
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MINI REVIEW ARTICLE
published: 14 May 2014

doi: 10.3389/fimmu.2014.00213

Genetically modified organisms and visceral leishmaniasis
Rudra Chhajer and Nahid Ali*

Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata, India

Edited by:
Hira Nakhasi, Food and Drug
Administration, USA

Reviewed by:
Sreenivas Gannavaram, Food and
Drug Administration, USA
Ennio De Gregorio, Novartis Vaccines
and Diagnostics, Italy
Ranadhir Dey, Food and Drug
Administration, USA

*Correspondence:
Nahid Ali , Infectious Diseases and
Immunology Division, Council of
Scientific and Industrial
Research-Indian Institute of Chemical
Biology, 4 Raja S. C. Mullick Road,
Kolkata 700032, India
e-mail: nali@iicb.res.in

Vaccination is the most effective method of preventing infectious diseases. Since the erad-
ication of small pox in 1976, many other potentially life compromising if not threatening
diseases have been dealt with subsequently.This event was a major leap not only in the sci-
entific world already burdened with many diseases but also in the mindset of the common
man who became more receptive to novel treatment options. Among the many protozoan
diseases, the leishmaniases have emerged as one of the largest parasite killers of the
world, second only to malaria. There are three types of leishmaniasis namely cutaneous
(CL), mucocutaneous (ML), and visceral (VL), caused by a group of more than 20 species
of Leishmania parasites. Visceral leishmaniasis, also known as kala-azar is the most severe
form and almost fatal if untreated. Since the first attempts at leishmanization, we have killed
parasite vaccines, subunit protein, or DNA vaccines, and now we have live recombinant
carrier vaccines and live attenuated parasite vaccines under various stages of develop-
ment. Although some research has shown promising results, many more potential genes
need to be evaluated as live attenuated vaccine candidates. This mini-review attempts to
summarize the success and failures of genetically modified organisms used in vaccination
against some of major parasitic diseases for their application in leishmaniasis.
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INTRODUCTION
The leishmaniases comprise a group of largely neglected tropical
diseases, transmitted during the blood meal of the phlebotomine
sandfly (Figure 1). The disease outcome ranges from the mild
cutaneous, more severe mucocutaneous to the almost fatal vis-
ceral leishmaniasis (followed by PKDL in a small proportion of
VL patients) depending upon the transmitted species of Leishma-
nia parasite. With more than 90% of the VL patients concentrated
in south-east Asia and Africa, the statistics indicate that almost
200 million people are at risk worldwide, which is only a rough
estimate, as a major population remains asymptomatic and hence
unrecognized (1). VL ranks fourth in morbidity among all tropical
diseases with an annual incidence of 2.5/1000 persons (2) and is
second only to malaria in terms of mortality (3).

Despite abundant research in recent years, the available treat-
ment options are far from satisfactory. The drugs are associated
with toxicity, high cost, and/or resistance. In this context, multi-
drug combinatorial therapies have shown some promise (4). Pre-
vention by vaccination is favored by the fact that healing from
leishmaniasis is almost always associated with lifelong resistance
to infection. A desirable vaccine would provide long term immu-
nity; elicit a T-cell immune response that would be a balance of
Th1 mediated immune activation against the pathogen and Th2
mediated suppression to avoid excess tissue damage, produce a
strong memory and effector response upon subsequent challenge,
be persistent, and highly immunogenic (3). However, the vaccine
should not elicit an auto-immune response and be safe even in
immune-compromised SCID mice and HIV patients (5).

Based on the general nature of the formulation, there are three
types of anti-leishmanial vaccines (6). The first generation of vac-
cines is comprised of live, virulent parasites injected at hidden

body parts so as to avoid lesion visibility (leishmanization) or
of inactivated parasites achieved by heat, radiation, antibiotics,
chemical mutagenesis, and selection for temperature sensitivity
or long passages in-culture (7). The second generation includes
crude whole cell lysates, purified fractions, or subunit vaccines
composed of single or multiple recombinant or native antigens.
The only approved vaccine for human trial is Leish111f, a multiva-
lent vaccine, composed of a thiol-specific antioxidant, Leishmania
major stress inducible protein 1, and L. major elongation initia-
tion factor (8). The third generation of vaccines consists largely
of DNA in the form of mammalian expression plasmids or viral
vectors encoding virulence factors (9). Unfortunately, the efficacy
of available DNA and protein subunit vaccine candidates are lim-
ited (10). Recent concepts introduce the use of sandfly salivary
antigens, T-cell epitope based peptides, antigen pulsed DC’s, and
genetically modified live attenuated parasites (11). In contrast,
vaccination using live attenuated parasites mimics natural infec-
tion and overcomes most of these limitations (12). Additionally,
their persistence and display of parasites entire antigenic repertoire
alleviates the need for an adjuvant. The recent success of live atten-
uated vaccination (LAV) in malaria, the clear genetic profile, and
safety from reversion of complete knock-outs further encourages
this endeavor.

GENETIC MODIFICATION IN LEISHMANIA: APPLICATIONS
AND TYPES
Due to advances in axenic parasite culture, transfection effi-
ciency, availability of genetic manipulation vectors (for expression,
recombination,or integration),and the plethora of sequence based
information available (from databases, like GeneDB, LeishCyc,
LeishBase, KEGG, TriTrypDB, and TDR Targets), the ease and
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FIGURE 1 | Life cycle of Leishmania.

scope of creating live attenuated parasites has increased tremen-
dously (13). Such parasites can be used to elucidate novel drug
targets as well as vaccine candidates based on whether the gene
under study is essential for both the promastigote and amastigote
stages of the parasite or, only the amastigote stage. In addition,
genetically modified organisms can also be used in metabolic
pathways studies, structure-function relationship investigates (14),
screening of new drugs (15), host–parasite interaction, and post-
infection analysis among others, to enhance our understanding of

these lower eukaryotes. Considering the success of LAV strategies
against many viral, bacterial, and protozoan diseases (although to
different extents), these are now considered the gold standard for
protection against intra-cellular pathogens (12).

Foreign or self genes can be introduced in either episomal or
integrated form, for expression of particular proteins to study
their effects on various aspects of the parasites life cycle. In the
episomal form, the gene’s expression is under the control of the
vector specific promoter, which can be inducible or not (for stage
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specific expression analysis). For integration, the genes are gen-
erally targeted downstream of the ribosomal RNA locus to study
the effects of constitutive expression at all stages of the life cycle.
In either case, the genes can be fused to fluorescent reporter genes
for ease of monitoring their expression (15). In addition, there
are methods to selectively knock-out particular regions of interest
heterologously or homologously using gene specific targeting con-
structs (16–18). During deletion, the targeted region is replaced
by an antibiotic selection marker. Its expression makes the modi-
fied cells resistant to that antibiotic, thereby facilitating selection.
Multiple genes can be targeted simultaneously. This exchange is
generally brought about by the double strand break repair model
of homologous recombination (19) whose major role has been
the maintenance of its multi-gene families, conferring a selective
advantage to parasites stressed by antifolate drugs (by upregu-
lation of resistance genes) (14, 16). Alternatively, the transcripts
of the genes can also be simply knocked down by anti-sense
RNA interference technique, thereby blocking translation. How-
ever, with a few exceptions most leishmanial species lack the RNAi
machinery (20).

SUCCESS OF LIVE ATTENUATED VACCINATION IN OTHER
DISEASES
Herein, we will discuss LAV strategies in various mosquito borne,
viral, protozoal, and bacterial diseases. Malaria, which exerts sig-
nificant mortality, morbidity, and economic burden, is spread by
intra-cellular parasitic apicomplexans of the genus Plasmodium.
Like Leishmania, Plasmodium has multiple hosts and forms and
rapid amplification is key to its survival and spread. Their path-
ogenic liver and transmission stages have been the most often
chosen targets for attenuation because compared to the blood
stages, they are low in numbers and exhibit limited antigenic
variation,making it less probable that a vaccine will fail against het-
erologous parasite strains. The search for a live attenuated malaria
vaccine provided some invaluable insights that can be applied to
leishmanial as well as other infectious diseases. The failure of the
inactivated sporozoites, and success of γ-irradiated ones, demon-
strated the requirement of live and host cell invasive parasites to
confer protection (21–23). The ability of the UIS3−/− sporozoites
to confer protection against sporozoite re-infection but not blood
stage transfusion, demonstrates stage specific immunity, herein,
liver stage. Hence, not all stages of a parasites cycle may be equally
useful for LAV approaches (24). The deletion of liver stage spe-
cific fatty acid synthesis pathway genes, however, had no effect on
replication and gametogenesis, indicating that only essential meta-
bolic pathways should be targeted for attenuation. Furthermore,
multiple deletions sometimes may be more effective, as combined
p26/p52 knock-out provided better protection than either of the
single knock-outs in both chimeric mouse harboring human hepa-
tocytes as well as both low/high dose human trials (22, 25, 26).
These mutants exhibited complete growth arrest during the liver
stages. However, their pre-erythrocytic stages were unhampered,
thereby not hindering the possibility of large-scale production.
Similarly, for leishmania, an unaffected promastigote growth stage
would be desirable for a strain to be used for vaccination.

Another virus that largely affects the cloven hoofed animals
worldwide is the foot and mouth disease virus (FMDV). Control by

limiting animal movements and herd destruction has been mostly
practiced due to insufficient protection by the available inacti-
vated vaccine against all three FMDV variants. Recently, however,
a reverse genetics approach has yielded a novel vaccine candidate
by substitutions in a few amino-acids showing remarkable protec-
tion. These mutants too had normal growth properties as desirable
for large-scale vaccine production (27).

One of the most successful and oldest examples of live atten-
uated vaccines is the 17D strain of yellow fever virus. It has also
served as a model for vaccination strategies against dengue, a viral
disease caused by transmission of one of its four serotypes 1–4 by
the Aedes mosquito. Sanofi Pasteur’s ChimeriVax Dengue tetrava-
lent vaccine (CVD1–4) is the most advanced product so far and a
chimera in the truest sense utilizing the licensed YFV 17D vaccine
as backbone, each expressing the prM and E genes of one of the
four DENV serotypes. An effective dengue vaccine should con-
sist of a tetravalent formulation, with components representing
each serotype (28). A “stem-loop” genomic region implicated in
its pathogenicity has been deleted to create the rDEN(1,2,4)∆30
strains that impart adequate protection. However, the rDEN3∆30
was not protective, indicating differences among strains. Hence,
a novel chimerization led to a creation of rDEN3/4∆30(ME) – a
recombinant virus backbone of serotype 4 with ∆30 deletion, con-
taining the ME region of a naturally attenuated serotype 3 strain,
having manifold lower replication and transmission. This is a per-
fect example of successful extrapolation from sabin polio virus
whose second component was also a naturally attenuated polio
strain (29).

The MMR vaccine against measles, mumps, and rubella given
to expecting mothers is another successful example of a mul-
tivalent vaccine that reduces the number of doses and avoids
unnecessary delays and problems of spacing live attenuated vac-
cines (30). With pandemic capacity (31), the influenza vaccine,
has been a huge challenge with its constantly varying epitopes
resulting in antigenically drifted strains (32). In such cases, focus-
ing on the most constant regions is the best strategy. However,
till a strain specific vaccine is available, reasonable protection can
be offered by a recombinant adenoviral vector expressing anti-
gens from H5, H7, and H9 avian influenza virus strains (33).
The success of multivalent, dengue, influenza, and MMR vac-
cines offers the idea for such a vaccine against CL, ML, and
VL too.

Among bacteria, Streptococcus suis, that causes swine flu is
a global health hazard to the swine industry, associated with
septic shock, pneumonia, meningitis, and arthritis. The current
vaccine against it is a Sly gene deletion attenuated strain undergo-
ing some refinement by association with other surface antigens
and adjuvants (34). The Bacillus Calmette Guerin vaccine for
tuberculosis is created by long in vitro passaging of the intra-
cellular bacteria Mycobacterium tuberculosis. The gradual loss of
the RD loci has been reported as the major cause for this atten-
uation. Hence, attempts at manually creating these deletions are
on. Recombinant BCG vaccines co-expressing other antigens from
pathogens are also in clinical trials (35, 36). For cholera too, many
endogenously produced live attenuated vaccines (Peru15 and Ben-
gal15) are available as a traveler’s vaccine in different countries
(37–39).
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ELUCIDATION OF NOVEL VACCINE CANDIDATES AND DRUG
TARGETS: ATTEMPTS MADE IN LEISHMANIA
In contrast to leishmanial species causing CL, research on genetic
modification in VL has been limited. However, recent years
have seen a significant improvement in this scenario (Table 1).
Though mostly focused at elucidating metabolic pathways, cellu-
lar processes, and host–parasite interactions; it has simultaneously
led to the discovery of novel drug targets and vaccine candidates.
The major pathways targeted were those that are unique to the
parasite’s life cycle or metabolism, components sufficiently differ-
ent from the homolog in hosts. Today, bio-informatic databases,
proteomic screens (40), and reverse vaccinology, aid in the identifi-
cation of novel vaccine candidates based on their expression stage,
abundance, sub-cellular localization, sequence conservation in
leishmanial species, non-homology to their human counterparts,
trans-membrane helix predictions, and T-cell epitopic regions
(12). Using the same genetically modified strain, research collabo-
rations between labs working on different aspects of leishmaniasis
can greatly speed up and enhance this search. Some of the most
important pathways and their components, that have surfaced, are
briefly discussed below.

POLYAMINE METABOLISM
Polyamines are essential for proliferative processes and trypan-
othione synthesis. Their biosynthesis involves arginase, ornithine
decarboxylase, S-adenosylmethionine decarboxylase, and spermi-
dine synthase. In Leishmania, spermidine along with trypanoth-
ione reductase and trypanothione synthetase replace the antioxi-
dant pathways of the host and are necessary for survival. Deletion
of any of these enzymes implicates the essentiality of polyamine
biosynthesis in both promastigotes and amastigotes, rendering
them important drug targets.

NUCLEOTIDE METABOLISM
Purines and pyrimidines are indispensable to all life. How-
ever, Leishmania are purine auxotrophs. Surprisingly, deletion
of any of the purine salvages enzymes, namely hypoxanthine–
guanine phosphoribosyl transferase (Hgprt ), adenine phospho-
ribosyl transferase (Aprt ), and xanthine phosphoribosyl trans-
ferase (Xprt ); guanylate nucleotide synthesis enzyme namely
inosine monophosphate dehydrogenase (IMPDH) or; adenine
aminohydrolase (Aah) does not prove their essentiality for either
salvage, virulence, or viability. However, multiple knock-out
strains such as ∆hgprt/∆xprt and ∆aah/∆hgprt/∆xprt are aviru-
lent and hence potential vaccine candidates. However, the upregu-
lation of Xprt in combined mutants implicate their therapeutic
potential. Similarly, although both adenylosuccinate synthetase
(Adss) and adenylosuucinate lyase (Asl) null mutants show dimin-
ished virulence, only the ∆asl null mutants are profoundly inca-
pacitated in their ability to infect mice and essential for purine
salvage by both life cycle stages.

In contrast to purines, Leishmania are prototrophic for pyrim-
idines. Nevertheless, they also possess some salvage enzymes. Dele-
tion of the uridine monophosphate synthase (Umps), a bifunc-
tional enzyme for UMP biosynthesis established this enzyme as
essential for pyrimidine biosynthesis. Additionally, although sin-
gle deletions of either uracil phosphoribosyl transferase (Uprt )

or carbamoyl phosphate synthetase (Cprt ) did not affect parasite
growth, their combined deletion mutants were completely attenu-
ated exhibiting reduced survivability, hence potential live vaccine
candidates.

AMASTIGOTE STAGE SPECIFIC PROTEINS
Amastigote stage specific genes are considered good targets for
attenuation. Vaccination with null mutants of the biopterin trans-
porter 1 (Bt1) gene, involved in biopterin transport; centrin (Cen),
involved in the cell division cycle; p27, a cytochrome c oxidase
complex component; Lpg-2 (Golgi GDP mannose transporter),
involved in phosphoglycan synthesis, which is essential for host–
parasite interactions or ubiquitin fold modifier-1 (Ufm-1) gene
involved in fatty acid metabolism produced a strong protective
immunity against challenge infection. Their reduced virulence and
survivability confirms their vaccine candidature and demands fur-
ther investigations. However, similar attempts with A2 (amastigote
specific expression 2) genes failed due to their multiplicity and
rapid compensation by amplification of the remaining genes.

PROTEASES
Proteases play key roles in the life cycle, host–parasite relationship
and pathogenesis of parasitic diseases. The deletion of genes for
cathepsin B cysteine protease, oligopeptidase B serine protease, or
subtilisin protease resulted in avirulent strains causing proteome
remodeling, upregulation of gene-transcription in macrophages,
or reduced promastigote to amastigote differentiation in vitro,
respectively. As in many other diseases, proteases form attractive
drug targets.

CYTOSKELETAL ELEMENTS
Some flagellar components were also found to play important
roles in the parasites life cycle. The deletion of myosin XXI,
that encodes a novel class of myosin; the 70 kDa subunit of the
outer dynein arm docking complex; a novel actin related protein
(ORF LmjF.13.0950) or the over-expression of ARL-3A (ADP-
ribosylation factor like protein), a homolog of human ARL-3, all
resulted in impairment of flagellar assembly, motility, and survival.
They also affected intra-cellular trafficking, virulence in vitro and
mitochondrial membrane potential to various extents. Hence, a
novel group of putatively essential components that hold promise
for further studies were identified.

In addition to these, components of some other pathways have
also been manipulated to assess their functional role and dispens-
ability. Heterozygous mutants of glyoxalase I (GLO I ), involved in
methylglyoxal metabolism and CYP5122A1, involved in xenobi-
otic metabolism and sterol biosynthesis, impaired growth, mito-
chondrial membrane potential, and normal metabolism. Altered
drug susceptibility and virulence were also observed in the latter
mutants. Moreover, attempts at homozygous deletions did not per-
mit survival. In addition, knock-outs of some chaperone proteins
like HSP70-II, HSP90, and co-chaperones like SGT (small gluta-
mine rich tetra trichopeptide) also had deleterious effects. Also,
trials of LiHSP70-II null mutants to provide protection against L.
major infection model demonstrated both safety and protection.
In another study, the over-expression of a kinase, CK1.4 (casein
kinase 1 isoform 4), increased virulence and metacyclogenesis. As
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Table 1 | Genetic deletions that led to the discovery of novel drug or vaccine candidates in VL causing organisms.

Organism Target gene Animal model Immune response Persistence Inference Reference

Drug LAV

L. mexicana Arginase NA NA NA + UC (41–43)

L. major

L. donovani Ornithine decarboxylase BALB/c mice Reduced virulence in vitro and

in vivo

NA + + (44–46)

L. donovani Spermidine synthase BALB/c mice Decreased organ parasite burden 4 weeks + UC (47)

L. donovani S-adenosylmethionine

decarboxylase

NA NA NA + UC (48)

L. donovani Trypanothione reductase NA Reduced virulence in vitro NA + UC (49–52)

L. donovani Trypanothione synthetase NA NA NA + UC (42, 53)

L. donovani Hypoxanthine–guanine

phosphoribosyl transferase

NA No effect on virulence in vitro

and in vivo

NA X X (54)

L. donovani Adenine phosphoribosyl

transferase

NA No effect on virulence in vitro

and in vivo

NA X X (54, 55)

L. donovani Xanthine phosphoribosyl

transferase

NA No effect on virulence in vitro

and in vivo

NA + UC (54, 56)

L. donovani Inosine monophosphate

dehydrogenase

BALB/c mice No effect on virulence in vivo NA X X (57)

L. donovani Adenine aminohydrolase BALB/c mice No significant effect on

parasitemia in vitro or in organ

parasite burden

NA + UC (58)

L. donovani Hypoxanthine–guanine

phosphoribosyl

transferase/xanthine

phosphoribosyl transferase

NA Highly reduced virulence in vitro NA – + (59)

L. donovani Adenine

aminohydrolase/hypoxanthine–

guanine phosphoribosyl

transferase/xanthine

phosphoribosyl transferase

BALB/c mice Avirulent in vitro and in vivo 4 weeks – + (58)

L. donovani Adenylosuccinate synthetase BALB/c mice Reduced virulence in vitro but

not in vivo

NA X X (60)

L. donovani Adenylosuccinate lyase BALB/c mice Reduced virulence in vitro and

in vivo

NA + UC (60)

L. donovani Uridine monophosphate

synthase

NA NA NA + UC (61)

L. donovani Uracil phosphoribosyl

transferase

BALB/c mice No effect on virulence in vitro or

in vivo

NA + UC (62, 63)

L. donovani Carbamoyl phosphate

synthetase

BALB/c mice Reduced virulence in vitro and

decreased parasite burden

NA + UC (62)

L. donovani Uracil phosphoribosyl

transferase/carbamoyl

phosphate synthetase

BALB/c mice Reduced virulence in vivo 4 weeks – + (62)

L. donovani Biopterin transporter 1 BALB/c mice Reduced virulence in vivo.

Protective against challenge

infection. Increased IFN-γ

production upon splenocyte

stimulation

3 months UC + (64)

(Continued)
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Table 1 | Continued

Organism Target gene Animal model Immune response Persistence Inference Reference

Drug LAV

L. donovani Centrin BALB/c mice, SCID

mice, golden Syrian

hamsters

Long term protection against

challenge infection-early

clearance.

Protective Th1-type immune

response. Increase of single and

multiple cytokine (IFN-γ, IL-2, and

TNFα) producing cells,

IFN-γ/IL-10 ratio, IgG2a

immunoglobulins and NO

production. Reduced organ

parasite burden. Cross-protective

against L. braziliensis challenge

10 weeks UC + (65, 66)

L. donovani P27, a cytochrome c oxidase

component

BALB/c mice Reduced virulence in vivo.

NO generation, Ag-specific

multifunctional

CD4 and CD8 T-cells, enhanced

secretion of pro-inflammatory

cytokines IFN-γ, TNF-α, IL-12, and

anti-inflammatory

cytokines IL-10, IL-4, and IL-13

20 weeks UC + (67)

L. donovani Ubiquitin fold modifier-1 NA Reduced virulence in human

macrophages

NA + + (68)

L. donovani Golgi GDP mannose

transporter

BALB/c mice Reduced virulence in vitro and

in vivo

Long term + + (69)

L. donovani Amastigote specific

expression protein-2

BALB/c mice Decreased virulence in vitro and

in vivo

NA + X (70)

L. donovani Cathepsin b cysteine protease NA Decreased virulence in U937

macrophage cells

NA + UC (71)

L. donovani Oligopeptidase b serine

protease

BALB/c mice Decreased virulence in the

murine footpad

infection model. Massive

upregulation in

gene-transcription

NA + UC (72)

L. donovani Subtilisin protease BALB/c mice, golden

Syrian hamsters

Reduced virulence in vivo NA + UC (73)

L. donovani Myosin NA NA NA + UC (74)

L. donovani 70 kDa subunit of outer

dynein arm docking complex

NA Increased virulence in vitro NA X X (75)

L. donovani Actin NA Reduced survival in vitro mice

peritoneal macrophage cells

NA + UC (76)

L. donovani ADP-ribosylation factor like

protein-3A

NA NA NA + UC (77)

L. infantum Heat shock protein 70 type II L. major model of

infection in BALB/c

mice, SCID mice,

golden Syrian hamster

Increased NO production and

protection by type 1 immune

response in BALB/c mice

NA UC + (78)

L. donovani Small glutamine rich tetra

trichopeptide

NA NA NA + UC (79)

L. donovani Casein kinase 1 isoform 4 NA Increased virulence in vitro mice

peritoneal macrophage cells

NA + UC (80)

(Continued)
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Table 1 | Continued

Organism Target gene Animal model Immune response Persistence Inference Reference

Drug LAV

L. donovani Glyoxalase I NA NA NA + UC (81)

L. donovani cyp5122A1, a cytochrome

P450

Golden Syrian hamsters Decreased virulence in vitro and

in vivo

NA + UC (82)

Color codes Role Symbols/short forms Interpretation

Purple Polyamine metabolism NA Not available

Blue Purine metabolism + Positive indication

Gray Pyrimidine metabolism – Not evaluated

Green Amastigote stage UC Uncertain

Yellow Protease X Negative indication

Peach Cytoskeletal involvement

Pink Chaperones

White Others

seen, majorly these studies implicate the therapeutic potential of
the target genes. Simultaneous evaluation of their LAV potential
would greatly fasten the search for an ideal leishmanial vaccine.

CHALLENGES AND SCOPE FOR THE FUTURE
Although a large proportion of currently licensed vaccines are
based on inactivated or whole live attenuated organisms, the scope
of LAV gets largely restricted due to safety issues. Foremost, is
the risk of reversion to wild type or expression of compensatory
genes. The Leishmania genome being highly plastic, this has a
high probability. Additionally, critical consideration of the posi-
tion of knock-outs, their effects on upstream and downstream
genes, the restriction to manipulate only amastigote stage specific
and single copy genes and availability of few selectable markers
limits the potential targets and simultaneous multi-gene target-
ing, respectively (12). Furthermore, the retention of antibiotic
resistance genes (20) and generation of cross resistance to anti-
leishmanial drugs as in the case of neomycin to paromomycin
is undesirable (83). Moreover, prior to human clinical trials, the
cultivation of parasites in serum free media, their large-scale
production, storage, validation of the best challenge methods-
syringe or sandfly mediated, and many months of post challenge
follow-up impose practical and as yet unresolved issues (84). In
contrast, subunit and DNA vaccines are relatively safe and without
these limitations. However, the low predictive power of available
pre-clinical models to determine the human outcome of vac-
cination and the lack of knowledge of convincing markers to
monitor their safety or efficacy remain common to all vaccination
strategies (2).

The following road map may be considered a basic guideline
while working with live attenuated vaccines. Preliminary pheno-
typic and genotypic screening of the parasites after each recom-
bination event should be followed by vigorous in vitro studies on
human cell lines. The parasites compartmentalization, prolifera-
tion, cellular responses, and activation markers should be closely
monitored (85). After successful in vitro screening, the in vivo
experiments in Golden Syrian hamsters and BALB/c mice models

should be supported by those on chimeric humanized mice (25,
86). Continuous monitoring assays to test for reversion or atten-
uation retention by sensitive molecular biology techniques like
PCR, microarrays should be done (87). Timely splenic biopsies
for parasite load and multiparametric FACS analysis and ELISA
for monitoring cytokine responses would help in elucidating the
immune correlates of protection or disease development (6). Addi-
tionally, the comparison of these results among different groups,
namely asymptomatic carriers, non-endemic healthy, endemic
healthy, infected-cured, and infected individuals would greatly
enhance our knowledge of disease pathogenesis. With the advent
of modern imaging techniques, bioluminescent parasites can pro-
vide unsurpassable insight at each level of disease progression in
real time (beginning from host cell–parasite interaction to dis-
semination and homing to various organs) also requiring lower
number of animals to obtain statistically significant data (88).
Lastly, human trials to provide proof of concept studies would
strengthen our hypothesis derived from pre-clinical studies.

Parasite gene deletion mutants have helped in numerous
pathway studies and elucidation of novel drug targets and
vaccine candidates (Table 1). They also offer the possibility of
co-administration with adjuvants or drugs to improve disease out-
come. Moreover, vectored formulations in recombinant vaccinia
(89), Lactobacillus (90), adenovirus, or Salmonella (91) carriers
offer non-pathogenic and genetically modifiable alternatives for
safe mucosal delivery, the major entry portal of pathogens. The
concept of the flying vaccinator, genetically engineered blood-
feeding insects to deliver vaccines to replace mosquito popula-
tions is a novel attempt tried in antimalarial programs and can
be applied for sandfly eradication (92) too. Lastly, well-defined
clinical trials with attenuated parasites will enhance the number of
potential therapeutic targets, which are urgently needed to combat
leishmaniasis.
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