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The biological activities of human IgG antibodies predominantly rely on a family of
receptors for the Fc portion of IgG, FcγRs: FcγRI, FcγRIIA, FcγRIIB, FcγRIIC, FcγRIIIA,
FcγRIIIB, FcRL5, FcRn, and TRIM21. All FcγRs bind IgG at the cell surface, except
FcRn and TRIM21 that bind IgG once internalized. The affinity of FcγRs for IgG is deter-
mined by polymorphisms of human Fc 4γRs and ranges from 2×10 to 8×107 M−1.
The biological functions of FcγRs extend from cellular activation or inhibition, IgG-
internalization/endocytosis/phagocytosis to IgG transport and recycling. This review
focuses on human FcγRs and intends to present an overview of the current understanding
of how these receptors may contribute to various pathologies. It will define FcγRs and
their polymorphic variants, their affinity for human IgG subclasses, and review the associ-
ations found between FcγR polymorphisms and human pathologies. It will also describe
the human FcγR-transgenic mice that have been used to study the role of these receptors
in autoimmune, inflammatory, and allergic disease models.

Keywords: IgG receptors, transgenic mice, anaphylaxis, autoimmune diseases, genetic polymorphisms and disease
association, human IgG receptors

INTRODUCTION ON HUMAN FcγRs: DEFINITION AND BASIC
FUNCTIONS
Human myeloid cells, NK cells, and B cells are equipped with a
variety of receptors that enable their interaction with monomeric
or aggregated immunoglobulins, antigen–antibody immune com-
plexes, and opsonized (antibody-coated) particles, cells, or sur-
faces. Most of these receptors bind the Fc portion of immunoglob-
ulins (receptors for the Fc portion of immunoglobulins, FcR) and
endow these cells with the capacity to interact with IgM, IgA, IgG,
and/or IgE. This review will focus on IgG-binding human FcRs,
FcγRs.

Humans express nine FcγRs: the six classical FcγRs, FcγRI,
FcγRIIA, FcγRIIB, FcγRIIC, FcγRIIIA, and FcγRIIIB; as well as
FcRn, FcRL5 (1, 2), and TRIM21 (3) (Figure 1). These FcγRs
all bind IgG on the surface of the cells expressing them, except
FcRn (4, 5) and TRIM21 (6, 7) that bind IgG once internal-
ized. Notably, all IgG receptors bind at least two human IgG
subclasses, albeit with varying binding affinity: the association
constants (KA) of IgG–FcγR interactions range from 8× 107 down
to 2× 104 M−1 (8) (Figure 1). Historically, FcγRs were catego-
rized as either low-affinity receptors that can only bind IgG when
present in an immune complex, aggregated, or opsonized; or high-
affinity receptors that can also bind free or monomeric IgG. This
terminology has become rather obsolete considering reports of
high- and low-affinity interactions for a single receptor toward

different Ig subclasses. Furthermore, although the prevailing belief
was that occupancy of high-affinity receptors with pre-bound
monomeric IgG prevents their participation in immediate IgG-
dependent reactions; this has recently been refuted in vivo (9).
Adding to this complexity,human FcγR polymorphisms that mod-
ulate affinity for some human IgG subclasses have been described
(8) (refer to part 2; Figure 1).

Human FcγR expression on different cell types has been fairly
comprehensively described, mostly by the use of FcγR-specific
monoclonal antibodies (mAb) but also from data using mRNA
profiling (Figure 2). Generally, the following observations can be
made: hFcγRI (CD64) is restricted to monocytes/macrophages
and dendritic cells and is inducibly expressed on neutrophils (10)
and mast cells (11); hFcγRIIA (CD32A) is expressed on all myeloid
cells but not on lymphocytes; hFcγRIIB (CD32B) is expressed
at high levels only on B cells (12) and basophils (13). It is also
expressed on tissue macrophages and dendritic cells (12), but only
at low levels on 20% of circulating monocytes and 4% of cir-
culating neutrophils (12, 14), and is not expressed on primary
skin mast cells (15); hFcγRIIC (CD32C; refer to Section “Human
FcγR Polymorphisms”for its“stop13”polymorphism) is expressed
on NK cells (16), monocytes, and neutrophils (17); hFcγRIIIA
(CD16A) is expressed on NK cells and monocytes/macrophages;
hFcγRIIIB (CD16B) is highly expressed on neutrophils and at low
levels on some basophils (18). TRIM21 (aka Ro52) was described
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FIGURE 1 | Human IgG receptor family. Alleles are identified by the
amino acid variant in the protein (e.g., H131), or by the name of the
allelic variants (NA1, NA2, or SH). Binding affinities for the various
immunoglobulin subclasses are given as M−1. High-affinity
interactions are indicated in bold. –, no binding; ND, not determined;

\No allelic variants have yet been described that affect binding affinity.
#Associates with integrins. ITAM, immunoreceptor tyrosine-based
activation motif; γ2, dimer of FcRγ subunits; ITIM, immunoreceptor
tyrosine-based inhibitory motif; GPI, glycosyl-phosphatidylinositol;
β2m, β2-microglobulin.

to be widely expressed among lymphoid and myeloid populations,
but also on endothelial cells (19). FcRL5 has been reported to be
restricted to B cells (2).

These expression patterns highlight that hFcγRIIA is the only
activating IgG receptor constitutively expressed by mast cells,
basophils, neutrophils, and eosinophils, and that FCRL5 is the
only activating IgG receptor constitutively expressed by B cells.
Importantly, signal transduction events induced by human acti-
vating IgG receptors may be negatively regulated by hFcγRIIB
only in B cells, dendritic cells, and basophils, and rare fractions
of monocytes and neutrophils. Indeed, mast cells, NK cells, and
most neutrophils and monocytes do not express this inhibitory
receptor. hFcRn has been reported in dendritic cells, mono-
cytes/macrophages (21), neutrophils (22), and endothelial cells
(23), but expression on platelets and mast cells has not been
examined so far.

These patterns correspond to the expression of FcγRs in healthy
individuals. These may be modified during pathological condi-
tions or following therapeutic treatments. Certain cytokines for
example have been reported to up-regulate or down-regulate some
hFcγRs; e.g., B cells express higher levels of hFcγRIIB following
IFN-γ but lower levels following IL-4 stimulation, whereas oppo-
site effects have been reported for monocytes [reviewed in Ref.
(24)]. On the latter cells, expression of hFcγRIIA is increased fol-
lowing IFN-γ and decreased following IL-4 stimulation (25). IL-3
stimulation, however, induces higher expression of both recep-
tors (activating hFcγRIIA and inhibitory hFcγRIIB) on basophils

(13). Mucosal mast cells express hFcγRI upon IFN-γ stimulation
(11). Surprisingly, IL-3 stimulation of primary monocytes did
not modify hFcγRI expression, but increased its ability to bind
IgG-immune complexes and to induce intracellular activation
signals (26).

Activating FcγRs signal through an immunoreceptor tyrosine-
based activation motif (ITAM) that is either present in their
intracytoplasmic domain or in associated signaling subunits, such
as the FcRγ chain (Figure 1), the FcRβ chain (exclusively in
mast cells and basophils), or the CD3ζ chain (exclusively in NK
cells). These ITAM-containing structures allow FcγRs, once aggre-
gated by multimeric ligands, to activate signaling cascades via
SRC family kinases and spleen tyrosine kinase (SYK) leading to
cell activation, cytokine/chemokine production, and cell migra-
tion (27–29). The inhibitory receptor FcγRIIB possesses instead
an immunoreceptor tyrosine-based inhibition motif (ITIM) in
its intracytoplasmic domain (30), which allows this receptor,
once co-engaged with an activating FcγR, to recruit the inosi-
tol polyphosphate-5-phosphatase SHIP1 (31) that counteracts the
signaling cascades initiated by activating FcγRs (24). FcRL5 pos-
sesses both an ITAM and two ITIMs; however, it has been reported
to exert mainly negative regulatory functions (32). IgG receptors
devoid of both ITAM and ITIM may induce cell activation by asso-
ciating with other receptors at the cell membrane, for example the
glycophosphatidylinositol-anchored FcγRIIIB (33, 34) associates
with integrins (35); or by activating transcription pathways or
proteasome-related mechanisms as does TRIM21 (7, 36).

Frontiers in Immunology | Immunotherapies and Vaccines May 2014 | Volume 5 | Article 254 | 2

http://www.frontiersin.org/Immunotherapies_and_Vaccines
http://www.frontiersin.org/Immunotherapies_and_Vaccines/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gillis et al. hFcγRs: polymorphisms, transgenic mice, and disease

FIGURE 2 | Human IgG receptor expression pattern. + indicates
expression; (+), inducible expression; ±, very low percentages or
rare subsets express the receptor; −, no expression; and NA, not
analyzed; Mono/Macro, monocytes, and/or macrophages. §Refer

to the review by Guilliams et al. for specific expression on human
DC subtypes (20). \In Fcgr2c-ORF persons (17). #Detectable and
functional expression in non-conventional Fcgr2c-Stop
persons (17).

Internalization of antibodies, and of the antigens they are
bound to, represents the only shared function of IgG receptors
expressed at the cell surface (that is, all except FcRn and TRIM21),
whether ITAM-bearing, ITIM-bearing, or neither. FcγRs thereby
enable antigen capture and internalization by all FcγR-expressing
nucleated cells, as well as phagocytosis of opsonized bacteria,
viruses, or cells by phagocytes. FcRn is the only receptor enabling
transcytosis of IgG or IgG-IC by polarized cells (23). Enhanced
uptake of antibody-bound antigen enables antigen-presenting
cells to activate antigen-specific T cells considerably more effi-
ciently than free antigen (37), signifying the pivotal role of FcγRs
in the initial phase of humoral and cellular immune responses.
Receptors that bind IgG only when it has already been internal-
ized, FcRn (the topic of this review series) and the ubiquitously
expressed intracellular receptor TRIM21, may possibly contribute
to this phenomenon [reviewed in Ref. (20)].

HUMAN FcγR POLYMORPHISMS
DEFINITIONS
The multiplicity of human FcγRs (Figure 1) is increased by a
series of genetic polymorphisms, for which we will describe herein
only those leading to known functional modifications. These are
summarized in Table 1.

FcγRIIA
A polymorphism resulting in the presence of a histidine or
an arginine residue at position 131 may also be referred to

as low-responder (H131) or high-responder (R131) (38). The
FcγRIIA-H131 allotype was originally reported to allow binding
to IgG2 (53), subject to ethnic variation (54, 55), and was later
described to also have increased binding for IgG3 (39). More
recently, we have identified that only the binding to IgG1 and
IgG2 are increased for H131 compared to R131 (8).

A novel splice variant of FCGR2A, FcγRIIA-exon 6*, contain-
ing an expressed cryptic exon 6* was identified in 2013 (41),
and is associated with increased neutrophil sensitivity to IgG
stimulation (56).

FcγRIIB
Single-nucleotide polymorphisms (SNPs) at positions 386 [IIB-
386 (G/c)] and 120 [IIB-120 (T/a)], collectively constitute the 2B.4
promoter haplotype, which displays increased binding capacity for
transcription factors GATA4 and Yin-Yang1, resulting in increased
promoter activity and higher expression of FcγRIIB on monocytes,
B lymphocytes, neutrophils, and myeloid DCs (24, 42).

A polymorphism encoding an isoleucine to threonine substi-
tution at position 232 in the transmembrane domain of FcγRIIB
(T232) may disable receptor function via exclusion from lipid rafts
(43, 57).

FcγRIIC
In 20% of individuals FCGR2C encodes for a glutamine at posi-
tion 13 (Q13 or ORF) and FcγRIIC is expressed; but in 80% of
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Table 1 | Summary of human FcγR polymorphisms.

Receptor Variant Effect Reference

FcγRIIA H/R131 H131: → binding of IgG2 and IgG1 (8, 38–40)

→ Immune complex-opsonization

FcγRIIA-exon 6* → Activation following IgG stimulation (41)

FcγRIIB −386G/c → promoter activity: thus, → FcγRIIB expression (24, 42)

−120T/a

I/T232 T232: → inhibitory function (43)

FcγRIIC Q/stop13 Q13: expression on NK cells, monocytes, neutrophils (17)

→ IgG-induced cell activation

CNV Correlation with protein expression levels (44)

FcγRIIIA V/F158 V158: → binding to IgG1, IgG2, IgG3 (8, 45, 46)
→ Cell activation

CNV Correlation with protein expression levels; impaired NK cell cytotoxic function (47)

FcγRIIIB NA1/NA2/SH NA1: → phagocytosis of IgG-immune complexes (48–51)

SH: → FcγRIIIB expression levels

CNV Correlation with protein expression levels (52)

individuals a SNP generates a stop codon (stop13), in which case
FCGR2C represents a pseudogene (16).

A subset of individuals carrying FCGR2C-ORF do not express
FcγRIIC due to splice-site mutations and loss of exon 7. Inversely,
this polymorphism leads to the expression of inhibitory hFcγRIIB
expression on NK cells that has been shown to negatively regulate
IgG-induced NK cell activation (17).

FcγRIIIA
A SNP determines the presence of a valine or phenylalanine at posi-
tion 158 (45). The FcγRIIIA-V158 variant demonstrates increased
affinity for IgG1, IgG2, and IgG3, and increased IgG-induced cell
activation and elimination of immune complexes (8, 46, 58).

FcγRIIIB
FcγRIIIB bears the neutrophil antigen (NA) in its membrane-
distal Ig-like domain, generating three variants termed NA1 (R36

N65 A78 D82 V106), NA2 (S36 S65 A78 N82 I106) (48, 59), and SH
(S36 S65 D78 N82 I106) (50) that do not demonstrate detectable
differences in affinity for hIgG subclasses (8). The NA1 allotype
was, however, reported to increase phagocytosis of IgG-opsonized
particles (49). The SH allotype has been associated with higher
FcγRIIIB expression levels (51).

Gene copy number variation (CNV)
Recognized as an important indicator for inter-individual differ-
ences, can alter the expression of activating IgG receptors. The
balance between activating and inhibitory FcγRs can therefore be
perturbed, altering cellular responses toward IgG-immune com-
plexes. CNV of FCGR2C, FCGR3A, and FCGR3B (Table 1) have
been shown to correlate with protein expression levels. Duplica-
tions of the gene encoding FCGR3B can lead to the expression
of the three different FcγRIIIB variants (NA1, NA2, and SH) in a
single individual (51). CNV in FCGR3A (deletion of one allele)
correlated with a reduced expression of FcγRIIIA on NK cells and

impaired cytotoxic function (47). Deletion of a large portion of
the FCGR locus, including FCGR2C and FCGR3B, also resulted
in abnormal expression of FcγRIIB on NK cells, presumably due
to deletion of upstream regulatory elements. Expression of this
inhibitory receptor enabled negative regulation of IgG-induced
NK cell activation (17). To the extent of our knowledge, CNV of
the FCGR2A and FCGR2B genes have not been reported (47).

ASSOCIATION WITH DISEASE SUSCEPTIBILITY AND/OR SUCCESS OF
ANTIBODY-BASED THERAPIES
Several FCGR polymorphisms modify the affinity between FcγRs
and human IgG, and therefore the efficacy of immune complex
clearance can be affected. Reduced immune complex clearance is
indeed a risk factor for diseases like Systemic Lupus Erythemato-
sus and Wegener’s granulomatosis (60, 61). Other polymorphisms
may favor detrimental inflammatory responses and thus predis-
pose to autoimmunity. Diseases that have been associated with
FcγR polymorphisms are presented in Table 1.

FcγR polymorphisms may also influence patients’ response
to treatment with intravenous immunoglobulin and therapeutic
mAb. Almost all mAb used in therapy are based on human IgG1
antibodies, either chimeric mouse/human or fully human, allow-
ing their interaction with all human FcγRs (8, 62). The first report
to assess the predictive value of FcγR polymorphisms in responses
to antibody therapies associated homozygous FCGR3A-V/V158

individuals with better clinical responses to anti-CD20 therapy
(Rituximab) in the treatment of non-Hodgkin lymphomas (63).
Homozygous FCGR3A-V/V158 individuals have since been found
to have improved biological responses to anti-CD20 therapy in
immune thrombocytopenia (64) and rheumatoid arthritis (RA)
(65); and anti-TNF-α therapy (Infliximab) to treat Crohn’s dis-
ease (66, 67); compared to carriers of one or two FCGR3A-F158

alleles. In arthritis patients, however, findings are controver-
sial regarding the association of FCGR3A polymorphisms with
clinical response to TNF-α inhibitors (infliximab, adalimumab,
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etanercept): although one study describes a better clinical response
in FCGR3A-F/F158 patients (68); another, larger study with a more
homogenous patient cohort found no association (69). Homozy-
gous FCGR3A-V/V158 individuals were more likely to experience
complete remission from immune thrombocytopenia following
medication, but conversely remission rates after splenectomy were
higher in homozygous FCGR3A-F/F158 or heterozygous individu-
als (70). The FCGR2A-H131 variant associates with susceptibility
to Kawasaki Disease (Table 1), whereas responsiveness to IVIG
therapy in Kawasaki Disease patients is strongly associated with
the FCGR3B genotype: the NA1 variant significantly decreases the
odds of an appropriate clinical outcome (71). Similarly, CNV of
both FCGR3B and FCGR2C were associated with Kawasaki Dis-
ease susceptibility and influenced IVIG treatment response (72).
Furthermore, the FCGR2B minor alleles (IIB-386c and IIB-120a)
conferring increased promoter activity were positively correlated
to IVIG therapeutic response, although with limited statistical
power over a small sample size (73). Each of these genetic asso-
ciations is also constrained by unequal polymorphic variation
between the different ethnic groups studied.

Altogether, particular FcγR polymorphisms have been
described to be associated with the induction or severity of
antibody-related disease, or patient responsiveness to antibody-
based therapies. Nonetheless one should keep in mind that most
FcγR-encoding genes are located within the 1q23 locus (FCGR2A,
FCGR3A, FCGR2B, FCGR2C, FCGR3B) and may display a high
degree of linkage disequilibrium, as reported for FCGR2A and
FCGR3A (74) and for FCGR2C and FCGR3B (44). Association
studies of FcγR-encoding genes should therefore include analyses
of all FcγR-encoding genes from the 1q23 locus, and not focus on
one particular gene.

IN VIVO ROLES OF HUMAN FcγRs: LESSONS FROM MOUSE
MODELS1

TRANSGENIC MOUSE MODELS EXPRESSING hFcγR(s)
Transgenic mouse studies have greatly enhanced our understand-
ing of the in vivo function of hFcγRs. In particular, these stud-
ies have highlighted the respective contributions of hFcγRs to
antibody-mediated inflammatory and allergic diseases (refer to
Section “Understanding the Role of hFcγRs In vivo Using Trans-
genic Mouse Models: Illustrated in Autoimmune, Inflammatory,
and Allergic Diseases”). Over the last two decades, various trans-
genic mouse strains have been generated that carry single or
multiple hFcγR-encoding genes (Table 2). Transgenic strains were
initially generated on a wild-type mouse background; however,
later studies have examined transgene expression in mice defi-
cient for multiple endogenous mFcγRs, to specifically study the
function of the transgenic human receptor.

The common approach to reproduce hFcγR expression pat-
terns in mice is to use the genuine human promoter to drive
transgene expression (Table 2). Whereas this strategy was suc-
cessful for hFcγRIIAtg and hFcγRIIIBtg mice, both hFcγRItg mice
and hFcγRIIBtg mice exhibit somewhat abnormal expression [dis-
cussed in Ref. (62)]. hFcγRItg mice, for example, constitutively

1Note: for the sake of clarity, this section will use the terminology “hFcγR” for
human IgG receptors, and “mFcγR” for mouse IgG receptors.

express substantial amounts of this receptor on neutrophils (37),
while in humans hFcγRI is only inducibly expressed on neu-
trophils in contexts of inflammation, infection and during partic-
ular therapies [reviewed in Ref. (62)]. An alternative strategy con-
sists of using a cell-specific promoter to drive hFcγR expression.
hFcγRIIAtg, hFcγRIIIBtg, or double-transgenic mice were gener-
ated using the human MRP8 promoter to express these receptors
on neutrophils and, abnormally for hFcγRIIIB, on a proportion
of monocytes (34). Finally, efforts made to cross the five single
hFcγR-transgenic mouse strains with mFcγRnull mice – lacking
mFcγRI, IIB, III, and IV – yielded a mouse model expressing most
human IgG receptors – hFcγRI, IIA, IIB, IIIA, and IIIB – that
preserves most human expression patterns (119) (Table 2).

UNDERSTANDING THE ROLE OF hFcγRs IN VIVO USING TRANSGENIC
MOUSE MODELS: ILLUSTRATED IN AUTOIMMUNE, INFLAMMATORY,
AND ALLERGIC DISEASES
FcR-mediated uptake of immune complexes and subsequent anti-
gen presentation is a critical aspect of the immune response to
foreign pathogens. Targeting of antigen to hFcγRI in hFcγRItg

mice induced a strong antibody response, suggesting that hFcγRI
on myeloid cells is capable of mediating antigen uptake and pre-
sentation in vivo (37, 120, 121). Various studies have demonstrated
the capacity for hFcγRI and hFcγRIIIA to mediate cytotoxicity
in the form of anti-tumor activity when engaged by bi-specific
antibodies or antibodies with enhanced FcR binding, highlighting
the effectiveness of such engineered antibody therapeutics in vivo
(122–125). The role of FcγR in mediating anti-tumor therapies
has recently been well-reviewed elsewhere (126, 127) and will not
be discussed further in this review. hFcγR-transgenic mice have
been useful both in understanding the in vivo function of these
receptors and dissecting pathological mechanisms of disease; for
illustration this section will describe results obtained in models of
autoimmune thrombocytopenia, anaphylaxis, inflammation, and
RA. Clearly, the biological responses to immobilized IgG are a
function of their location, structure, and deposition, determin-
ing the subsequent recruitment and FcγR-mediated activation of
immune cells: hFcγR-transgenic mice can assist us also in under-
standing the cell-specific role of FcγR in recruitment and immune
complex clearance.

Autoimmune thrombocytopenia
Mice deficient for the FcRγ-subunit that is necessary for the
expression of all mouse activating FcγRs are resistant to antibody-
mediated platelet destruction, demonstrating the importance of
activating FcγRs in this model of autoimmune thrombocytopenia
(128). Using transgenic mice, both hFcγRI and hFcγRIIA were
found to be independently sufficient for platelet clearance (9, 129).
In hFcγRItg mice, thrombocytopenia was mediated by mono-
cyte/macrophages outside of the spleen (9), whereas in hFcγRIIAtg

mice, splenectomy was found to provoke a more severe phenotype
of thrombosis and systemic shock when thrombocytopenia was
induced by activating anti-platelet antibodies (130). Importantly,
hFcγRIIA is the only FcγR expressed on platelets, in humans and
hFcγRIIAtg mice. It is likely, therefore, that the presence of this
FcγR on the platelets themselves contributes to antibody-induced
intravascular platelet activation that is most efficiently resolved
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Table 2 | Association of FcγRs receptor variants with chronic inflammatory or immunological diseases.

Gene SNP Disease Reference

FCGR2A H131 GBS, Kawasaki disease, idiopathic pulmonary fibrosis, and, for homozygous genotypes, MG,

and children chronic ITP

(75–79)

R131 Bronchial asthma and allergic rhinitis, Still disease, Behçet’s disease, refractory ITP, WG, MS,

SLE, lupus nephritis, antiphospholipid syndrome, giant cell arteritis, rheumatic fever, ITP, and

IgA nephropathy

(55, 60, 80–94)

FcγRIIa-exon 6* Anaphylaxis in patients with hypogammaglobulinemia, common variable immunodeficiency (41)

FCGR2B T232 SLE, anti-GBM disease (57, 95–99).

−386C/−120A SLE, chronic inflammatory demyelinating polyneuropathy (42, 100, 101)

FCGR2C CNV ITP, Kawasaki disease (44, 72)

FCGR3A F158 SLE, Crohn’s disease, Behçet’s disease, severe GBS, bullous pemphigoid, WG relapses, RA,

and for homozygotes, chronic ITP, and nephritis

(45, 60, 67, 70, 77, 93,

102–105)

V158 For homozygotes: RA susceptibility and severity, idiopathic inflammatory myopathies, and IgA

nephropathy

(90, 106–108)

CNV Anti-GBM disease, RA (109, 110)

FCGR3B NA1 For homozygotes: anti-neutrophil cytoplasmic antigen systemic vasculitis, chronic ITP in

children, and severe course of MG

(75, 77, 111, 112)

NA2 SLE, severe GBS, Behçet’s disease, IgA nephropathy, and MS (85, 93, 105, 111, 113)

SH Alloimmune neonatal neutropenia, transfusion reactions (50)

CNV Glomerulonephritis, SLE, systemic autoimmunity, RA, idiopathic pulmonary fibrosis, systemic

sclerosis, and Kawasaki disease

(52, 72, 114–118)

GBM, glomerular basement membrane; GBS, Guillain–Barré syndrome; ITP, idiotypic thrombocytopenic purpura; MG, myasthenia gravis; MS, multiple sclerosis; RA,

rheumatoid arthritis; SLE, systemic lupus erythematosis; SNP, single nuclear polymorphism; WG, Wegener’s granulomatosis.

by phagocytes in the spleen. These findings have implications for
understanding human immune-mediated thrombocytopenic dis-
orders, such as heparin-induced thrombocytopenia/thrombosis
(HIT/T), a serious complication arising from the clinical use
of heparin. Using hFcγRIIAtg mice it was identified that anti-
bodies against heparin–platelet factor 4 complexes are responsi-
ble for hFcγRIIA-mediated platelet activation, thrombocytope-
nia, and thrombi formation in the lung vasculature (131, 132).
Similarly, thromboembolic complications from the use of mono-
clonal antibody therapies may be a result of hFcγRIIA-dependent
platelet activation due to circulating immune complexes (133,
134). Another important outcome of these mouse studies is that
the density of hFcγRIIA expression in the transgenic animal affects
the severity of antibody-induced disease (130), which has critical
ramifications for understanding differences in immune reactions
between individuals. Finally, a therapeutic intervention target-
ing the hFcγRIIA-signaling pathway proved successful for the
prevention of thrombocytopenia in hFcγRIIAtg mice (135).

Anaphylactic reactions
Individuals who have developed antibodies against a given aller-
gen can, upon re-exposure, develop a severe systemic allergic
reaction (anaphylaxis). Allergen re-exposure induces the rapid for-
mation of immune complexes that leads to cellular activation and
release of vasoactive mediators, which drives the phenotype of
systemic shock, including symptoms of hypotension and respira-
tory distress. Although anaphylaxis is classically attributed to an
IgE-mediated mast cell-dependent paradigm of allergic reactivity,
the same systemic symptoms can be reproduced experimentally

in mice by the transfer of specific IgG antibodies and allergen,
of preformed immune complexes (passive systemic anaphylaxis,
PSA), or by repeated immunization with an antigen prior to chal-
lenge (active systemic anaphylaxis, ASA). hFcγRI and hFcγRIIA
expressed in transgenic mice were each individually sufficient to
mediate PSA, the symptoms of which may be alleviated by pre-
treatment with blocking antibodies (9, 136). PSA mediated by
hFcγRIIA was found to be independent of mast cells and basophils,
but rather dependent on neutrophils and monocytes/macrophages
(136). Furthermore, hFcγRI and hFcγRIIA were identified as each
individually sufficient to mediate ASA in transgenic mice, result-
ing in both hypothermia and death (9, 136). hFcγRI-dependent
ASA required neutrophils and the release of platelet activating
factor (9). These data demonstrate that hFcγR expressed on neu-
trophils and monocytes can mediate fatal anaphylactic reactions
in vivo. Furthermore, in hFcγRItgIIAtgIIBtgIIIAtgIIIBtg mice (on
the mFcγRnull background), administration of aggregated IgG was
sufficient to trigger anaphylaxis (119). In addition, directly tar-
geting either hFcγRI or hFcγRIIA by injection of agonistic mAb
could induce anaphylaxis in transgenic mice (9, 136). Altogether,
these data support the notion that anaphylaxis may also occur in
humans in an hFcγR-dependent manner when allergen-specific
IgGs are produced by an individual.

Immune complex induced inflammation
The formation of immune complexes is a hallmark of many
human diseases, and their accumulation is an important trigger
of inflammation-induced tissue damage. Pathogenic antibodies
may bind directly to host cells, or immune complexes may deposit
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within tissues and trigger activation of local or circulating hFcγR-
expressing cells. Using hFcγRIIAtg mice, it was demonstrated
that hFcγRIIA expressed on skin mast cells could trigger their
activation following intradermal injection of immune complexes
resulting in an inflammatory reaction in the skin (136). Inflam-
mation of the airways due to local formation of immune com-
plexes is characterized by granulocyte infiltration, elevated levels of
myeloperoxidase, and subsequent damage to the lung epithelium,
mimicking symptoms of asthmatic disease in humans. Whereas
FcRγ-subunit−/− mice are resistant to IC-induced airway inflam-
mation, transgenic expression of either hFcγRI or hFcγRIIA was
sufficient to restore this antibody-mediated pathology (9, 136).

Rheumatoid arthritis
Rheumatoid arthritis is an autoimmune disease in which the for-
mation of immune complexes within the joints drives an inflam-
matory pathology. Autoantibodies directed against joint proteins
such as collagen type II or glucose-6-phosphate isomerase (GPI)
are found in RA patients, and the arthritis pathology may be mod-
eled in mice by either active immunization with joint-associated
components or by passive antibody transfer. hFcRntg mice pro-
vided direct evidence for the role of this receptor in serum per-
sistence and transport of antibodies into tissues (23). Indeed,
mFcRn−/− mice are resistant to passive arthritis induction, and
transgenic expression of hFcRn could restore arthritis susceptibil-
ity (137, 138); suggesting that greater IgG serum persistence may
have implications for many autoimmune and inflammatory condi-
tions (139). Surprisingly, transgenic expression of hFcγRIIA-R131

on a wild-type mouse background was associated with the spon-
taneous development of an RA-like joint pathology (140). Expres-
sion of hFcγRIIA indeed renders mice highly susceptible to various
models of arthritis (140, 141), even if its expression is purposely
restricted to neutrophils (142). Small inhibitors designed to bind
antagonistically to hFcγRIIA were found to be protective (143),
proposing a hFcγR-targeted therapy for RA. Besides hFcγRIIAtg

mice, other hFcγR-transgenic mice do not exhibit spontaneous
joint inflammation. Nevertheless, hFcγRItg mice demonstrated
that this receptor is sufficient to mediate arthritis induction in
transgenic mice, dependent on the presence of both neutrophils
and monocytes/macrophages (9). Therapeutic elimination of
inflammatory macrophages by an hFcγRI-targeting immunotoxin
inhibited the progression of experimental arthritis in hFcγRItg rats
(144), and resolved cutaneous inflammation (145).

Cell-specific function of FcγR
Studies using hFcγRtg mice have enabled the description of spe-
cific in vivo functions not only for these IgG receptors, but also
the cells that express them. Neutrophils are a particularly relevant
example: the two main human neutrophil IgG receptors, hFcγRIIA
and hFcγRIIIB, were found to individually and cooperatively pro-
mote IC-induced neutrophil recruitment and accumulation in the
tissues. hFcγRIIA alone, however, promoted associated injury and
inflammation in multiple models of antibody-dependent autoim-
munity. Importantly, neutrophil recruitment occurred despite the
absence of FcγR expression on other cell types such as mast
cells and macrophages, indicating a prominent role for hFcγRs
on neutrophils in IC-induced recruitment (34). Furthermore,

specialized functions may be attributed to these two neutrophil
FcγR: hFcγRIIIB seems to play an important role in homeostatic
clearance of immune complexes deposited within the vasculature,
whereas in a complex environment of immune complex deposi-
tion within the tissue and the vasculature, hFcγRIIA was required
for the formation of neutrophil extracellular traps (NETs) (146).
Collectively, these data in hFcγRtg mice demonstrate the value of
a transgenic approach to appreciate the role of human FcγR and
the cells expressing them.

FINAL CONSIDERATIONS
Although, it is tempting to draw conclusions from genetic asso-
ciation studies performed in humans, it would be overreaching
to delineate causal relationships between particular FcγR vari-
ants and antibody-mediated human disease. Importantly, all the
human FcγR-transgenic mouse strains that have been reported
express a single polymorphic variant of each FcγR (Table 3).
Thus, no comprehensive study can compare today the proper-
ties of a given polymorphism in mouse models of disease. Novel
mouse models based on the exchange of the entire FCGR locus
with that of humans may allow these comparison studies, or
transgenic/knock-in mice expressing different polymorphic vari-
ants than the transgenic mice already reported, but remain to be
generated. Still, when taking into account published data from
both humans and animal models (referenced in Tables 2 and 3)
several parallel observations have been described:

- Expression of hFcγRIIA (R131) renders mice susceptible to
arthritis and autoimmune pathologies including thrombocy-
topenia (Table 3); and expression of hFcγRIIA-R131 allotype
is similarly associated with inflammatory diseases, thrombocy-
topenia, and autoimmunity in humans (Table 2). The FcγRIIa-
exon 6* polymorphic variant, which confers increased neu-
trophil sensitivity to IgG stimulation (Table 1) was also associ-
ated with anaphylactic responses in patients upon IVIG therapy
(Table 2); consistent with data obtained in hFcγRIIAtg mice
indicating that neutrophils can contribute to IgG-dependant
anaphylaxis mediated by FcγRIIA.

- The NA1 allotypic variant of FcγRIIIB confers increased phago-
cytosis of IgG-immune complexes, and is associated with throm-
bocytopenia in humans; whereas FcγRIIIB-NA2 and CNV
are associated with inflammatory and autoimmune conditions
characterized by immune complex deposition. These data are
congruent with findings in NA2-hFcγRIIIBtg mice (Table 2),
demonstrating an important role for this receptor in mediat-
ing neutrophil recruitment as well as homeostatic clearance of
immune complexes.

While genetic association studies identify important risk factors
and inform on the involvement of FcγR in human disease; hFcγRtg

mice allow us to more precisely dissect pathological mechanisms,
and describe the role of human FcγR and the cells expressing
them in various clinically relevant pathologies. Together, these
data in humans and transgenic models highlight the contribution
of hFcγR to antibody-mediated diseases, and open avenues for
understanding pathogenic mechanisms. Such data will continue
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Table 3 | hFcγR-transgenic mouse models: description and main results obtained.

Promoter Expression Variant Strain In vivo findings Reference

CD64 (hFcγRI)

FCGR1 Monocytes, macrophages,

DCs, neutrophils

FVB/N Bi-specific mAb-dependent hFcγRI-triggered killing (in vitro) (122)
FVB/N Anti-hFcγRI mAb immunization elicits higher Ab responses (37)

FVB/N hFcγRI-mediated binding and phagocytosis of opsonized RBCs (147)

? Antigen targeting to hFcγRI increased vaccination potency (120)

FVB/N Weak antigen targeting to hFcγRI enhances immunogenicity (121)

FVB/N Immunotoxin targeting of hFcγRI reduces inflammation (145)

5KO (B6 F6) hFcγRI-dependent arthritis, thrombocytopenia, airway

inflammation, and anaphylaxis (PSA and ASA)

(9)

CD32A (hFcγRIIA)

FCGR2A Monocytes, macrophages,

neutrophils, eosinophils,

basophils, mast cells, DCs,

megakaryocyte, platelets

R131 FcRγ−/− (B6xSJL) Immune thrombocytopenia can be induced via hFcγRIIA (129)

FcRγ−/− (B6) hFcγRIIA-dependent thrombosis and shock (130)

hPF4tg (B6) hFcγRIIA-dependent Heparin-induced thrombocytopenia (131)

C57BL/6 Increased active and passive collagen-induced arthritis (140)

FcRγ−/− (B6xSJL) hFcγRIIA mediates experimental immune hemolytic anemia (148)

hPF4tg lo/hi (B6) PF4-hFcγRIIA-dependent Heparin-induced thrombocytopenia (132)

C57BL/6×SJL F1 hFcγRIIA-dependent platelet activation by Bevacizumab IC (133)

C57BL/6×SJL F1 Small chemical entities inhibit collagen-induced arthritis (143)

C57BL/6×SJL F1 hFcγRIIA-dependent platelet activation by CD40L IC (134)

C57BL/6×SJL F1 Increased sensitivity to autoimmune arthritis (141)

C57BL/6 Inhibition of hFcγRIIA-signaling pathway to inhibit thrombosis

and thrombocytopenia

(135)

FcRγ−/−,5KO hFcγRIIA induces anaphylaxis and airway inflammation (136)

C57BL/6J hFcγRIIA cooperates with integrin signaling in platelets (149)

MRP8 Neutrophils, some

monocytes

R131 FcγR−/− hFcγRIIA-dependent nephritis, Arthus reaction, neutrophil

recruitment and tissue injury

(34)

FcγR−/− Neutrophil hFcγRIIA is sufficient for arthritis induction (142)

FcγR−/− hFcγRIIA-dependent NETosis in Arthus reaction (146)

CD32B (hFcγRIIB)

FCGR2B B cells, splenic CD11c

DCs, monocytes,

neutrophils, eosinophils

I232 C57Bl/6 Crosslinking hFcγRIIB and CD19 suppresses humoral immunity

in systemic lupus erythematosus

(150)

FcRγ−/− or

FcγRIIB−/−

hFcγRIIB-enhanced immunostimulatory and anti-tumor activity

of chimeric mouse–human agonistic anti-CD40 Abs

(151)

CD40−/− Anti-tumor activity of agonistic anti-TNFR Abs requires

differential hFcγRIIB coengagement

(152)

CD16A (hFcγRIIIA)

FCGR3A NK cells, macrophages F158 B6xCBAFl Promoter/expression analysis (153)

? NK cells and ? ? SCID Glycoengineering of a humanized anti-EGFR Ab leads to

enhanced ADCC through hFcγRIIIA

(125)

CD16B (hFcγRIIIB)

FCGR3B Neutrophils ? B6xCBAFl Promoter/expression analysis (153)

MRP8 Neutrophils, some

monocytes

NA2 FcRγ−/− hFcγRIIIB is sufficient for NTS nephritis, cutaneous RPA

reaction and promotes neutrophil recruitment

(34)

FcRγ−/− hFcγRIIIB mediates neutrophil tethering to intravascular

immune complexes and their uptake

(146)

CD32A (hFcγRIIA) + CD16B (hFcγRIIIB)

MRP8 Neutrophils, some

monocytes

IIA: R131 FcRγ−/− hFcγRIIA and hFcγRIIIB cooperate to induce nephritis and

cutaneous Arthus reaction

(34)
IIIB:NA2

(Continued)
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Table 3 | Continued

Promoter Expression Variant Strain In vivo findings Reference

FcγR-HUMANIZED MICE (INTERCROSS OF hFcγRItg, IIAtg, IIBtg, IIIAtg AND IIIBtg MICE)

FCGR1 Please refer to single

transgenic mice

I mFcγRI−/− Antibody-mediated FcγR-dependent cell depletion (B cells, T

cells, platelets), and B16-F10 lung metastasis clearance

FcγR-mediated IC-induced systemic anaphylaxis

(119)
FCGR2A IIA-R131 mFcγRIIB−/−

FCGR2B IIB-I232 mFcγRIII−/−

FCGR3A IIIA-F158 mFcγRIV−/−

FCGR3B IIIB-?

hFcRn

FCGRT Intestine and ? mFcRn−/− hFcRn expression restores serum half life of hIgG in mFcRn−/−

mice

(154)

mFcRn−/−;

mFcRn−/−

FcγRIIB−/−

hIgG with engineered high FcRn binding affinity has enhanced

half life in vivo; inhibition of the binding of pathogenic Abs to

hFcRn ameliorates arthritis

(137)

mFcRn−/−

mβ2m−/−

hFcRntg hβ2mtg

Blocking hFcRn using a peptide antagonist increases hIgG

catabolism

(155)

6KO (B6 F6) hFcRn restores arthritis susceptibility in 6KO mice (138)

?, information unavailable in the original publication.

to impact on therapeutic choices and potentially identify new
interventional targets.
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