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Hematopoietic cell transplantation (HCT) is a last treatment resort and only potentially cura-
tive treatment option for several hematological malignancies resistant to chemotherapy.
The induction of profound immune regulation after allogeneic HCT is imperative to prevent
graft-versus-host reactions and, at the same time, allow protective immune responses
against pathogens and against tumor cells. Dendritic cells (DCs) are highly specialized
antigen-presenting cells that are essential in regulating this balance and are of major inter-
est as a tool to modulate immune responses in the complex and challenging phase of
immune reconstitution early after allo-HCT. This review focuses on the use of DC vacci-
nation to prevent cancer relapses early after allo-HCT. It describes the role of host and
donorDCs, various vaccination strategies, different DC subsets, antigen loading, DC mat-
uration/activation, and injection sites and dose. At last, clinical trials using DC vaccination
post-allo-HCT and the future perspectives of DC vaccination in combination with other
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INTRODUCTION

Allogeneic-hematopoietic (stem) cell transplantation (HCT) is
the last treatment resort and only potentially curative treat-
ment option for several hematological malignancies resistant to
chemotherapy. Although the survival rates improve after HCT
for selected indications, relapses remain a major cause of death
after allogeneic HCT. In these high-risk hematological malignancy
patients, the estimated 5-year survival rates vary between 10 and
80% (1-3). As such, novel immune therapeutic strategies are being
developed aimed at getting better disease control to prevent relapse
after HCT.

Currently, the most widely used type of additional
immunotherapy combined with allo-HCT is the donor lympho-
cyteinfusion (DLI), where allo-reactive T cells can help to eradicate
residual tumor cells. Unfortunately, this “non-specific” strategy
suffers from severe toxic side effects, such as Graft-versus-Host
Disease (GvHD) (4). Novel immunotherapeutic approaches aim
to increase innate or adaptive anti-tumor responses by trans-
ferring ex vivo-generated effector cells, such as natural killer
(NK) cells, chimeric antigen receptor (CAR)-modified cytotoxic
T lymphocytes (CTLs), or transgenic T-cell receptor expressing
tumor-specific CTLs (5). Although initial results seem promis-
ing, the production procedures of these cell therapies are often
time-consuming (up to months) and have limitations, severe
acute toxicities (“cytokine-release syndrome”: e.g., in CARs), long-
term B-cell deficiency (in CD19-CAR), uncertain functionality,
and limited or no induction of lasting immunity. Since dendritic
cells (DCs) are potent and professional antigen-presenting cells

cancer immunotherapies are discussed.
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(APC), which induce activation of the adaptive immune system,
vaccination strategies could be used post-allo-HCT for the induc-
tion of lasting immunity against the tumor. Several vaccination
strategies have been used post-allo-HCT like the vaccination with
autologous tumor cells either directly transduced to express GM-
CSEF (6) or coinjected with fibroblast expressing transgenic CD40L
and IL-2 (7).

The use of DCs as vaccines showed beneficial effects in an
autologous setting (8), which led to the first FDA approved
immunotherapy (9). In this review, we will explore the use of
DCs as vaccination strategy for the induction of anti-malignancy
responses when combined with an allo-HCT (Figure 1). More
specifically, we will focus on the use of donor-derived DCs as part
of this immunotherapy.

ALLO-HCT IN CANCER IMMUNOTHERAPY

Allo-HCT is the sole curative option for many patients with high-
risk hematologic malignancies and even some solid tumors (4, 10,
11). A variety of different allo-HCT grafts, including bone mar-
row (BM) or mobilized peripheral blood stem cells (PBSC), as
well as unrelated umbilical cord blood (CB) are currently used
as a cell source in the treatment of malignancies (12). The thera-
peutic success of the allo-HCT is not only due to the replacement
of the diseased BM but also due to Graft-versus-Leukemia (GvL)
or Graft-versus-Tumor (GvT) effects. However, as a trade-off, the
potentially life-threatening complication GvHD can occur. In this
regard, it is interesting that the use of CB as cell source is associated
with lower relapse-rates suggesting stronger GvL-effects, despite
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FIGURE 1 | Example of a DC vaccination strategy to enhance
anti-tumor immunity after allo-HCT. After standard conditioning (FluBu:
Fludarabine + Busulfan) and cord blood transplantation (CBT) patients will
receive biweekly antigen-loaded-DC vaccines. The timing of vaccinations
will be dictated by the chances that most CBT-associated complications are
solved or are very unlikely to occur and the T-cell compartment has time to
recover.

lower GvHD-rates compared with BM or peripheral blood as cell
source in HCT (2, 13). As such, therapeutic interventions aimed
at enhancing the GvT will not necessarily lead to higher rates of
GVHD, whereas the active inhibition of GvHD will not necessarily
affect the GvT effects (14).

The importance of CTLs in the GvT effects is supported by the
observation that an increase in leukemic antigen (WT1) specific
CTLs correlated negatively with the WT1 mRNA expression, as a
measure of minimal residual disease (MRD) (15). Moreover, the
absence of T cells specific for different tumor associated antigen
(WT1, MUCI, and proteinase-3) was related to relapses post-
allo-HCT in patients with hematological malignancies (16). These
data show that tumor-antigen-specific CTLs can be induced after
HCT and failure to induce these cells may hamper GvT responses.
This strengthens the idea that the active enhancement of tumor-
antigen-specific immunity is a viable treatment option to prevent
relapses after HCT (17). The development of tumor-antigen-
specific CTLs strongly relates to the general immune recovery
(especially T cells and DCs) after HCT, a process that is both
complex and dynamic, and is affected by a variety of patient and
graft-related factors. These include graft source, graft manipula-
tion, age of recipient and donor, conditioning regimen, recovery
of thymic output, the occurrence of infections, and GvHD, and
their treatment (11, 18-23). Some of these factors will be difficult
to control, whereas there are some factors, like the conditioning
regimen [especially the serotherapy component: anti-thymocyte
globulin (ATG) or Alemtuzumab], which can be more carefully
controlled to enhance or get a more predictable immune recon-
stitution after HCT. In this regard, detailed immune recovery
studies showed that the T-cell recovery can be very fast after HCT

depending on that timing, dosing, and/or omission of ATG (24).
This occurred without causing mayor effects on the development
of GvHD [in particular chronic-GvHD (cGvHD)] but with signif-
icantly reduced occurrence of viral reactivation, which is strongly
dependent on post-HCT T-cell recovery.

A predictable immune reconstitution is of importance to
establish an optimal effect of the applied vaccine. Thus vacci-
nation strategies early after allo-HCT, in a setting of a better-
predicted immune reconstitution, aiming to prime and/or stim-
ulate tumor-specific CTLs may be an attractive and effective
treatment modality.

DCs AND THEIR ROLES IN GvHD AND GvT POST-ALLO-HCT
As professional APCs, DCs have been well recognized for their role
in the induction of GvHD on the one hand and GvT responses on
the other. Whereas host-derived DCs have shown to be essential
for the induction of acute GYHD (aGvHD) in mice, donor-derived
DCs intensify aGvHD and may be involved in the development of
c¢GVvHD (25, 26). The role of the different DCs in the GvT response
after HCT is still poorly understood. From mouse studies, it is
known that host DCs may play an important role in GvT responses
(27), especially those that are able to cross present tumor-specific
antigen (TSA) from tumor cells to the donor T cells (28). The
role of host DCs in GvT in humans has been supported in a study
where the combination of donor T cells and mixed chimerism in
DC subsets induced a potent GvL effect in association with GvHD,
whereas DLI in patients with donor chimerism in both T cells and
DC subsets resulted in GvL reactivity without GVHD (29).

Largely independent of conditioning regimen and stem cell
donor source, a rapid DC chimerism was detected in peripheral
blood after allo-HCT (30). Fourteen days after HCT approximately
80% of the DCs were of donor origin increasing up to 95% at
56 days after HCT. With regard to DC chimerism in peripheral tis-
sues, it was found that depending on the regimen, an average 97%
of the Langerhans cells (LC) were donor-derived with full inten-
sity conditioning, while 36.5% was donor-derived with reduced
intensity conditioning 40 days after allo-HCT. At day 100, at least
90% of the LC was donor-derived (100% in half of the patients)
(31). In another study, donor chimerism with median of 95%
was detected for LC in skin biopsies taken between day 18 and
56 after HCT (32). However, this same study also indicated that
the majority of the patients with an incomplete donor chimerism
suffered from aGvHD. Moreover, these data were challenged in a
recent paper studying the chimerism in the skin itself, rather than
in DCs that migrated from explants (33). This study showed that
3 months after HCT, at least half of the dermal DCs were still of
host origin in the absence of aGvHD, suggesting that the mere
presence of host DCs is not the cause of aGvHD.

As both host and donor DCs are present after HCT “regular”
vaccination strategies (with epitopes from tumor antigens) or tar-
geting DCs in vivo as an immunotherapy early after HCT may also
be feasible. In patients with a high risk of relapse, the period early
after HCT may be crucial for DC-based therapies as the tumor bur-
den is still low and the suppressive immune environment of the
tumor can still be overcome. When studies identify a specialized
subtype of human DC that may increase GvT without enhancing
GvHD, as was shown for CD8a+ DCs in mice (28), specific in vivo
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targeting and stimulation of these cells may be a treatment option
in the future. Since the in vivo targeting of endogenous DC as
immunotherapy has recently been extensively reviewed elsewhere
this will not be further discussed here (34).

DC SOURCES AND SUBSETS FOR VACCINATION IN
ALLO-HCT SETTING

Dendritic cells for vaccination purposes can be directly isolated
from peripheral blood or can be generated from stem cells resid-
ing in the blood or BM. In the post-allo-HCT setting, DCs could
be directly isolated from the peripheral blood of the donor. From
the blood different subsets can be isolated, namely plasmacytoid
DCs (pDCs) and conventional (¢)DCs, this latter population can
be further subdivided into BDCA1" and BDCA3™ DCs. However,
the low numbers of in particular circulating into BDCA1% and
BDCA3™ DCs complicates their clinical application. In an autol-
ogous non-HCT setting, promising results were obtained with
isolated pDCs. Freshly isolated pDCs that were loaded and acti-
vated ex vivo, induced antigen-specific CD4" and CD8™1 T-cell
responses in patients suffering from melanoma (35). Despite the
low numbers, using DC subsets in current and future trials is rele-
vant and therefore intrinsic properties of DC subsets to stimulate
productive T cells should be taken into account in the DC vaccine
design.

Dendritic cells may also be generated from precursor cells
like CD14™ monocytes (from peripheral blood) or CD34% HSC
(from BM or peripheral blood), which can be differentiated ex
vivo into monocyte-derived DCs (moDCs) or conventional DCs,
respectively.

After the finding that monocytes develop DC-like features when
cultured in the presence of GM-CSF and IL-4 (36), moDCs have
been used in many clinical trials as a cancer immunotherapy. The
use of moDCs as a vaccine is generally considered as safe, but
clinical responses have only sporadically been observed (37), pos-
sibly due to maturation status or migratory capacity, discussed
in more detail below. Since more research focuses on differen-
tial functionalities within DC subsets, the vaccine research shifts
toward targeting of specialized DC subsets (34, 38) and in vitro
generation of conventional DCs from CD34 ™ precursor stem cells.
Several protocols have been developed trying to mimic the differ-
ent naturally occurring DC-populations (39—41), so far no clinical
data are available on the efficacy of these DC cultures. The most
important advantage of using CD34-derived DC, especially in the
CB HCT setting, is the possibility to use an expansion step prior
to DC differentiation allowing the generation a large number of
DCs from a limited number of precursor cells.

Although studies directly comparing the anti-leukemic effects
of CD14- versus CD34-derived DC vaccines are lacking (42), it
has been suggested that CD34-derived DCs may induce better
CD8 responses, compared to moDCs. This might be caused by the
presence of LC in these cultures (43). The presence of LC is how-
ever strongly dependent on the presence of specific growth factors
during differentiation.

DC VACCINATION STRATEGIES
Besides the type of DC, the specific antigen loading and matura-
tions strategies have major impact on the priming capacity of the

@ Type of DC
- CD14* monocytes

-CB - adherent monocytes
- PBSCs - CD34-derived
- primairy DCs
@ Loading
- peptide
@ Maturation - protein
- cytokinemix - lysate
-TLRs - fusion
- IFNs - electroporation
- CD4oL RNA/DNA
- others - others

FIGURE 2 | Overview of important parameters to consider and
optimize pre-clinically with regard to DC vaccines. The first important
parameter is the source of the allo-HCT graft (1), which will determine the
available cell sources for the generation of the DCs (2). When DCs are
generated the antigen loading strategy (3) will define the presentation of
(tumor)-antigens in MHC-class Il and | molecules, providing the first signal
for T-cell activation. Next, optimal maturation signals should be used to
induce the expression of co-stimulatory molecules and the necessary
cytokines (signal 2 and 3). This will enable homing of the DCs to lymph
nodes followed by an optimal stimulation of antigen-specific T cells for the
induction of lasting immunity.

DC. In addition, the functionality of the DC vaccine is dependent
on the infection site, dosing regimen, and timing of vaccination,
all of which may be even more prominent when combined with
allo-HCT (Figure 2).

TUMOR-ANTIGEN LOADING

Different loading strategies have been developed over the years,
reviewed by Nierkens et al. (44). Exogenous MHC-class I loading
with a 9-mer peptide of a pre-defined tumor antigen is frequently
used. Although the analyses of T-cell specificity against that one
peptide may simplify immune monitoring, this system has how-
ever some major disadvantages, such as, HLA-restriction, epitope
spreading by the tumor, and lack of induction of antigen-specific
CD4 T cells. Alternatively, DCs can be loaded with long-peptides,
containing several MHC-class I and II restricted tumor-antigen
peptides, 15-mer peptide pools covering the whole tumor anti-
gen, or the whole tumor antigen (protein or mRNA). These
approaches require the prior identification of the TSA. For sev-
eral tumors specific antigens may however not be known. In
these cases, whole tumor cell lysates, DC-tumor cell fusions, or
apoptotic/necrotic tumor cells can be used as a source of tumor
antigens (45, 46). Although vaccination with tumor cells or their
lysates may induce/aggravate acute or cGvHD due to the pre-
sentation of allo-antigens shared by tumor and normal host
cells, to date, none of the studies using tumor cells as part of
their vaccine showed any induction of exacerbation of GvHD
(6, 7, 47, 48). As such, loading DC vaccine with killed tumor
cells or lysates may be an attractive alternative when specific
tumor antigens are not known, when they differ between the
patients with the same cancer or when the proteins are sensitive to
mutations.
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MATURATION

For the stimulation of antigen-specific T cells DCs require matu-
ration, which can be induced by clinical grade maturation mixes.
Classically, moDCs are matured with a mix of pro-inflammatory
cytokines, e.g., IL-1b, IL-6, TNF, and PGE2, which induce strong
upregulation of CD40, CD80, CD83, CD86, and CCR7 (49, 50)
and are clinical grade available. PGE2 has been shown to be
necessary for the migration of DCs (51), but it also induces
IDO expression (52), which is involved in inducing tolerogenic
responses. However, Krause et al. showed IDO expression inde-
pendently of PGE2, and strong CD4 and CD8 proliferation
after co-stimulation with DCs matured with PGE2, despite IDO
expression (53).

Dendritic cells also express different pathogen recognition
receptors, like Toll-like receptors (TLRs). Although TLR antag-
onists have been shown to be good candidates for DC activa-
tion, their use as maturation agent in DC vaccination trials is
still limited. Currently, PAM3cys for TLR2, Poly-IC or Poly-ICLC
(Hiltonol) for TLR3, LPS for TLR4, or Imiquimod TLR7 and CpG-
ODN for TLRY are clinical grade available and used in several
combinations (with each other or with cytokines) in clinical tri-
als (54-56). The effect of the maturation mixes strongly depends
on the DC subset isolated or cultured, since different DC subsets
express different TLRs (57). In several clinical trials, the combi-
nation of TLR agonists or cytomix is used with IFN type 1 or
2, TNE, or CD40L (58-61). This combination not only enhances
their maturation efficacy, but also induces stronger cytokine pro-
duction in vitro (59). CD40L is used to activate DCs in vitro before
injection, and although DC maturation and IL-12 production
was reported, no clinical benefit was observed (62). One could
even speculate that stimulation with CD40L before the vaccina-
tion infusion may somehow activate the DC before they were able
to connect with the antigen-specific T cells in the lymph nodes.

In addition to co-stimulatory molecules, DCs are also known
to express co-inhibitory molecules, like PD-L1 and PD-L2, which
may hamper T-cell stimulation via interaction with PD1. Target-
ing the expression PD-L1 and PD-L2 siRNA electroporation or
transfection into DCs has been shown to enhance CTL responses
in vitro and in vivo (63, 64). Since this approach can be incor-
porated into DC vaccines relatively easy, this has the potential to
become a standard procedure in addition to the maturation for
future DC vaccinations.

INJECTION SITES AND DOSING AND TIMING

When a DC vaccine is optimally loaded and matured, the next
border to cross is to consider the optimal injection site. In clinical
vaccination studies, DCs have been injected intravenously (i.v.),
intradermal (i.d.), subcutaneously (s.c.), directly in the lymph
node (i.n.) under sonographic guidance, or intratumoral (i.t.) or
at different sites within the same trial. Side to side comparisons
of injection sites are generally lacking making it hard to make a
strong statement on which site would be preferable. Intratumoral
DC vaccination has been shown to be safe (65). The question
remains whether the DCs are needed at the tumor site to restim-
ulate the tumor infiltrating lymphocytes (TILs) or that they are
required to present their cargo in the lymph node for the prim-
ing of novel CTLs, in which case other sites of injection could

be a better option. Furthermore, the strong immune suppressive
environment in the tumor may be detrimental for CTL activa-
tion. Bedrosian et al. (66) showed in a phase I trial in metastatic
melanoma patients that i.n. is superior over i.d. with regard to
CTL induction. Whereas the study of Kyte et al. showed no advan-
tage of injecting i.d. compared to i.n. in a phase I/II trial also in
melanoma patients (67). The type of DC used for vaccination or
disease stage could both contribute to these contradictory find-
ings. The limited overall efficacy of DC vaccination may further
hamper the proper comparison between the different injection
sites.

Another variation within clinical trials is the frequency and
dosing regimen, varying from 2 to 6 times. No clear compari-
son has been made, and therefore no strong conclusions can be
drawn. According to mouse studies and some clinical trials, vac-
cination seems to be critical, but boosting strategies of subjects
with residual disease or with tumor recurrence, should be carefully
revisited (68).

MONITORING THE EFFECT OF DC VACCINATION

Over 1000 trials have been performed using DC vaccination, but
read-outs are very diverse, and mainly phase I/II trials test for
cytotoxicity and overall survival are studied. The immunological
CTL response generated by the DC vaccination can be monitored
using HLA-peptide tetramers or by assessing cytokine production
after ex vivo antigen-specific restimulation (ELISA, ELISPOT, or
intracellular flow cytometry).

Since most DC vaccinations have been performed in an autol-
ogous (HCT) setting there may be tumor-antigen-specific T cells
present. To be able to differentiate between priming and reacti-
vation of T cells, KLH is sometimes used as a reporter for the
presence of priming and Influenza Matrix Protein (Flu-MP) could
be added as positive control for reactivation. When combined
with peptide-loaded DCs, these proteins may also be helpful in
providing bystander CD4 help (69). Almost all patients receiving
DC vaccination in the skin are tested at several time points after
vaccination for a delayed type hypersensitivity (DTH) response
however most of these responses are KLH or Flu-MP specific
and might not necessarily be predictive of the induced anti-tumor
responses (70).

With regard to tetramer staining to study antigen-specific
CTLs, the recent development of conditional HLA-ligand peptide
exchange technology combined with combinatorial coding may
provide an excellent opportunity to check for a wide range of dif-
ferent peptide-HLA combination in limited amount of material
(71,72).

With increasing sensitivity of PCR techniques, MRD markers
are increasingly used to monitor clinical efficacy of immune ther-
apy (73), including DC vaccination (74). A more general approach
is immune-phenotyping analysis for the frequency of different
immune cells at several time points before and after vaccina-
tion. These kind of analysis have reported changes in NK cells
and their activation status after DC vaccination (74). Since cur-
rent DC vaccines are still limited in their potential to induce an
effective anti-tumor immune response, the possibility to compare
results from different studies could benefit from “international
standardized” immuno-monitoring protocols (75).
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Table 1 | Overview of DC vaccination trials after allo-HCT.

Source Source (Tumor) Antigen Antigen Vaccination Read-out Immune Clinical (S)AE Reference
stem cells DC target form response response
BM PBSC AMLaLL  Whole Apoptotic IV Vitro CTL/MLR DTH 3/4 3/4 NR (47)
tumor tumor cells DTH
PBSC CD14+ Renal cell  Autologous Lysate D DTH 0N 0N NR (48)
carcinoma  tumor
BM/PBSC CD14+ CMV Pp65 pp150 Peptide SC near LN Tetramer 7/17 (41%) YES link IR? NR (76)
peptide recall
BM/PBSC? CD14+ AML WT1 KLH  Peptide ID (6 month Tetramer KLH yes 0N NR (78)
reporter after HCT) peptide recall  WT1 no
BM/PBSC? CD14+ CMV PP65 Protein SC near ILN Protein recall  1/1 VAl NR (77)
(6 month after
second HCT)
BM/PBSC? CD14+ MM Allo- Protein ID near ILN Protein recall  KLH 6/6 No but patients NR (4)
host- antigens (6 month after DTH also did not
derived MiHA KLH second HCT) respond to DLI
reporter

(S)AE, (Severe) adverse events.

DC VACCINATION TRIAL IN ALLO-HCT

Although the use of DC vaccination after allo-HCT had been sug-
gested for many years, Grigoleit and colleagues were the first to
publish a phase 1/2 clinical trial using donor CD14-derived DC
after HCT in patients at high risk for developing CMV disease
(76) (Table 1). In this setting, peptide-loaded DCs were injected
s.c. near the inguinal lymph node. Immune monitoring showed
the induction of CMV-specific T-cell responses, which had clinical
effects on CMV disease in a prophylactic as well as therapeutic set-
ting. With regard to the potential adverse events, it was important
to notice that vaccination with donor-derived DCs pulsed with
HCMYV peptides did not stimulate or expand allo-reactive T cells.
Nor were there any long-term adverse effects of DC vaccination
after HCT. Taken together, this phase 1/2 study provided the first
evidence indicating that DC vaccination can be performed safely
in allogeneic HCT setting. DC vaccination was also performed in
a therapeutic setting in a patient suffering from recurrent CMV
reactivation after a second HCT (77). As there was emerging viral
resistance to the antiviral chemotherapy, DC cells were prepared
from CD14™ monocytes isolated from the patients PB and loaded
with CMV PP65 protein. The induction of PP65 specific CD4 and
CD8 cells was detected and coincided with lasting prevention of
CMV recurrence. This study is strongly supportive of the use of
protein instead of peptide to enable the induction of both CD4
and CD8 responses. In this study again no adverse events were
reported.

The first publication using DCs to boost the GvT responses after
HCT was by Fujii and colleagues (47). Four patients with hema-
tological malignancies relapsed after allo-HCT and were treated
with DCs cultured from PBSC isolated from the same donor as
the HCT. These donor-derived DCs were then loaded with tumor
cells from the patient that were induced to go into apoptosis by

irradiation. DCs were then injected i.v. and clinical response was
reported in three out of four patients characterized by the reduc-
tion in tumor load. No side effects were detected in any of the
patients. In a following case report, DC vaccination was used in a
patient who received an allo-PB-HCT as a treatment for renal cell
carcinoma (48). However in this patient no antigen-specific recall
response (DTH) or any clinical response was reported. Like the
previous report, this patient also did not show any severe adverse
events.

Another case report describes vaccination with CD14-derived
DCs pulsed with WT1 peptide and KLH antigen for the treat-
ment of AML relapse after allo-HCT (78). Although no WT1
peptide-specific T cells could be detected, the KLH specific DTH
and ELISPOT further support the ability of DC vaccination to
induce an antigen-specific immune response in a patient after
allo-HCT. Host CD14-derived DCs, isolated prior to allo-HCT,
were used to present minor histocompatibility antigens (MiHA)
antigens in six multiple myeloma patients that had received auto-
HCT followed by allo-HCT and two rounds of DLI (4). This
study showed that DC vaccination using host-MoDCs was safe
(no GvHD) when applied at least 6 months after HCT induced
immunity (KLH). Unfortunately, no MiHA specific T cells were
detected after vaccination and also clinical responses were poor,
probably caused by the setup of the treatment protocol.

So, although only very limited studies have been reported using
DC vaccination after allo-HCT, the data so far are promising with
some clinical responses, detectable immune responses, and no
increase in the adverse events normally occurring after allo-HCT,
all ruling in favor of further exploration of DC vaccination in allo-
HCT. In additional, ongoing or recently finished, trials patients
are treated utilizing idiotype-pulsed allogeneic DCs post-allo-
HCT (NCT00186316 clinicaltrials.gov) or with donor-derived
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DCs pulsed with WT1 peptides in combination with DLI
(NCT00923910 clinicaltrials.gov).

COMBINATION THERAPIES

The limited clinical efficacy of DC vaccination may not only be due
to the vaccine or vaccination strategy since the final eradication
of the tumor depends on a variety of factors within the cancer-
immunity cycle (79). When antigen-specific CTLs are induced and
go to the tumor site there are mechanisms in place that prevent
the tumor cells from getting killed by CTLs, i.e., downregulation
of activation receptors, co-stimulatory molecules, or HLA class I
antigens recognized by CTLs; upregulation of co-inhibitory mol-
ecules like PD-L1 release of soluble factors that inhibit Th cells,
CTLs, and APCs; and altered FAS-L expression on the tumor cells
causing apoptosis resistance (80—83). Clinical trials with therapies
aimed at these immune blockades, such as cytotoxic t-lymphocyte-
associated antigen 4 (CTLA4) and programed cell death protein
1 (PD1), have shown some very promising results as reviewed
recently (84), making some of the therapies interesting candidates
to use in combination with DC vaccination. This is supported
by the observation in combination with a DC vaccine, a PDI
blocking antibody enhances ex vivo activated T-cell responses after
DC/tumor fusion stimulation (85).

Another post-HCT immune therapy that can be combined with
DC vaccination is the infusion of tumor antigen or MiHA spe-
cific CTLs that can provide additional effector cells to reduce the
tumor burden if disease has relapsed. In this way, it may also affect
the tumor microenvironment enabling better migration and CTL
function of the DC generated CTLs. The use of PBSC or BM as
HCT graft has the obvious advantage that DLI can be performed
as a prophylaxis or therapy combined with DC vaccination (4,
86, 87). Another possibility is the use TCR gene transfer for the
formation of a large population of tumor-antigen-specific T cells
that would reduce the risk of GvHD or other bystander immune
responses (88, 89). All these latter techniques remain to be tested
in combination with DC vaccination.

Very recently, epigenetic drugs were used in combination with
DC vaccination to enhance MHC upregulation, and therefore
tumor-antigen expression on the tumor cells. A very promising
clinical trial in a stage IV Neuroblastoma (NB) patient showed
complete remission with this combined therapy (90).

To take DC vaccination to the next level one should consider
making use of these additional therapies to hopefully enhance
clinical efficacy of DC vaccination in all immune therapeutic
settings.

SUMMARY

Although allogeneic-hematopoietic (stem) cell transplantation
(HCT) is the only potentially curative treatment option for several
hematological malignancies resistant to chemotherapy, relapses
remain a major problem. DC vaccination may be an attractive
additional immune therapeutic option for the induction of spe-
cific anti-malignancy immune responses in the context of an
allo-HCT setting. Factors like optimizing and predicting immune
recovery suggest that a more personalized conditioning regimen
especially considering the use of ATG is essential for optimal effect
of the vaccine. Depending on the HCT graft source different DC

sources can be considered, with currently no conclusive data on
which source to prefer. Preclinical development of the DC vac-
cine should further contain the optimization of antigen loading,
DC maturation as well as limitation of the expression of co-
inhibitory molecules. Finally, one should carefully consider the
injection site and dose and frequency of the DC vaccine. The few
DC vaccinations studies after allo-HCT have shown to be safe as
well as promising with regard to both clinical and immunolog-
ical responses. As such the field is open for further exploration
especially with the current advances in possible combination ther-
apies to further reduce the relapse rates and improve the survival
rates.
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