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Prophylactic approaches to graft versus host disease (GvHD) have employed both pheno-
typic reduction ofT cells and selective elimination of host-primed donorT cells in vitro and
in vivo. An additional approach to GvHD prophylaxis by functional depletion of apoptosis-
sensitive donorT cells without host-specific sensitization ex vivo showed remarkable reduc-
tion in GHD incidence and severity.We address the role and significance of antigen-specific
sensitization of donor T cells and discuss the mechanisms of functional T cell purging by
apoptosis for GvHD prevention. Host-specific sensitization is dispensable because migra-
tion is antigen-independent and donor T cell sensitization is mediated by multiple and
redundant mechanisms of presentation of major and minor histocompatibility complex
and tissue antigens by donor and host antigen-presenting cells. Our data suggest that
potential murine and human GvH effectors reside within subsets of preactivated T cells
susceptible to negative regulation by apoptosis prior to encounter of and sensitization to
specific antigens.
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INTRODUCTION
Donor T cells play a dual role in transplantation of hematopoietic
stem and progenitor cells (HSPC). On the one hand, they mediate
potentially lethal graft versus host disease (GvHD) (1), therefore
the most effective approach to GvHD prophylaxis is transplanta-
tion of large number of purified hematopoietic progenitors that
overcome antigenic barriers (2, 3). On the other hand, T cells sup-
port engraftment, improve resistance to infections, and contribute
to graft versus tumor (GvT) reactivity (4–6). The significance of
donor T cells in facilitation of engraftment is emphasized by supe-
rior outcome of T cell-replete grafts as compared to purified prog-
enitors, and the inverse relationship between the number of grafted
donor T cells and transplant-related mortality (7, 8). Initial studies
of selective phenotypic depletion of T cell subsets have shown lim-
ited efficacy in GvHD prevention, emphasizing the capacity and
participation of multiple immune-reactive species (9). Doses of
104–105 CD3+ T cells/kg along significant number of hematopoi-
etic progenitors (~107 CD34+/kg) are considered as threshold
conditions that support engraftment at reduced risk of high grade
GvHD in matched and mismatched unrelated transplants (10).
However, one of the difficulties of fractional phenotypic deple-
tion is the poor correlation between the number of donor T cells
and severity of the GvH reaction due to indiscriminate selection of
mediators of inflammation (11), as exemplified by vigorous GvHD
elicited by antigen-inexperienced T cells in umbilical cord blood
(UCB) (12).

EX VIVO DEPLETION OF HOST-PRIMED DONOR T CELLS
An alternative effective approach to GvHD prophylaxis is ex vivo
stimulation of alloreactivity by exposure of donor T cells to host

antigens and depletion of the reactive responders, a conceptual
frame that awards dual selectivity: responsiveness to host antigens
of a fraction of donor clones and selective depletion restricted to
activated T cells (Figure 1). Characteristics of T cell activation tar-
geted for selective depletion include fast-cycling (13), sensitivity to
fludarabine (14) metabolic mitochondrial activity (15), and pho-
toactivation of synthetic psoralen (16). Superior outcome attained
by depletion of the α chain CD25 IL-2 receptor (IL-2R) in con-
junction with CD69 (17) and CD71 (transferrin receptor) (18)
emphasizes phenotypic variability of activated T cells where nei-
ther one can be considered as universal marker of activation. IL-2R
is an attractive target of activation because internalization of the
receptor/ligand complex introduces toxic moieties, such as IL-2R
monoclonal antibodies conjugated to ricin and diphtheria toxins
(19, 20), and IL-2 fusion proteins encoding apoptotic moieties
such as caspase-3 (21). A fundamental characteristic of immune
cell activation is upregulation of TNF family receptors rendering
them susceptible to negative regulation by activation-induced cell
death (AICD), where Fas cross-linking by membrane-bound Fas-
ligand (FasL) is the common executioner of apoptosis (22). Ex
vivo depletion of host-sensitized donor T cells with agonistic Fas
antibodies (23), cross-linking by soluble FasL oligomers (24), and
expression of the ligand in dendritic cells (DC) (25) in murine
models and human mobilized peripheral blood (MPB) cells (26)
has reduced GvHD severity.

All procedures of fractional depletion of host-primed donor
T cells have documented significant advantages of add back of
insensitive T cells: support engraftment, sustain reactivity against
tumors (24), and infections in the early post-transplant period
(26), due to persistence of effector/memory cells that are relatively
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FIGURE 1 | Differential time axis and procedures for GvHD prophylaxis. Ex vivo simulation of GvHD by exposure of isolated donor T cells to irradiated host
stimulators followed by depletion of the sensitized T cells, as compared to elimination of apoptosis-sensitive donor T cells in whole grafts without
antigen-specific stimulation.

insensitive to AICD (22). However, the main drawback of this
technique is the relatively slow sensitization process that requires
mixed lymphocyte cultures of ~3 days, imposing laborious iso-
lation of T cells and cryopreservation of progenitors. Because
transduction of apoptotic signals is very effective, this approach
to GvHD prophylaxis has been improved through increased pro-
ficiency of stimulation using non-selective T cell stimulation with
CD3 antibodies (23), and DC to amplify antigen presentation
(25) and boost T cell proliferation (13). Although GvH simula-
tion by donor T cell sensitization to the host is intuitive, it has
been long recognized that cytotoxic T cell assays in vitro corre-
late poorly with GvH reactivity against minor antigens in vivo
(27), possibly because gradual transition to apoptosis-insensitive
effector/memory phenotypes in culture may cause persistent rec-
ollection of alloresponses in residual T cells. Early post-transplant
administration of cytotoxic agents such as cyclophosphamide may
be more effective in concomitant suppression of reciprocal sen-
sitization of donor GvH effectors and host versus graft (HvG)
rejection (28).

EX VIVO T CELL DEPLETION WITHOUT HOST-SPECIFIC
SENSITIZATION
The GvH reaction is effectively prevented, on the one hand, by
non-selective depletion of donor T cells using phenotypic markers
(9), and on the other hand, by selective depletion of host-primed
donor T cells (13–21, 23–26). We reasoned that elimination of
apoptosis-sensitive donor T cells without host-specific priming
may be effective in GvHD prevention. Exposure of murine spleno-
cytes and bone marrow cells (BMC) to FasL reduced significantly
the clinical and histological GvHD indices and improved survival
following cytokine storm induced by lipopolysaccharide (LPS)
in haploidentical transplant models (29). Residual donor T cells
retained the major in vivo activities that commend their inclusion
in the graft: sustained reactivity against solid tumors and haemato-
logical malignancies, and support of progenitor engraftment when
co-administered with the graft and as delayed donor lymphocyte

infusion. Reduced GvHD severity was validated in xenochimeric
mice grafted with human MPB exposed to FasL and TNFα ex
vivo for short periods of time, showing apoptotic death of T and
B lymphocytes and myeloid cells, decreased propensity of acti-
vation markers in viable T cells, and sustained reactivity against
tumors (30).

The short incubation period in this procedure (hours) over
depletion of host-primed T cells (days), and obviation of T cell
isolation and cryopreservation of progenitors, associated with loss
of significant fractions in the freezing/thawing process, are of
prime significance (Figure 1). Murine and human hematopoietic
progenitors share innate resistance to apoptotic signaling trig-
gered by the TNF family receptors in vitro and in vivo, which
transduce trophic signals and improve the efficiency of engraft-
ment and shorten the tempo of reconstitution (31–35). In fact,
trophic signals are transduced by the same receptors that medi-
ate AICD in human immune cells, including Fas, TNF-R1, and
TRAIL-R1, thus both GvH prevention and progenitor stimula-
tion are simultaneously attained by pretransplant exposure to the
cognate ligands.

Most approaches based on different techniques of selective
elimination of activated T cells following simulation of host-
specific priming ex vivo, as well as phenotypic depletion of T
cell subsets have shown beneficial effects on GvHD. Similar effi-
cacy of antigen-dependent and independent fractional deletion of
apoptosis-sensitive T cells imposes two related questions: what is
the significance of host antigen-specific sensitization of donor T
cells for GvHD prophylaxis and how does elimination of unstim-
ulated T cells ameliorate this reaction. The following discussion
attempts to deduce some of the characteristics of GvHD effectors.

QUANTITATIVE ASPECTS OF APOPTOTIC T CELL DEPLETION
Application of an apoptotic challenge to cultures of spleno-
cytes from naïve mice housed in a barrier facility results in
depletion of ~50% T cells and commensurate elimination of
CD4+CD25+FoxP3+ naturally occurring regulatory T cells (36).
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Fractional apoptosis is markedly lower (40%) in mixed cultures
as compared to isolated T cell preparations (70%) (37), due to
cytokine deprivation (IL-2) and modulation of T cell viability
by T cell receptor (TCR)-associated CD3 signaling and CD28
co-stimulation (37). Consequently, the number of residual T
cells following an apoptotic challenge are significantly higher in
hematopoietic grafts than isolated T cell suspensions, yet simi-
lar protective effects were obtained by purging of host-primed
and antigen-inexperienced T cells (29). Significant decline (~2.5-
fold) in GvHD severity was attained by the apoptotic challenge
in murine haploidentical transplants, corresponding to 2× 108

viable T cells/kg (29). Likewise, GvHD was reduced in xenogeneic
transplants of MPB cells at doses of 1.5× 108 viable T cells/kg,
which represent almost 3-log higher numbers than the recom-
mended doses of unmanipulated donor T cells in mismatched
transplants (4–6, 10). Even megadoses of 107 progenitors/kg (2)
can be safely administered as T cell-replete grafts following expo-
sure to the apoptotic challenge, provided that the progenitor:T cell
ratio is below 1:20. Evidently, the duration of graft preparation is
determined by the differential sensitivities of T cells from vari-
ous origins: UCB-derived T cells are relatively resistant to 48 h of
exposure to death ligands, whereas 40–50% of T cells in BM and
MPB are depleted within 18–32 and 4–8 h, respectively (30, 32,
34, 38). The duration of these cultures is shorter than the critical
period of 48 h associated with significant decline in efficiency of
engraftment (39, 40).

QUALITATIVE ASPECTS OF T CELL DEPLETION
GvHD prophylaxis could not be attributed to selective depletion
of particular T cell subsets in our studies, which may essen-
tially represent the most significant advantage. At the first level,
exposure of murine splenocytes and BMC to apoptotic signals
without host-specific priming results in balanced reduction in
CD4+ and CD8+ T cells, each one having the capacity to medi-
ate experimental and clinical GvHD (41–43). At the second level,
functional depletion by apoptosis affects all immune cells within
the graft including professional antigen-presenting cells (APC)
and disrupts the activation cascades at multiple levels (22). For
example, B lymphocytes and myeloid cells endowed with antigen-
presenting capacity are generally more sensitive to apoptosis than
unstimulated T cells in hematopoietic grafts derived from UCB,
BM, and MPB (30, 32–35, 38). At the third level, the apoptotic
challenge particularly but incompletely removes T cells express-
ing activation markers such as CD25 and CD69 (29, 30), which
impact experimental (17, 18) and clinical GvHD (44). An inter-
esting observation was modulation of the immune responses of
recipients of mismatched T cells preexposed to an apoptotic chal-
lenge, which displayed intact responses to alloantigens in vitro and
similar rates of immune reconstitution as recipients of unmanip-
ulated T cells (29). Survival of 70% recipients of apoptosis-treated
T cells following LPS was associated with reduced proliferative
responses of host splenocytes as compared to medium-incubated
controls that universally succumbed to lethal GvHD. Since this
phenomenon was observed in a non-engrafting GvHD model of
adoptive T cell transfer following sublethal irradiation, donor lym-
phocytes evidently reduced the responsiveness of host splenocytes
to cytokine-mediated mitogenic stimulation.

HOST-SPECIFIC PRIMING IS DISPENSABLE IN GvHD
PROPHYLAXIS
The pathophysiology of GvHD involves multiple pathways of T cell
migration to tissues and lymph nodes, sensitization by professional
and non-professional APC against physiological host alloanti-
gens and tissue epitopes exposed by conditioning-mediated tissue
injury, and amplification of cytotoxic activity by cytokines. CD8+

T cells have been initially considered as the culprit mediators of
GvHD, but functional variability may be caused by the differential
requirements for direct engagement of tissue antigens by CD8+

but not CD4+ T cells (45). We will briefly consider several fea-
tures of the GvH reaction, without addressing migration because
T cells exposed to an apoptotic challenge were shown to navigate
effectively to target tissues and regional lymph nodes (29).

From the immunological point of view, dual sensitization
within the tissue and regional lymph nodes ensures efficient sen-
sitization with redundant and synergistic consequences (46–48).
Allogeneic transplants are characterized by mixed chimerism of
professional APC, though grafted T cells are primed by APC of
donor (49) and host origin (50), with decisive inductive activity
of tissue-resident APC (46, 51). Although major histocompatibil-
ity complex (MHC) disparity is generally associated with vigor-
ous GvH reactions (52), alloresponses are restricted to a limited
number of donor CD4+ and CD8+ T cell clones with selective
and compatible TCR rearrangement (52–54), and cytotoxic cells
frequently target minor histocompatibility antigenic repertoires
(miHA) (55–57). Effector/memory T cells are less effective media-
tors of acute GvHD as compared to naïve T cells (58, 59), however,
their continued presence promotes persistent acute and chronic
GvH reactivity (46, 60). The apparent sequence of events implies
that donor T cells migrate in an antigen-independent manner to
tissues and lymphoid organs and can be primed at both sites by
diverse subsets of APC. Potent and redundant pathways of antigen
recognition include systemic indirect and direct presentation of
MHC and miHA by donor and host APC, respectively, and in situ
instruction by resident APC in the target tissues. Clinical presen-
tation of GvHD in tissues most sensitive to injury by preparative
conditioning, bone marrow, intestine, and skin suggests that dam-
age of these proliferative target tissues plays a role in the process
of acute sensitization of GvHD effectors. Currently there is no
positive characterization of a particular T cell subset, TCR config-
uration, and mechanism of cytokine exacerbation that accounts
solely for induction and propagation of the GvHD reaction. In
addition to the multiple redundant mechanisms of activation of
diverse subsets of GvHD effectors, initiation of inflammation and
execution of injury to the target tissue are inflicted by numerous
cytotoxic pathways.

Several scenarios have been proposed to account for variations
in all these parameters using different experimental models that
frequently use transgenes lacking particular molecules, which are
difficult to interpret and underestimate the involvement of com-
pensatory mechanisms. For example, host APC activate donor
CD8+ T cells by direct miHA presentation in the context of
class I MHC (50), and donor APC process host miHA of non-
hematopoietic tissues as foreign antigens and present to CD4+

T cells in the context of class II MHC (55). Another possibil-
ity is sequential direct and indirect antigen presentation by host
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and donor APC, respectively, suggesting that donor APC amplify
GvH reactions initiated by host APC (61). An additional sce-
nario suggests direct miHA targeting by cytotoxic T cells, with
MHC disparity determining the intensity of the inflammatory
reaction (62).

The elaborate mechanisms of sensitization of multiple T cells
subsets explain the capacity of multiple deletional approaches
to restrain GvH reactivity, including highly selective depletion
of host-primed T cells and also antigen non-specific lymphore-
duction. For example, the risk of GvHD is reduced by fractional
depletion of naïve human CD45RA+ lymphocytes with persis-
tent responsiveness to infectious agents (63), and by non-specific
immunomodulation of the donors with complete and incomplete
Freund adjuvant and Toll-like receptor activation with CpG motifs
without impairing GvT reactivity (64). Donor T cells may gener-
ally be less reactive to alloantigens under these conditions, but it is
also possible that activated T cells underwent excessive deletion by
apoptosis after transplantation into partially immunosuppressed
recipients. Evidence of this mechanism evolves from reduced
GvHD severity following pretransplant antigen non-specific stim-
ulation of donor T cells with agonistic anti-CD3 antibodies (65),
a counter-intuitive approach because T cell sensitization with
CD3/CD28 generally enhances both GvH and GvT reactions (66).
The apparent mechanism is effective purging of hyperactivated
donor T cells susceptible to AICD in radiation chimeras, though
it is yet undetermined whether deletion occurred in the recipient
prior to or following specific sensitization to host antigens. Impor-
tantly, these deletional approaches to GvHD prophylaxis neither
impaired facilitation of progenitor engraftment nor GvT reactivity,
which are often dissociated in the transplant setting (4–6).

WHO ARE THE CANDIDATE GvHD EFFECTORS?
GvH is an acute physiological immune reaction against foreign
antigens mediated by mature donor T cells that mirrors HvG rejec-
tion and elicits complex cascades of activation involving multiple
redundant mechanisms of antigen presentation and cytokine cir-
cuits. Delayed clinical appearance of GvHD by a period of several
weeks follows progressive tissue damage inflicted by inflammation
and is frequently associated with infection, which may trigger and
intensify GvH and reciprocally, GvH-mediated injury perpetuates
infection by disruption of the mucosal barriers. Effector/memory
(46, 58–60), naïve (63), stimulated (66) CD4+ and CD8+ T cell
subsets (41–43, 45) that display high metabolic activity (15), fast
proliferation (13, 14), activation markers (17–21), and sensitivity
to apoptosis (23–26, 29, 30) can elicit GvH reactions (9) follow-
ing recognition of major and minor histocompatibility and tissue
antigens (47, 48, 56) introduced by donor and host cells with
antigen-presenting capacity (46, 49–51). Therefore, early onset of
the GvH reaction and redundant activity of multiple cell types
is consistent with reduced inflammation by preemptive deple-
tion of apoptosis-sensitive T cells, one of the unequivocal signs
of activation. Although apoptosis-resistant donor T cells display
intact responses to allosensitization and stimulation in vitro (36),
they yield quite restrained responses in the context of GvH reac-
tivity in vivo (29, 30). Concomitant depletion of all lineages of
apoptosis-sensitive immune cells from the graft also reduces the
capacity of antigen presentation and elaboration of inflammatory

cytokines (22). The mechanistic insight evolving from ameliora-
tion of GvHD by depletion of apoptosis-sensitive T cells with-
out antigen specificity is a significant involvement of proactive
immune cells susceptible to negative regulation in this immune
reaction.

It will be imperative to monitor the phenotypes of depleted
and residual T cells and the responses to host alloantigens in
the clinical setting under various conditioning protocols and in
association with prevalent infections in the complex clinical set-
ting. It will be interesting to determine whether fractional deple-
tion of unstimulated donor immune cells further protects from
GvHD by polarizing the sensitivity to apoptosis using IL-2 to
preserve regulatory T cells (21, 36, 37). In view of the potential
of UCB-derived T cells to elicit potent GvH reactions (12) and
insensitivity of these naïve cells to apoptosis under unstimulated
conditions (38), AICD may be achieved on a shorter time scale
using various antigen-non-specific stimuli (67–69). It remains
to be determined whether the apoptosis-mediated approach to
GvHD restrains chronic disease, which is less characterized and
largely unresponsive to immunosuppressive therapy.

CONCLUDING REMARKS
Although the approach of donor T cell sensitization against the
host to simulate GvH ex vivo is intuitive, it has been long rec-
ognized that cytotoxic T cell assays in vitro cannot predict and
do not correlate with GvH reactivity against host antigens in vivo
(32). The poor correlation between number of T cells and GvHD
intensity (11) shifts the attention to the quality of T cells included
in donor inoculum: host-selective priming is dispensable suggest-
ing that GvHD effectors reside within activated subsets of donor
T cells.
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