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Toll-like receptors (TLRs) recognize
pathogen-associated molecular patterns
(PAMPs) and activate innate immune cells
to induce cytokines and co-stimulatory
molecules such as CD40 and to enhance
antigen presentation to T cells (1) that,
upon activation, can either eliminate or
support the pathogen (2). Herein, we
propose that this duality in TLR func-
tions results from their cross-talk with
CD40. While all TLRs enhance CD40
expression, CD40 augments the expres-
sion of only TLRY (3). As both CD40
and TLRY induce expression of IL-12, a
cytokine that induces the IFN-y secreting
Thl cell differentiation (4), the CD40-
TLRY cross-regulation implies a positive
feedback loop. By contrast, TLRI-TLR2
heterodimer down-regulates TLR9 expres-
sion (5) and antagonizes the development
of Thl response but favors the differ-
entiation of regulatory T (T-reg) cells
(Pandey et al., unpublished observation).
Low CD40 expression levels in dendritic
cells also promote T-reg cell differentiation
(6). This duality can emerge from the shar-
ing of signaling molecules. CD40 induces
TRAF6-mediated, ERK-1/2-dependent IL-
10 (7), which can inhibit the TLR-induced
p38-MAPK activation and IL-12 pro-
duction, antagonizing Thl development.
CD40-induced TRAF3-dependent p38-
MAPK activation (7) can synergize with
the TLR-activated p38-MAPK-dependent
IL-12 production and Thl differentia-
tion. Using Leishmania infection, we show
that the TLR-CD40 cross-talk can induce
contrasting  anti-leishmanial immune
responses.

Leishmania, a protozoan parasite, lives
in macrophages. Leishmania expresses
lipophosphoglycan (LPG), proteoglycans,

flagellin, and profilin for possible recog-
nition by the host cell-expressed TLRs.
Recognition of the Leishmania-expressed
PAMPs results in differential immune
responses, which can either reduce or
exacerbate Leishmania infection. As TLRs
modulate the expression of CD40, a co-
stimulatory molecule whose expression
levels modulate anti-leishmanial T cell
responses, we propose that TLR-CD40
cross-talk significantly regulate the out-
come of an anti-leishmanial immune
response.

TOLL-LIKE RECEPTORS PRESENT
SIGNIFICANT DIVERSITY TO
IMMUNOREGULATION

A pathogen is perceived as a “danger” when
specific molecular patterns associated with
it [PAMPs or damage-associated molecular
patterns (DAMPs)] are recognized by a set
of TLRs, the mammalian homologs of toll,
the anti-fungal resistance-mediating recep-
tor in Drosophila (8, 9). Of the 13 TLRs,
TLR10 is not expressed in mice whereas
TLR11, TLR12,and TLR13 are absent from
human (10). The extracellular domain of
TLRs contains leucine-rich repeats (LRRs)
arranged in an alpha-helix and a beta-
pleated sheet. The LRR-rich loops impart
the flexibility to this domain required for
accommodating wide variety of chemically
different PAMPs (11). The intracellular C-
terminal domain has a toll/interleukin-1
receptor motif responsible for TLR sig-
naling (12). Some TLRs — TLR1, TLR2,
TLR4, TLR5, TLR6, TLR10, TLR11, TLR12
g — are located on cell surface to rec-
ognize the PAMPs on pathogen surface.
Other TLRs — TLR3, TLR7, TLR8, TLRY,
TLR13 — are located intracellularly on
endosomes, lysosomes, and endoplasmic

reticulum (13) to recognize the nucleic
acids from the degraded pathogen (14).
Thus, PAMPs on pathogen surface are first
recognized by the TLRs on host cell sur-
face. Once the pathogen is internalized and
degraded, the released nucleic acids are
recognized by the intracellular TLRs.

Recognition of the PAMPs by the TLRs
on host cell surface triggers intracellular
signaling that may result in one of the
two contrasting outcomes (Figure 1, top
panel). The Leishmania major parasites
that express low levels of LPG are unable
to reduce TLRY expression and are elimi-
nated by the macrophages (5). By contrast,
the virulent parasites express higher levels
of LPG, reduce TLR9 expression, and sur-
vive in macrophages (5). The lipoprotein
analogs with modified acylations are pref-
erentially recognized by TLR1 (15). Thus,
pathogens may modify PAMPs that dif-
ferentially bind to the TLRs on host cell
surface and signal to modulate the expres-
sion and function of intracellular TLRs.
Differential signaling may result in either
elimination or growth of the intracellu-
lar pathogen. Isolation of different strains
expressing modified PAMPs and assess-
ments of immune response to those mod-
ified PAMPs are required to verify this
hypothesis.

CD40 PLAYS DUAL
IMMUNOREGULATORY ROLES IN
LEISHMANIA INFECTION

CDA40 is expressed on macrophages, den-
dritic cells, inflamed tissue histiocytes,
and endothelial cells (16). CD40 signals
though NF-kB to regulate the production
of IL-12 (17), a pro-inflammatory cytokine
required for Thl differentiation (4). IL-
4 is the cytokine that is required for the
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FIGURE 1 | TLR-CD40 cross-talk may result in one of two alternative
possibilities. As the pathogen enters its host, it is recognized by cell
surface TLRs. Depending on the PAMP-TLR interaction, the TLR may
trigger signals with one of two possible fates of the pathogen. (A) In case
of anti-inflammatory responses, the pathogen degradation inside the cell
is impaired leading to less release of the pathogen nucleic acids. As a
result, the intracellular TLRs are not optimally activated. The immune
response against the pathogen is suppressed causing establishment of
the infection. In case of Leishmania infection, CD40 signaling through
p38-MAPK is suppressed. (B) Alternatively, where the signaling results in
pro-inflammatory response, the intracellular pathogen is degraded and the

l 1 1 l “ Pathogen

intracellular TLRs are optimally activated. In L. major infection, the
host-protective function of CD40 involves strong p38-MAPK activation
with resultant I-12-dependent Th1 response. The thicker arrows in (A,B)
represent the dominant signaling. (C) Possible feedback loops are
proposed. TLRs increase CD40 expression but CD40 enhances the
expression of only TLR9, an intracellular TLR that recognizes CpG motifs in
pathogen DNA. This can be viewed as a positive feedback loop for
enhancing 1112 production and Th1 response. The other arm of the loop is
the TLR-activated MHC-II expression, which is linked to CD40 expression
and DC maturation. This is also required for a stronger and prolonged
immune response against a pathogen.

differentiation of Th2 cells, which pro-
duce IL-4, IL-5, and IL-13 (18). As a func-
tion of the strength of its stimulation,
CD40 induces ERK-1/2-dependent IL-10
production (7). IL-10 expressed under
MHC class-1I promoter but not under IL-
2 promoter aggravated Leishmania infec-

of T-reg cells.

blockade of CD40-CD40L interaction on
myeloid-derived suppressor cells (MDSCs)
suppresses expansion of T-reg cells (23)
suggesting CD40-induced dual regulation

It is shown that in response to higher
doses of its ligand, CD40 signals from the

cascade of kinases, wherein the reciprocity
is incorporated by two feedback loops
between p38-MAPK and syk and between
ERK-1/2 and lyn (26). Thus, although the
mechanism of the duality in CD40 func-
tions is established, how CD40 regulates the
contrasting fates of T-reg cells remains to
be elucidated.

tion suggesting that the macrophage or
the dendritic cell expressed IL-10 inhib-
ited Th1 response (19). In L. major infec-
tion, the fate of the parasite is deter-
mined not only by Th1/Th2 balance but
also by T-reg cells (6, 20-22) that produce
IL-10, inhibiting Th1 differentiation but
promoting infection (20-22). While low
levels of CD40 expression on dendritic cells
are required for T-reg cell expression (6),

cholesterol-rich domain through lyn, PKC-
B,and p38-MAPK to induce IL-12 produc-
tion whereas in response to lower doses
of the ligand, the same receptor signals
from the cholesterol-poor domain through
syk, PKC-¢, and ERK-1/2 to induce IL-
10 production; ERK-1/2 inhibition results
in enhanced activation of p38-MAPK and
vice versa (7, 24-26). CD40 signals reci-

procally through a bimodularly arranged NF-kB.

FUNCTIONAL PLASTICITY IN TLRs

Toll-like receptors bind to their respec-
tive ligands and dimerize before recruit-
ing the adaptor molecules — MyDS88,
TIRAP/MAL, TRIF, and TRAM. MyD88
and TIRAP/MAL belong to the MyD88-
dependent pathway and signal through

TRIF and TRAM constitute the
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MyD88-independent pathway. Only TLR3
signals through MyD88-independent path-
way and only TLR4 signals through both
pathways (27). TRAF6 is another adap-
tor that mediates the TLR signals (27).
The signals finally converge on MAPKs
and activate different transcription factors
that effectuate the gene expressions (27).
TLRs are differentially involved in T cell
activation and T-reg cell development. For
example, the T cell-expressed TLR4 pro-
motes the suppressive function of T-reg
cells whereas TLR6 abrogates its suppres-
sive function (28). Thus, TLR4 and TLR6
act antagonistically to each other in reg-
ulating T-reg cell functions. By contrast,
TLR2 alone plays contradictory roles in T-
reg cell expansion and in its suppressive
function (29-31).

Among the TLRs, TLR2 represents a
unique receptor, as it heterodimerizes
with TLR1 or TLR6 or with TLR10, in
human (32). The heterodimers broaden
the repertoire of PAMPs recognized and
may elicit different effector functions,
which can even be counteractive. Some
TLR2 ligands — arabinosylated lipoarabi-
nomannan and lipoteichoic acid — induce
pro-inflammatory responses (33, 34) but
LPG, another TLR2 ligand, induces anti-
inflammatory responses (5, 35, 36). The
difference may result from the nature of
the heterodimers recognizing the PAMPs.
The TLRI/TLR2 heterodimer induces
pro-inflammatory response whereas the
TLR2/TLR6 heterodimer induces anti-
inflammatory response or vice versa [(37);
Pandey et al., unpublished results]. Besides
forming heterodimers, TLR2 may form
homodimer too. For example, SitC, a
triacylated lipoprotein from Staphylococ-
cus aureus, can induce cytokine response
in the TLR1/TLR6-deficient macrophages
(38). Although TLR2-TLR10 hetero-
dimerization is a theoretical possibility,
it appears unlikely because neither mice
nor macrophages express TLR10. Although
TLR1 and TLR6 cannot possibly recog-
nize ligands or trigger signals on their
own, their relative levels of expressions in
a cell can determine the constitution of
the predominant TLR2 heterodimer. The
increased TLR2 expression in L. major-
infected macrophages promotes TLR2
homo-dimerization, which is accentuated
due to reduced TLR2-TLR6 association
(Pandey et al., unpublished observation).

In this case, because TLR2 homodimers
are predominant and recruit primarily
MyD88, TLR1-TLR2 and TLR2-TLR6 het-
erodimers may not be able to recruit
enough MyD88. As the MAPKs and the
transcription factors mediate TLR signal-
ing (3, 39-41), the specificity, amplitude,
and nature of the response will thus depend
on the relative usage of these signaling
intermediates. Thus, the plasticity in the
TLR2-mediated recognition of PAMPs and
elicitation of immune responses depend on
the variations in the chemical structures
of PAMPs, nature of TLR-PAMP inter-
action, recruitment of adaptor molecules,
and competition between the TLRs for the
available adaptor molecules.

TLR AND CD40 CROSS-TALK
DETERMINES THE NATURE OF IMMUNE
RESPONSES
The response to an infection starts with
the recognition of the PAMPs, perhaps,
by multiple TLRs in tandem. Given the
wide variety of PAMPs they recognize, the
most probable TLRs to operate in tan-
dem are TLR1, TLR2, TLR6, TLR10, and
TLR4. In case of flagellated pathogens,
TLR5 may recognize flagellin. The advan-
tage of simultaneous trigger from TLR2
and TLR3 or TLR4 is that both MyD88-
dependent and MyD88-independent path-
ways are involved increasing the overall
strength and repertoire of TLR-derived
signals. The combinations of TLRs may
thus decide the nature of the signal and
final effector functions (42) such as CD40
expressions that link the innate immune
response to the adaptive immune response.
In peritoneal macrophages, CD40
expression in response to poly-I:C, LPS,
and CpG, the TLR3, TLR4, and TLR9
ligands, respectively, is substantially
enhanced, whereas CD40 stimulation
enhances the expression of only TLR9
(3). L. major DNA induces IL-12 through
TLRY (43). CpG and CD40-ligand induced
more IL-12 production from macrophages
(3) and splenic dendritic cells (44) than
that induced by either agent alone. On
the other hand, low strength CD40 signal
may synergize with the signal from TLR1-
TLR2 heterodimers to strongly induce
IL-10, which can inhibit p38-MAPK acti-
vation (Figure 1A). The CD40-induced
IL-10 self-limits the CD40-induced p38-
MAPK activation and anti-leishmanial

functions (24). A possible feedback that
comes into play in this CD40-TLR synergy
is the quenching of TRAF6 availability to
CD40 to result in less CD40-induced IL-10
production and relieving the autocrine IL-
10 mediated inhibition of CD40-induced
p38-MAPK activation and IL-12 produc-
tion. Alternatively, exhaustion of TRAF6
by simultaneous signaling by multiple
TLRs may divert a strong CD40 signaling
primarily through TRAF3 to result in p38-
MAPK activation and IL-12 production
(Figure 1B). Thus, the enhanced IL-12
production as a result of TLR9 and CD40
synergy may represent a positive feedback
loop between TLR9 and CD40 (Figure 1C).
These reports imply that the TLR-CD40
cross-talk modulates the ensuing adaptive
immune response.

Several reports support that TLRs can
modulate CD40-mediated activation of
adaptive immune system. PAMPs induce
DC maturation by up-regulating MHC-
II, CD40, and CD80/CD86 expressions
(45) that are required for robust T cell
responses. Because the binding of intracel-
lular MHC-II with Btk via CD40 is required
for sustained TLR activation, MHC-II defi-
ciency impaired the TLR-induced produc-
tion of pro-inflammatory cytokines and
type-I interferon in macrophages and DC
(46). CpG supported the survival and mat-
uration of human plasmacytoid DC and, in
synergy with CD40, induced T cells polar-
ization to Th1 cells (47). Combined stim-
ulation through TLR7 and CD40-induced
CD8* T cells expansion more than that
observed with either agent alone (48).
These reports indicate that CD40 and TLRs
synergize to affect DC maturation, acti-
vation, survival, antigen presentation, and
differentiation of CD4* and CD8™ T cells.

TLR-CD40 CROSS-TALK AS A NEW

PARADIGM FOR IMMUNOREGULATION
The TLR-CD40 cross-talk exemplifies that
one of the fundamental physiological
principles of maintaining homeostasis is
the plasticity in receiving and process-
ing signals. The signals from TLRs and
CD40 modulate each other’s expression.
Both receptors possess signaling plas-
ticity modulating a range of effector
functions (Figure 1) that affect both
innate and adaptive immune systems. As
pathogens sequentially involve cell surface
and intracellular TLRs, the collective TLR
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activation or inhibition determines the
CD40 expression levels. These evidences
prompt a new model for the evolution of
immune response. According to this model,
TLR activation influences CD40 expression
and signaling, resulting in both TLR and
CD40 simultaneously signaling in the later
phase of PAMP-induced innate immune
response. As CD40 enhances TLR9 expres-
sion, TLRY, perhaps, through induction
of IL-12 or further increase in CD40
expression, may further modulate the T
cell response. Thus, a continued feedback
between the TLR and CD40 during an
immune response may finally decide the
outcome of an infection. However, further
verification of this model awaits detailed
investigation.
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