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The plasma cell proliferative disorders monoclonal gammopathy of undetermined signifi-
cance (MGUS) and malignant multiple myeloma (MM) are characterized by an accumulation
of transformed clonal plasma cells in the bone marrow and production of monoclonal
immunoglobulin. They typically affect an older population, with median age of diagno-
sis of approximately 70 years. In both disorders, there is an increased risk of infection
due to the immunosuppressive effects of disease and conjointly of therapy in MM, and
response to vaccination to counter infection is compromised. The underlying factors in a
weakened immune response in MGUS and MM are as yet not fully understood. A con-
founding factor is the onset of normal aging, which quantitatively and qualitatively hampers
humoral immunity to affect response to infection and vaccination. In this review, we exam-
ine the status of immune alterations in MGUS and MM and set these against normal
aging immune responses. We focus primarily on quantitative and functional aspects of
B-cell immunity. Furthermore, we review the current knowledge relating to susceptibility
to infectious disease in MGUS and MM, and how efficacy of conventional vaccination is
affected by proliferative disease-related and therapy-related factors.
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INTRODUCTION
Understanding immunosenescence has now emerged as a prior-
ity to counter immunological susceptibility to disease in normal
aging. Evidence is revealing that the B-cell compartment and
the associated immune synapse in the aging immune response
underlie an increased susceptibility to infections and decreased
response to vaccination (1). In age-related immunosenescence,
onset of hematological disease may further ameliorate immune
capacity, and a combination of these factors has as yet received
little attention. To address this, we focus on a non-malignant
B-cell clonal expansion in late age, on monoclonal gammopa-
thy of undetermined significance (MGUS) where plasma cells
accrue to <10% of the bone marrow. This condition pro-
vides a unique model to understand how immune susceptibil-
ity is impaired in aging by disease. The model extends and
acquires a further urgency when it is recognized that MGUS
almost invariably precedes transformation to malignant multiple
myeloma (MM) (2), in which humoral immune capacity dete-
riorates further. Currently however, how the efficacy of B-cell
response to generate protective humoral immunity diminishes
in these disease states is largely undefined. Understanding this
will be crucial for successful intervention with vaccination to
counter infections in MGUS and MM, and reduce the associ-
ated morbidity and mortality. Consequently, this review exam-
ines B-cell dysfunction in monoclonal disease spanning MGUS
to MM.

Monoclonal gammopathy of undetermined significance inci-
dence increases with advancing age. It is usually diagnosed by
chance and is characterized by the presence of a serum mono-
clonal immunoglobulin (M-protein) (<30 g/L). MGUS is present
in 3% of people over 50 years and up to 5% over 70 years (3, 4).
A newly described subtype of MGUS in which the secreted M-
protein lacks IgH to skew the free light-chain-(FLC)-ratio, defined
as light-chain MGUS, occurs in approximately 0.8% of the popula-
tion aged over 50 years to establish an overall prevalence of MGUS
to 4.2% in persons aged 50 years and older (5, 6). MGUS requires
clinical vigilance, to establish onset of MM. Seminal observations
by Landgren and co-workers established that MM patients invari-
ably had a previously recognized M-protein as MGUS during a
nationwide population-based cohort screen (2). These paradigm
shifting findings were substantiated by Weiss et al. by detection
of a monoclonal gammopathy in prediagnostic sera in 90% of 30
myeloma patients (7). As yet, it is difficult to accurately predict the
subset that will progress in MGUS after initial diagnosed and this
remains an important area of investigation (3, 8). Interestingly,
light-chain MGUS is also a precursor of light-chain MM, which
comprises 20% of all MM cases; this association has important
implications for understanding the nature of the “feeder” cell for
plasma cell malignancy (9–11). Furthermore, progression rates
differ, as IgH MGUS transforms at the rate of 1% per year but
light-chain MGUS has a progression rate of 0.3% per year, which
is significantly lower (4, 6, 12). Of particular relevance to the need
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to understand immune capacity in disease, it has been established
that loss of immune control, among other factors is implicated
in malignant transformation from asymptomatic disease to MM
(13–16). The immune status in MGUS and MM therefore needs
to be fully understood, for therapeutic intervention to prevent
progression and to counter susceptibility to infection.

In clinical diagnosis, MGUS lack the overt clinical CRAB symp-
toms that define MM: hypercalcemia, renal insufficiency, anemia,
and bone lesions (11). In the MGUS–MM transition, key stages
of high clinical relevance can also be defined, as asymptomatic
smoldering MM (SMM), plateau phase disease, and active disease.
SMM fulfills the diagnostic criteria for MM, with serum M-protein
≥30 g/L and/or bone marrow clonal plasma cells ≥10% however
without clinical CRAB symptoms or end organ damage that dic-
tate therapeutic intervention. Although SMM is an asymptomatic
precursor of symptomatic MM, it differs from MGUS as the risk
of progression to MM is much higher (10% per year) as com-
pared to MGUS (1% per year) (11, 17). This 10-fold increased
risk alone suggests that SMM differs biologically to MGUS. The
SMM–MM transition is at present a focal area of research, driven
by the need to understand the molecular and cellular basis of full
blown clonal transformation. Although recent therapies and bet-
ter supportive care have improved the survival of MM, it remains
largely incurable (median survival 4–5 years) (18, 19).

THE RISK AND SPECTRUM OF INFECTIONS IN MGUS AND
MM
It is important when assessing susceptibility to infection in MGUS
and MM that healthy controls are age-matched, to obviate an
aging immunosenescence and this has generally been the case in
reported studies. The risk of bacteremia in MGUS is increased
~2-fold as compared to healthy controls, with an increased sus-
ceptibility to a broad range of bacterial infections that include
pneumonia, osteomyelitis, septicemia, pyelonephritis, endocardi-
tis, and meningitis (20). In viral infections, MGUS patients have
an increased risk of developing influenza and herpes zoster infec-
tions at a risk comparable to that for bacterial infections (20).
High monoclonal protein at diagnosis associates with higher risks
of infection: MGUS patients with monoclonal protein >25 g/L at
diagnosis have the highest risk of infections, and the risk is still
significantly increased in MGUS patients with monoclonal pro-
tein <5 g/L as compared to healthy controls (20). M-protein levels
are most likely a surrogate for clonal expansion and concomitant
immunosuppression. MGUS patients have an increased mortality
due to bacterial infections, with a hazard ratio of 3:4 (21).

Depressed antibody titers to a number of common infectious
pathogens have been found in several conditions associated with
presence of an M-protein. Serum IgG antibody levels directed
to 24 different microorganisms were evaluated in Waldenstrom’s
macroglobulinemia, a lymphoma subtype secreting monoclonal
IgM paraprotein, and in MGUS and MM (22). Significantly
depressed antibody levels to a number of antigens, particularly
staphylococcal, moraxella, pneumococcal, varicella zoster, and also
for fungal antigens such as Candida and Aspergillus were observed
in MGUS (22). However, a significant decrease in antibody titers
was also observed in WM and MM, revealing that humoral
immune response to most of these pathogens is suppressed. There

appears to be an increased susceptibility to infections in MGUS
that worsens as disease progresses to MM, as indicated by antibody
titers. The duration of antibody response and their protective value
however varies between different pathogens, with some specific
antibody levels that remain stable over a long time. The variability
in humoral response to different pathogens indicates a require-
ment to carefully dissect responses to individual infectious agents
in MGUS and MM.

There is clear evidence of immune dysfunction in MM that
leads to vulnerability to infection, a leading cause of morbidity
and mortality. Lymphocytopenia (23), hypogammaglobulinemia
(24), and granulocytopenia secondary to bone marrow infiltra-
tion and therapy (25) are factors that are consistently found to
increase the susceptibility of MM patients to infections. In a
study of 3107 newly diagnosed MM patients in the UK Medical
Research Council Trial from 1980 to 2002, infections caused 135
deaths (45%) of all deaths, occurring within 60 days of diagno-
sis and with two-thirds of these being attributed to pneumonia
(26). The risk of infection is highest in the first 3 months and
decreases with response to treatment, revealing a direct causative
links as tumor burden is reduced. The most frequent infections
are bacteremia and pneumonia caused by Haemophilus influen-
zae, Streptococcus pneumoniae, and Escherichia coli (27–29). These
microorganisms predominate in the early stages of disease and
in plateau phase, but in the terminal phase of the disease the
spectrum of causative microorganisms widens (29, 30). Recurrent
bacterial infections at presentation meet the diagnostic criteria for
symptomatic MM (11).

In addition to intrinsic disease-derived factors, the type of
therapy used in symptomatic MM also plays a role in susceptibil-
ity to infection. Chemotherapy can disrupt the mucosal barriers
thereby increasing the risk of infections (31). Induction ther-
apy for MM has changed recently and the traditional oral mel-
phalan and prednisone (MP) as well as vincristine–adriamycin–
dexamethasone (VAD) combinations have been replaced by dex-
amethasone, thalidomide, bortezomib, and lenalidomide-based
regimens (32, 33). Although well- and better-tolerated, the use
of novel therapies results in an increased risk of opportunistic
infections as well as the shift in the spectrum of infections in
MM. Novel therapeutic agents increase the risk of viral infec-
tions; bortezomib therapy for instance, increases the risks of herpes
zoster reactivation in the first few months of treatment due to the
immunosuppressive effects on T cells (34, 35). Dexamethasone use
is associated with a greater risk of infections, and associates with
depressed cell-mediated immunity against cytomegalovirus and
varicella-zoster virus (36, 37). Notably, high-dose dexamethasone
is associated with higher rate of infections (18%) in comparison
to low-dose dexamethasone (9%), as shown in a randomized con-
trolled trial of newly diagnosed MM (38). The lack of immune
reconstitution due to poor disease response to therapy leaves
patients with an on-going immune deficiency that perpetuates
their risk of infections. It is also conceivable that infections may
have a potential role in enhancing the survival of myeloma cells
but this has as yet not been fully addressed. Infections are frequent
in MM and microorganisms are known to induce B-cell activa-
tion through Toll-like receptors (TLR). MM cells express TLR and
TLR-specific ligands have been shown to induce cell proliferation
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and prevent apoptosis of human myeloma cell lines (39, 40). This
further exemplifies an unwanted tumor adaptation to exploit local
niche characteristics.

NORMAL AGE-ASSOCIATED CHANGES IN HUMORAL
RESPONSE
The immune status of patients with MGUS or MM has to be
seen in the light of the aging immune system. Qualitative as well
as quantitative changes in the humoral immune response occur
with late age. The B-cell repertoire and maturation response are
critical in mediating protection against infection (41). Antigen
response in B cells may occur with T-cell help for T-cell-dependent
(TD) maturation, or can result in T-cell-independent (TI) anti-
body formation. Both can generate B-cell memory, although the
TD pathway is largely responsible for long-term memory by gen-
erating plasma cells that home to and reside in the bone marrow;
both pathways are a pre-requisite in vaccination aimed at inducing
protective antibody titers (42).

A number of studies have shown a decline in total CD19+ B
cells frequencies with age, and shifts in specific B-cell subset popu-
lations (43–45). A decrease in naïve B cells together with memory
and plasma cells has been reported (46). In B-cell memory, the IgM
component (CD19+ IgM+ IgD+ CD27+) plays an important
role in response to bacterial infections and declines with age (47).
There are also age-related decreases in the IgD− CD27+ switched
memory B-cell pool (43, 47, 48). Furthermore, a decrease in the
number and percentage of circulating plasma cells is seen with
age (49). Newly arising subpopulations termed “age-associated B
cells,” defined as CD21low, CD23low, CD11c+ that seem to be
more responsive to TLR7 and TLR9 ligands than direct B-cell
receptor (BCR) stimulation have been described (50) Antigen-
specific B cells populations are altered with the changes evident
as decreased antibody responses to influenza and pneumococcal
vaccination (47, 51). In mechanistic insights, key observations sug-
gests an intrinsic defect in deletional class switch recombination
(CSR) due to decreased expression of activation-induced cytidine
deaminase (AID) with age (43, 52). AID is a pre-requisite for both
TD and TI B-cell responses. As a result, weak and low affinity
antibody responses are elicited. Induction of sustainable B-cell
responses is therefore a challenge in the elderly.

Changes in B-cell subpopulations impact on the available reper-
toire in aging and this has been mapped by spectratyping and
gene sequencing studies looking at immunoglobulin heavy-chain
variable region complementarity-determining region 3 (CDR3)
use. These studies reveal a collapse in BCR diversity due to B-cell
oligoclonal expansions that occur with age (53). Oligoclonality is
also associated with poor health status (frailty) (54). This loss of
diversity will clearly impair the B-cell response to new antigenic
challenge.

Senescence of humoral immunity impairs immunogenicity and
efficacy of vaccination with a number of studies providing evi-
dence that age impacts on response (55–57). Immune response
to influenza vaccination declines with age. In young adults, vac-
cination is 70–90% effective against influenza (protective titers
against two or three of the influenza viral strains) especially when
the vaccine matches the circulating strains (58, 59). However, in

the elderly population, influenza vaccination is only 60% effective,
although it may be up to 80% effective in the prevention of serious
influenza complications (60, 61). Other than the inferior antibody
response generated in the elderly in comparison to that of young
adults (56, 62), a decreased anti-viral cell-mediated response is
also apparent (56).

Infections caused by encapsulated extracellular bacteria such
as Streptococcus pneumonia and Haemophilus influenza type B
(Hib) are an important health issue in aging. The bacterial poly-
saccharide capsule per se provides a challenge for vaccine design to
counter invasive disease. Capsular polysaccharides as antigens do
not generate a memory response (63) and the antibody response
to polysaccharide vaccine is short-lived (64). However, polysac-
charide vaccines are more immunogenic when conjugated to a
carrier protein (65, 66), as a result of the switch from a TI to
a TD response. A 23-valent pneumococcal polysaccharide vac-
cine is currently licensed for use in the elderly since they become
infected with a broad range of serotypes. Nonetheless, the effec-
tiveness of the 23-valent pneumococcal polysaccharide vaccine in
the elderly remains controversial. In a study by Rubins and col-
leagues, only 20% of the elderly (>65 years) had a twofold increase
in specific antibody following vaccination. Moreover, they did not
respond to the most prevalent serotypes causing invasive disease
(67). An earlier study of elderly males showed a response to all
seven measured serotypes that was comparable to that of young
adults (68). Other studies have shown that vaccination reduces
the incidence of hospitalization and mortality in the elderly (69–
71) and is effective in 45% vaccinated individuals in preventing
Streptococcus pneumonia infection (70). Nasopharyngeal carriage
of Streptococcus pneumonia has the highest prevalence in infants
and naturally induced anti-polysaccharide IgG prevents carriage
in the adult (72). However, in the elderly naturally acquired anti-
polysaccharide IgG and IgM decrease with age (73), and additional
protection is not conferred by simultaneously administering pneu-
mococcal and influenza vaccinations in the elderly (74, 75). Of the
six serotypes of encapsulated Haemophilus influenza, type b is the
most virulent, causing invasive diseases such as meningitis, sep-
ticemia, and pneumonia. A number of Hib-conjugate vaccines
are licensed for use and the estimate of protective anti-Hib poly-
saccharide antibodies, 0.15–1 µg/mL (76, 77), are based on the
assumption that protection from invasive disease is solely medi-
ated by antibodies, with negligible contributions of cell-mediated
immunity. In the elderly, Hib polysaccharide conjugate vaccine-
induced specific IgG antibodies are of comparable affinity as those
generated in young adults (78), and Hib polysaccharide conjugate
vaccination elicits a strong and rapid response in the elderly that
results in protective titers (79).

In addition to diminution of antibody responses, an increase
in reactivity toward autologous antigens that leads to autoanti-
body production in the elderly is indicative of a wider malaise
in humoral responses, suggesting loss of tolerogenic control and
check-points (80–82).

Alterations in T-cell immunity that can contribute to the devel-
opment of infections also occur with aging; these thymic atrophy-
related changes in T-cell proportions as well as function changes
have been reviewed elsewhere (83–85).
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IMMUNE DEFECTS IN MGUS AND MM
B-CELL FUNCTION
B-cell dysfunction is less profound in MGUS than in MM.
This can be tracked by studies on uninvolved polyclonal serum
immunoglobulins as hypogammaglobulinemia, which reflects the
influence of the tumor clone on the spectrum of immunoglobu-
lin production. Hypogammaglobulinemia occurs at a lower fre-
quency in MGUS (25–28%) (3, 86, 87), is more frequent in
SMM (45–83%) (17, 88, 89) and is often associated with MM
(25, 90). The frequency of hypogammaglobulinemia associates
with disease progression and the reciprocal depression of unin-
volved immunoglobulins is a prognostic factor for progression to
MM (17, 88, 89, 91, 92). These findings support the concept that
progressive immunodeficiency is a feature of disease progression
in MM.

B-cell enumeration
Circulating CD19+ B cells in MGUS are numerically normal or
decreased in comparison to age-matched HCs (93–95). In MM,
the significant depression of circulating CD19+ B-cell frequen-
cies correlates inversely with stage of disease, and coupled with
defective cell-mediated immunity in late stage disease contributes
to the increased risk of infection (25).

Plasma cells are the long-term depots of antibody generating
cells in the normal BM. MGUS plasma cells display phenotypic
heterogeneity as compared to their normal counterparts. Based on
the expression of CD19 and CD56, two distinct subpopulations of
plasma cells can be seen. The first population of plasma cells is
polyclonal and has an identical phenotype to normal BM plasma
cells, observed as CD19+ CD56− CD38+ CD138+. A second
population of abnormal plasma cells is characterized by restricted
intracytoplasmic light-chain expression and lack of expression of
CD19 and/or CD56 [Ref. (96) – this paper does not look at CD45].
These abnormal plasma cells can be detected at low frequen-
cies (limit of detection 0.01% of leukocytes) by using combined
immunophenotyping and clonality assessment (97, 98). Abnor-
mal MGUS clonal plasma cells have the same phenotype as MM
clonal plasma cells (99). There is a progressive replacement of nor-
mal BM polyclonal plasma cells by clonal (tumor) plasma cells as
disease advances from MGUS to MM (100, 101). Normal plasma
cells have been found to make up to 86% of total BM plasma cells
in MGUS and 0–32% in MM (96). The number of residual poly-
clonal plasma cells in BM can therefore distinguish between MGUS
and MM with 98% MGUS patients having >3% normal plasma
cells and only 1.5% MM having >3% normal plasma cells. From
these observations alone, it is apparent that normal (polyclonal)
long-lived plasma cell memory deteriorates markedly in MM.

Not only is the increase in aberrant clonal plasma cell popu-
lations likely to impact on normal plasma cell compartment, but
also associates with egress into the circulation. The circulating
abnormal plasma cells have been found to be a significant predic-
tor of progression in MGUS (91, 100, 102, 103), and clonal plasma
cells can also be detected in the peripheral blood of SMM as well as
MM (104–106). Circulating abnormal plasma cells can be detected
in up to 20% of MGUS patients (102, 103) and up to 80% MM
(107, 108). The increase in circulating plasma cells parallels their
increase in bone marrow (101).

T-CELL FUNCTION
Several studies have sought to evaluate defects in T-cell frequen-
cies and function broadly in MGUS and myeloma. At present,
there is limited evidence for both decreased antigen-specific T-
cell responses and less so for T-dependent B-cell antigen-specific
responses.

Significant aberrations in T-cell count and function have been
described in MGUS and MM. A decrease in CD4+/CD8+ ratio
due to increased CD8+ T cells in the bone marrow and circula-
tion has been reported in both conditions (95), or due to lower
CD4+ T-cell numbers (102), whereas others have shown that the
MGUS CD4+/CD8+ ratio and absolute numbers do not differ
significantly from healthy controls (109). Within the CD4+ T-cell
compartment in MM, selective loss of the naïve CD4+ CD45R+
subset has been reported (110).

Th1/Th2 cytokine balance regulates the immune response.
Th1/Th2 polarization depends on the local cytokine concentra-
tions that induce differentiation of naïve T lymphocytes to either
Th1 cells, which promote cell-mediated immunity, or Th2 cells,
which promote antibody-mediated immunity (111, 112). In many
hematological malignancies, however, the balance is changed (113,
114). In MGUS, the balance seems comparable to healthy individ-
uals (115), whereas in MM, there is an imbalanced Th1/Th2 ratio
that results in a defective Th1 response (115). This defective Th1
response correlates with disease stage and is related to elevated
levels of IL-6 and increased numbers of IL-6+CD3+ T cells. Local
concentrations of IL-12 that induce differentiation of naïve T lym-
phocytes to a Th1 phenotype, however, are compromised by IL-10
and fail to induce polarization of activated T lymphocytes in vivo
in MM (115).

To examine T-cell response to infectious agent antigens,
Maecker et al. characterized the in vitro CD8+ T-cell response
in HLA-A*0201+ MM patients and healthy individuals to
influenza A and Epstein–Barr virus-derived immunodominant
epitopes using major histocompatibility complex (MHC)/peptide
tetramers (116). Following in vitro stimulation, 67% healthy indi-
viduals showed an increased frequency of antigen-specific T cells
for both antigens while in myeloma the magnitude of the response
was reduced, with <30% reacting to both viral antigens (116).
These findings need to be expanded to examine antigen-specific
T-cell capacity in vivo to vaccination to a wider spectrum of
infection-related antigens. Chemotherapy aggravates the immun-
odeficient state of myeloma patients, resulting in significant reduc-
tions in CD4+ as well as specific reductions in CD4+ CD45RO+
cells as compared to untreated myeloma; this decrease is strongly
associated with opportunistic infections (25).

The induction of effector T-cells in response to active vaccina-
tion (e.g., to counter infection) will be influenced by functional
regulatory T-cells (Tregs). Treg cells play an important role in
modulating immune response, maintaining immune homeostasis,
and suppressing excessive immune responses where any imbal-
ances lead to impaired immune functions. Several subsets of Tregs
have been identified; naturally occurring CD4+CD25+FoxP3+
Tregs (nTregs) that are generated in the thymus, and peripherally
inducible Tregs that include type I T-regulatory (Tr1) that consti-
tutively express IL-10 and Th3 CD4+ Tregs that produce TGF-β
(117–119). Furthermore, CD8+ as well as double-negative Treg
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(DN Treg) cells have also been described (120, 121). Tregs can
regulate the effector Th1 and Th2 responses by production of sol-
uble cytokines IL-10 and transforming growth factor-β (TGF-β)
and/or contact dependent mechanisms (122, 123).

There is significant discrepancy in the literature regarding the
frequency of Treg cells and their function in MGUS and MM that
is probably related to the differences in techniques and markers
used to identify these cells. A report by Prabhala et al. showed
that the frequency of CD4+FoxP3+ Tregs in MGUS and MM
is reduced and they were functionally impaired as the Tregs
had significantly reduced ability to suppress T-cell proliferation
(124). In contrast, Beyer et al. found a significantly increased fre-
quency of CD4+CD25hiFoxP3+ Tregs in MGUS as well as treated
and untreated myeloma. Using allogenic T cell stimulation, they
showed that these cells also maintained their functionality as they
inhibited proliferation and IFN-γ production (125). Other studies
confirmed that CD4+CD25+FoxP3+ Treg cells were increased
and this increase correlated with disease activity in MM (126,
127). A marked decrease in DN Tregs has also been reported
in MM (126). A reduced frequency or compromised Treg activ-
ity on the other hand may be deleterious to the host, as this
results in dysfunctional T cell responses and increased risk of
infections (128).

DC FUNCTION
Dendritic cells (DCs) as professional antigen presenting cells play
a central role in recruiting host adaptive immunity. Using blood
dendritic cell antigen (BDCA) labeled DCs, plasmatoid DC (pDC)
(BDCA-2+) and myeloid DC1 (mDC1) (BDCA-1+) cells were
found to be suppressed in MGUS and further reduced as the dis-
ease progressed in MM (94). The reduced number of circulating
mDCs and pDCs in MM are characterized by a lower expres-
sion of HLA-DR, CD40, and CD80, in addition to an impaired
induction of T cell proliferation and cytokine stimulation (129,
130). The functional defects result from IL-6 inhibiting the growth
of CD34+ DC progenitors and switching development and mat-
uration of CD34+ cells from DC toward monocytic cells with
phagocytic activity but with no antigen-presentation capacity
(129). Enumeration of high potency CMRF44+ CD14− CD19−
DCs in MM in peripheral blood approached relatively normal
numbers, expressing expected levels of CD80 and CD86. They did
however exhibit functional defects with reduced capacity to up-
regulate CD80 and CD86 expression after CD40L and IL-2 stimuli.
This stimulatory defect may result from tumor-derived TGF-β1
and IL-10 that down-regulate CD80 (131). Potentially, this can be
abrogated by anti-TGF-β1 and IL-10 antibodies. IL-12 and IFN-
γ can also neutralize the failure to stimulate CD80 upregulation
(132). As in other immune compartments, specific therapeutic
agents can impact on DC function: bortezomib, a major drug
in MM, significantly impairs the immunostimulatory capacity of
mDCs (133, 134). An additional consideration is that pDCs have
been strikingly shown to interact with MM cells to induce tumor
cell growth and survival (135). Nonetheless, DCs remain a major
target for immunotherapeutic intervention in MM (136).

While DC considerations in MGUS and MM have relevance to
understanding many aspects of immune response to vaccination
against infection, in relation to T-dependent B-cell responses in

germinal canters, it is the follicular DC specialized subset that is
important in generating B-cell memory, coupled with TFH cells
(137). As yet, disease impact on these secondary lymphoid organ
immune cell interactions has not been investigated in MGUS
or MM.

NK CELL FUNCTION
Natural killer cells have a role in immune response to viral infec-
tion (138, 139), and interface with adaptive immunity. They also
play an important role in initial immune response to tumor cells,
but as yet there is no concrete evidence for a surveillance and anti-
tumor role for NK cells in response to the premalignant clone
in MGUS. Increased numbers of NK cells have been described
in MGUS, in newly diagnosed MM and in low tumor burden
MM (140–142). NK cell function is intact in the setting of MGUS
and newly diagnosed MM. However, NK cytotoxicity against MM
decreases as disease progresses (140, 141, 143). The downregula-
tion of NK cell activating receptors NKG2D, NKp30, and CD244
in MGUS and MM in the bone marrow niche but not in the cir-
culation suggests a possible mechanism of immune escape of the
tumor clone (144). MHC I molecules are critical determinants of
NK cell activity. The expression levels of MHC class I polypeptide-
related chain A (MICA), a soluble ligand of NKG2D is increased
on plasma cells in MGUS and is strongly expressed in advancing
disease in MM (145). However, the soluble NKG2D ligand, MICA,
shed by MM cells as disease progresses, as a result of the upreg-
ulation of ERp5 (146) down-regulates NKG2D on effector NK
cells. NKG2D levels are diminished in MM with MICA shedding,
which contributes to immune suppression (146, 147). Normal to
increased lytic activity of peripheral blood, NK cells have been
described in MGUS but in MM with MICA shedding NK activity
is decreased (146). The immunomodulatory agents thalidomide
and lenalidomide have been reported to enhance NK cell cyto-
toxicity against MM cells (148), highlighting an aspect of current
therapy that appears to potentiate immune capacity in disease, and
increased NK cells are also seen in the peripheral blood of patients
that respond to therapy (149).

THE IMMUNOSUPPRESSIVE MICROENVIRONMENT OF MM
A number of factors induce the immunosuppressive microenvi-
ronment that promotes tumor survival in MM and simultaneously
induces immune dysfunction. Immunosuppressive factors include
increased levels of IL-6, IL-10, IL-15, and TGF-β (150). They
reduce anti-tumor immunity by suppressing NK cell cytotoxic-
ity, and IL-10 and IL-6 have been implicated in DC dysfunction,
as discussed above (115, 129). TGF-β also has a central role
in inhibiting IL-2-induced T cell proliferation (151). Vascular
endothelial growth factor (VEGF) is an important cytokine in
the MM microenvironment as it not only promotes the secretion
of IL-6 but also the growth and migration of MM cells (152).
Specific tumor adaptations in MM cells mediate immunosup-
pression. Cyclooxygenase-2 (COX-2) overexpression by MM cells,
which correlates with poor outcome, is also implicated in suppress-
ing macrophage-mediated or T-cell-mediated tumor killing (153).
For effective therapy against infection, a combinational approach
is required: tailored vaccination together with strategies to combat
the immunosuppressive MM microenvironment.
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HUMORAL IMMUNE RESPONSE TO INFLUENZA,
PNEUMOCOCCAL, AND Hib VACCINATION IN MM
VACCINATION FOLLOWING CHEMOTHERAPY
Patients with MM undergoing chemotherapy are at an increased
risk of contracting influenza, but it remains uncertain as to
whether these patients are able to mount sufficient immune
response to benefit from vaccination. Previous studies have shown
heterogeneous responses to influenza vaccination in myeloma
(discussed below). A comparison of studies of immune response to
influenza vaccination is limited by differences in read-outs used to
interpret response to vaccination. Most studies measure antibody
levels by the hemagglutinin inhibition (HI) test, and responses
are defined as ≥2.5-fold rise HI after vaccination. Seroconver-
sion is defined as a ≥4-fold rise in titer and seroprotection as a
titer of at least 1:40 (154, 155). Vaccination against influenza in
MM is still a matter of clinical uncertainty, in part as knowledge
about the protective efficacy against clinical disease (influenza)
itself is limited, especially in aging. Controlled studies in MM eval-
uating influenza vaccination with clinical endpoints (contracting
influenza and severity of infection) are lacking. Despite this clin-
ical uncertainty, influenza vaccination is recommended in MM
patients.

In a study of MM patients the results of influenza vaccina-
tion were disappointing as only 10% achieved protection against
two viral strains and 19% developed protective antibody titers to
all three strains in the vaccine (156). Comparable observations
were noted in another study of 70 patients with hematological
malignancies of which 16 were MM cases, and of the 70 only
4 responded, but none were MM, to achieve seroprotection to
all 3 viral strains (157). Moreover, two doses of influenza vac-
cine failed to improve antibody response to influenza vaccination
in patients with hematological malignancy undergoing therapy
or with recently discontinued therapy as the response rate did
not increase following a second booster dose of the vaccine (158,
159). Overall, the booster influenza vaccination strategy failed to
increase the antibody response in immunocompromised patients.

Notwithstanding these observations, patients with hematolog-
ical malignancies, even under treatment, can mount protective
immune responses against influenza vaccination. Indeed, in a
study of 34 patients with chronic lymphoproliferative disorders
and MM, some receiving therapy, response rates were comparable
to healthy controls (160). More than 60% achieved seroprotective
responses to all three viral strains, and of the six patients with MM,
three developed seroprotection to all three viral strains. However,
these studies were limited by the low number of subjects and by
patients on diverse therapy with varying dosage intensity. This pre-
cluded detection of a relation between response to vaccination and
disease state and stage and also the relation between vaccination
response and treatment.

Initial studies in the early 80s that utilized the 14-valent
pneumococcal capsular polysaccharide vaccine showed that MM
patients responded poorly to immunization. The antibody con-
centrations to 12 of the 14 polysaccharides in the vaccine were
simultaneously measured by radioimmunoassay. Radiolabeled
polysaccharides were incubated with sera and the resulting
antigen–antibody complexes were precipitated and quantified
with a scintillation counter as nanograms of antibody protein

nitrogen/milliliter (161). The interpretation of an adequate
response to the 14-valent pneumococcal vaccine was variable since
the antibody concentrations needed for protection were difficult
to define (162). Low levels of antibody were reported to pneu-
mococcal capsular polysaccharides before and after vaccination
in MM patients, significantly lower than those in healthy con-
trols (163–165). Lazarus et al. showed that in MM patients before
vaccination, the grand geometric mean antibody concentrations
for all serotypes combined was 91 ng/mL, which is less than their
presumed protective level of 215 ng antibody nitrogen/mL (165).
Following vaccination, the grand geometric mean antibody con-
centration remained significantly lower in MM than in healthy
controls (91 versus 820 ng antibody nitrogen/mL). Thirty percent
of the patients had an antibody response that might be protective
for half of the vaccine serotypes. Geometric mean titers >215 ng
antibody nitrogen/mL developed only for serotypes 3, 18C, and
23F. Similarly, Schmid et al. observed antibody titers >200 ng anti-
body nitrogen/mL only for serotypes 1,4,18C,and 23F in myeloma
patients (163). A study of 42 MM patients reported immuniza-
tion responses that were inferior to those of HCs and the low
anti-pneumococcal titers correlated with risk of serious infection
(166). MM patients with IgG M-protein were shown to have lower
antibody titers compared to those with IgA or Bence Jones MM.
In line with these observations, Schmid et al. also showed that
patients with IgA MM consistently responded with higher anti-
body titers than IgG MM and had higher increases in levels of
antibodies after pneumococcal vaccination (163). These studies
indicate that generation of antibodies to pneumococcal capsular
polysaccharide vaccination is impaired. This may be because pneu-
mococcal polysaccharides are particularly weakly immunogenic
in the immune suppressed state of these patients. Polysaccharide
vaccines are more immunogenic when conjugated to a carrier pro-
tein (discussed above). However, MM patients elicit sub-protective
to protective antibody responses to Hib polysaccharide conjugate
vaccination: Nix and colleagues reported that 45% of MM had pro-
tective in comparison to 97% HC while 75% of MM patients had
protective titers in a study by Robertson and colleagues (156, 167).
A more recent study utilizing the currently used 23-valent pneu-
mococcal vaccine reported that the response to pneumococcal
vaccination was again disappointing, with 56% having a fourfold
rise in titer and 39% achieving protective antibody titers 4–6 weeks
after vaccination (156). These responses to adjuvant in conjugated
vaccine flag up deficiencies in pre-requisite Th responses in MM.

TRANSPLANTATION
Ablative chemotherapy followed by bone marrow transplantation
generally results in an acute immunosuppression in both arms of
innate and adaptive immune system that lasts for several months,
resulting in a protracted functional recovery. B-cell reconstitution
after hematopoietic stem cell transplantation (HSCT) is slow, with
B cells reaching normal levels 4–8 months post-transplant (168,
169). Re-population of T cells is also prolonged (170), appear-
ing as abnormal subpopulations that show an inverted CD4/CD8
ratio (171, 172). The prolonged and severe immune suppression
following autologous and allogenic stem cell transplantation not
only compromises immunity and pose a risk for infection but
also results in poor responses to vaccination (173–175). Impaired
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Table 1 | Results of studies of the efficacy of influenza, pneumococcal, and Hib vaccination in multiple myeloma.

Vaccine Study Study design

number of

patients

Myeloma treatment Measure of

efficacy

Response Conclusion

Influenza Robertson

et al. (156)

MM (n=48) IFNα/chemotherapy/

high-dose MP/total body

radiation+ autologous

stem cell transplantation

6 months before

GMT, titers

≥1: 40

Poor response. 19%

achieved seroprotection

and 59% had no

seroprotective levels to

any of the three strains

Poor responses and

patients are susceptible

to infections with

influenza

Rapezzi

et al. (160)

MM (n=6)

CLL (n=13)

NHL (n=7)

HD (n=8)

MP+prednisone/

MP+prednisone+VAD

GMT, titers

≥1: 40

Seroprotection rates

achieved by more than

60%. Of the patients,

three of six MM achieved

seroprotection rates

Vaccination is

well-tolerated and safe

in CLPD and MM

Stadtmauer

et al. (181)

MM (n=21) High-dose MP+

autologous stem cell

transplantation

GMT,

≥4-fold rise

in titers

Primed subjects had

significantly higher GMT

at all times

Transfer of

influenza-primed

autologous T cells after

transplantation

improves subsequent

vaccine responses

73% of primed subjects

had seroconversion to

any of the three vaccine

strains and only 30% of

unprimed subjects

Pneumococcal Lazarus

et al. (165)

MM (n=13) BCNU+ adriamycin/

MP+prednisone/

cyclophosphamide/

BCNU+prednisone+

cyclophosphamide/

MP+ adriamycin+

vincristine

GMT,

≥2-fold rise

in titer

Poor response. 30%

achieved protective

response to six or more

serotypes

Antibody response is

depressed. Advisable to

vaccinate patients as

response was highly

variable

Schmid

et al. (163)

MM (n=37)

HC (n=10)

MP+prednisone/

vincristine+

cyclophosphamide+

prednisone (and

doxorubicin/MP), or

another combination of

three or more/no

chemotherapy for at least

3 months before

vaccination

GMT

≥2-fold rise

in titers

At least twofold increase

in titers to at least eight

antigens in 43%

compared to 100% HC.

Poorer response in those

receiving multi-agent

(≥3) chemotherapy

Very low antibody titers

before and after

vaccination but as

response was

heterogeneous

vaccination can be

offered

Hargreaves

et al. (166)

MM (n=41)

HC (n=62)

MP/MP+ adriamycin+

BCNU+ cyclophosphamide/

vincristine+

cyclophosphamide+

MP+prednisone/

vincristine+BCNU+

adriamycin+prednisone/

vincristine+ adriamycin+

dexamethasone/

vincristine+ adriamycin+

MP+prednisone

GMT,

≥2-fold rise

in titer

Poor response 45%

achieved protective titers

Poor response

associated with

increased risk of

septicemia

(Continued)
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Table 1 | Continued

Vaccine Study Study design

number of

patients

Myeloma treatment Measure of

efficacy

Response Conclusion

Robertson

et al. (156)

MM (n=48) IFNα/chemotherapy/high-

dose MP/total body

radiation+ autologous

stem cell transplantation

6 months before

GMT titers

≥1:640

39% Achieved protective

titers

Poor responses, likely

to be poorly sustained.

Repeat vaccination is

desirable

Rapoport

et al. (180)

MM (n=42) High-dose

MP+ autologous stem cell

transplant

GMT 60% of pre-transplant

vaccination+

post-transplant T cell

infusion recipients

achieved protective titers.

Early adoptive T cell

transfer followed by

post-transplant booster

immunization improves

immunodeficiency.

Pre-transplant

vaccination regime

superior to

post-transplant

vaccination regime

18% of post-transplant

vaccine &

pre-transplant+ late T cell

infusion recipients

achieved protective titers

Hinge et al.

(177)

MM (n=60) High-dose

MP+ autologous stem cell

transplantation

GMT titers

≥1: 40

Poor response. 33%

responded

Reasonable to vaccinate

patients with disease

control (responding well

to induction therapy) as

they have higher

response rate

Hib Robertson

et al. (156)

MM (n=46) IFNá/chemotherapy/high-

dose MP/total body

radiation+ autologous

stem cell transplantation

6 months before

≥1.02 µg/L 75% protective titers and

41% had a ≥4-fold

increase in titers

Specific immunity

comparable to HC.

Nix et al.

(167)

MM (n=20) Intermittent chemotherapy >0.15 µg/mL 45% MM achieved titers

that correlate to natural

protection in comparison

to 97% HC

Lack of protective

immunity against Hib in

MM. Increased risk of

invasive disease is a

rationale for

immunization

Chronic renal

failure (n=59)

Diabetes

mellitus (n=30)

HC (n=32)

CLPD, chronic lymphoproliferative disorders; HC, healthy controls; HD, Hodgkin disease; MP, mephalan; NHL, non-Hodgkin lymphoma; VAD, vincristine–adriamycin–

dexamethasone.

antibody responses to influenza have been demonstrated in this
setting (159, 176), however, a longer transplant to vaccination
interval is associated with better serological responses. Similarly,
poor responses to pneumococcal vaccination prior to transplant
(177) as well as vaccination after transplant have been reported
(173, 178, 179).

In a randomized Phase 1/2 study in advanced MM under-
going high-dose mephalan and autologous stem cell transplan-
tation (ASCT), post-transplant conjugate pneumococcal vacci-
nation resulted in no or low antibody responses and did not
increase after booster vaccination (180). However, vaccination
before transplant together with the adoptive transfer of T-cells
early after transplant followed by booster vaccination resulted in

robust and sustained antibody response as well as accelerated T-
cell recovery (180). This achieved protective titers against four
serotypes (6B, 14, 19F, and 23F) in 60% of cohort as compared
to 18% when there was no vaccination. In another study of MM,
autologous T cell transfer resulted in poor or no influenza vaccine
responses unless the patient had received influenza vaccination
prior to autologous T-cell collection (181). Clearly, the priming of
the autologous T cells by pre-transplant vaccination most likely
enhances antigen-specific antibody induction following transfer.

These studies demonstrate that a T-cell adoptive transfer can
accelerates the numerical and functional recovery of CD4+ and
CD8+ T-cells that may provide help in restoring humoral immu-
nity in MM. Strategies to enhance lymphocyte recovery and
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function (both B- and T-cell) in a transplant-associated thera-
peutic intervention could further improve outcome in achieving
protective serological and cellular immunity to infectious agents
in MM.

A detailed summary of the many strategies that have been
assessed to date in vaccination against infection in MM is compiled
in Table 1.

CONCLUSION AND FUTURE DIRECTIONS
Immunosenescence in aging compounds immune function in
MGUS and MM, which incrementally deteriorates as disease pro-
gresses to symptomatic phase. Focusing on humoral immunity, as
this is a pre-requisite to counter infection in these disease settings,
it is evident that a complex array of factors underlies a diminution
of immune capacity. This is manifest as both numerical imbal-
ances in B-cell and T-cell populations, and in impaired lymphocyte
functionality; the immunological synapse and cross-talk between
these two key immune players is not fully defined yet in MGUS
or MM, and remains a key area for further investigation. Clonal
expansions in MGUS and MM directly compete with niche space
for long-term memory of infection, affecting polyclonal normal
plasma cells in the bone marrow. Direct immunosuppression by
tumor cells, including via cytokine imbalance and other mecha-
nisms such as aberrant ligand expression to block NK cell activity,
further affect the capacity of the immune system to mount effec-
tive challenge to infection, or to vaccination aimed at enhancing
immunity to both viral and bacterial agents. Because of the mor-
bidity and mortality that follow infection in MM, clinical therapy
still aims at vaccinating against specific bacterial threats. Mounting
effective immunity to capsular polysaccharide infection-related
antigens for instance, has as yet not been optimized although link-
ing antigen to T-cell recruiting adjuvant is a notable advance. The
complications generated directly by therapeutic drugs that weaken
the immune response must be understood further, to select the best
strategy to restore anti-infection immunity in MM. Conversely,use
of immunomodulatory drugs in MM will need further investiga-
tion in how to best harness their pro-immune function during
vaccination against infection. Exploiting transplantation in ther-
apy by prior vaccination to educate T-cells to enhance humoral
response to vaccination is indicative of the types of strategy that
can be utilized to counter infection. It is also highly likely that cur-
rent advances in understanding how aging in the normal healthy
population affects immune responses will be exploited in devel-
oping the best strategies to institute immunity against infection in
MGUS and MM.
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