
of what is the significance of LXR activation during apoptotic
cell clearance. When a macrophage ingests an apoptotic cell, the
amount of cellular content within the macrophage significantly
increases, and the extra cellular material has to be processed. A
potential solution to this dilemma is the up-regulated expres-
sion of a gene responsible for cholesterol efflux, Abca1, upon
engulfment of apoptotic cells (18, 46). LXR activation appears
to be required for this upregulation of Abca1 because, in peri-
toneal macrophages obtained from mice deficient in both LXR
isoforms (LXRαβ−/−), changes in Abca1 mRNA expression were
blunted after apoptotic cell clearance when compared to control
macrophages (46). Moreover,Kiss and collaborators demonstrated
that Abca1 expression and cholesterol efflux were induced upon
PtdSer recognition by the macrophage, implying that engulfment
is dispensable for LXR activation. In support of a role for nuclear
receptors in cholesterol processing, LXRs and PPARγ antagonists
inhibited upregulation of Abca1 and cholesterol efflux mediated
by apoptotic cell clearance (18).

At the time of these studies, LXR activation had been exclusively
linked to the metabolic response of the phagocyte during apop-
totic cell clearance. Using LXR knock-out mice we observed an
impaired phagocytic capacity in LXR-deficient macrophages both
in vivo and in vitro, and this impairment was associated to the
development of autoimmunity in these mice (15). Apoptotic cells
promote the expression of a number of genes in macrophages after
clearance. Some of these genes are regulated in an LXR-dependent
manner, such as genes implicated in cholesterol metabolism, glu-
cose transport, and other genes identified as LXR target genes
in other studies. Similarly, the expression of Mertk, a membrane
receptor for apoptotic cells, was also up-regulated by LXRs during
phagocytosis or after activation with synthetic LXR ligands, and
was identified in these studies as a novel direct target of LXR (15).
Together, the responses triggered by LXR activation contribute to
enhancing recognition and further engagement of apoptotic tar-
gets as evidenced by the observation that the phagocytic capacity
in LXRαβ−/− macrophages does not increase after several rounds
of apoptotic cell feeding. Notably, by modulating the expression of
inflammation-related genes, LXR also participates in the polariza-
tion of the macrophage toward an anti-inflammatory phenotype
after engulfment of dying cells. This activity essentially contributes
to avoidance of unwanted inflammation, which is illustrated by the
lupus-like autoimmune disease developed by LXRαβ−/− mice as
they age (15).

Liver X receptors nuclear receptors have more recently emerged
as regulators of neutrophil homeostasis (47, 48). Due to their
short half-life (estimated in 12.5 h in mice), neutrophils must
be efficiently cleared on a daily basis. LXR-deficient mice dis-
play neutrophilia in blood and accumulation of neutrophils in
the spleen and liver, a phenotype that was accounted for by the
impaired capacity of LXR-deficient macrophages to engulf apop-
totic neutrophils. Production of IL-23 by macrophages and den-
dritic cells is a critical signal that controls the levels of neutrophils
in blood by acting upstream of IL-17 and G-CSF (49). Importantly,
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activation of LXRs upon neutrophil engulfment strongly represses
IL-23 transcription (47). Extending these studies, we have recently
shown that clearance of aged neutrophils in the bone marrow
modulates the size and activity of the hematopoietic niche through
LXR activation (48). We found that neutrophils cleared from blood
enter the bone marrow and are engulfed by macrophages, leading
to reductions in the number of niche cells and mobilization of
hematopoietic progenitors into the bloodstream. In addition, the
transcript levels of LXR target genes in the bone marrow spon-
taneously increase at the time when neutrophils are cleared in
this organ, and mice in which macrophages have been elimi-
nated lacked the normal oscillations in Abca1 expression. Further,
regulation of niche cells and progenitor release are impaired in
LXR-deficient mice. Together, these findings uncovered new func-
tions for the homeostatic clearance of dying cells in regulating
hematopoietic niches in the bone marrow, and a central role for
LXR receptors in coordinating these functions (48).

These recent advances in the field provide examples of the
multitude of processes and tissues that are likely regulated by the
clearance of apoptotic cells by macrophages, and by the receptors
involved in this fundamental process.

FUTURE DIRECTIONS
Liver X receptors and PPARs are now recognized regulators of
the anti-inflammatory response in macrophages after clearance of

apoptotic cells. Moreover, these receptors are key players in the
recognition and engagement of apoptotic cells by further enhanc-
ing phagocytosis through transcriptional regulation of various
receptors and bridging molecules. The exact pathways by which
LXRs and PPARs are activated during the phagocytosis of apop-
totic cells remain an open question in the field (Figure 1). We
and others postulated that lipids derived from the engulfed cell
might provide ligands for PPARs and LXRs, as demonstrated by
the lack of LXR activation when macrophages are fed with sterol-
free apoptotic thymocytes (15). Because recognition of PtdSer by
macrophages is sufficient to activate an LXR-dependent meta-
bolic program without engulfment (18), additional routes of
recognition and engulfment can activate these nuclear receptors.

These novel roles of lipid-activated nuclear receptors in phago-
cytosis of apoptotic cells raise an interesting issue regarding cell
metabolism and bioenergetics. The enhancement of phagocytosis
of apoptotic cells mediated by nuclear receptors, might respond to
a necessity of generating more energy to continue phagocytizing.
Mitochondria provide the majority of the energy supply by oxida-
tive phosphorylation in the respiratory chain. In fact, macrophages
with low mitochondrial membrane potential are more prone to
phagocyte apoptotic cells (21). Whether nuclear receptors and
mitochondria cross-talk during apoptotic cell clearance to enhance
phagocytosis arises as an interesting possibility. Supporting this
idea, the activity of several nuclear receptors have been defined

FIGURE 1 | Activation of nuclear receptors in phagocytes during
apoptotic cell clearance. Apoptotic cell recognition and engulfment promote
the transcriptional activity of nuclear receptors LXRs and PPARs. Recognition
of phosphatidylserine in the outer leaflet membrane of the apoptotic cell
leads to transcriptional activation of ABCA1 and cholesterol efflux. Nuclear

receptor activation upon apoptotic cell phagocytosis also leads to
upregulation of phagocytic receptors (e.g., Mer, CD36, and Axl) and opsonins
(e.g., MFG-E8 and C1qb). Lipids derived from the engulfed apoptotic cells
may also serve as source of endogenous ligands to activate PPARs (fatty
acids) and LXRs (oxysterols).
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in mitochondria, regulating gene expression, coordinated with
nuclear gene expression, in situations of high energy demand (50).
For example, PPARγ co-activator 1α, PGC-1α, collaborates with
PPARs to regulate expression of mitochondrial enzymes involved
in fatty acid transport and oxidation (51). However, the specific
role of nuclear receptors in mitochondrial metabolism during
apoptotic cell clearance remains unclear.

An important outcome of this research topic will be the
potential therapeutic implications of apoptotic cell clearance
in a wide range of inflammatory and metabolic diseases. It
has been shown that enhancing engulfment of apoptotic neu-
trophils in situ accelerates the resolution of bacterial infection
and lung inflammation (52–54). However, the exogenous admin-
istration of apoptotic cells could also lead to autoimmunity, so
the therapeutic approaches need to be finely controlled to avoid
deleterious effects (55). Targeting nuclear receptors by activa-
tion through synthetic ligands, have been proven to amelio-
rate inflammation in mouse models of autoimmunity (15) and
atherosclerosis (56). Though some PPAR agonists have already
been approved for clinical use to treat metabolic diseases, a bet-
ter understanding of nuclear receptor activation during apop-
totic cell clearance may pave the way for the development of
novel treatments for infectious, inflammatory, and metabolic
diseases.
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