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Hepatitis B virus (HBV) infection is one of the main causes of chronic liver diseases that
may progress to liver cirrhosis and hepatocellular carcinoma. Host immune responses are
important factors that determine whether HBV infection is cleared or persists. Natural
killer (NK) cells represent the main effector population of the innate immune system and
are abundant in the human liver. Recently, it has been demonstrated that NK cells not only
exhibit antiviral functions but may also regulate adaptive immune responses by deletion
of HBV-specific CD8+ T cells. It is well-established that HBV-specific CD8+ T cells con-
tribute to virus elimination. However, the mechanisms contributing to CD8+ T cell failure
in chronic HBV infection are not well-understood. In this review, we will summarize the
current knowledge about NK cells and CD8+ T cells and illustrate their contribution to viral
clearance and persistence in HBV infection. Moreover, novel immunological in vitro model
systems and techniques to analyze HBV-specific CD8+ T cells, which are barely detectable
using current multimer staining methods, will be discussed.
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INTRODUCTION
Hepatitis B virus (HBV) infection represents a major health care
problem that affects around 350 million people worldwide, despite
the availability of a prophylactic vaccine (1). The course of infec-
tion can be either acute or chronic, while persistence rate is con-
siderably higher when HBV is acquired at birth or early infancy.
Chronically infected patients are at risk of developing HBV-related
diseases such as liver cirrhosis and hepatocellular carcinoma that
account for 600,000 deaths annually (1). Although potent antivi-
ral drugs such as nucleos(t)ide analogs and pegylated interferon-α
(pegIFN-α) are available, treatment is rarely curative and patients
often receive life-long therapy with the potential emergence of
resistance and toxicity.

Natural killer (NK) cells, as part of the innate immune system,
represent the first line of defense against viral infections. In addi-
tion to their antiviral effector functions, NK cells may also interact
with and thereby negatively regulate HBV-specific CD8+ T cells
(2). CD8+ T cells are thought to be the main effector cells since
their experimental depletion delays the clearance of acute HBV
infection in chimpanzees (3). Of note, persistent infection is char-
acterized by impaired HBV-specific CD8+ T cell responses (4).
The mechanisms responsible for this CD8+ T cell failure are less
understood. Interestingly, different mechanisms that may lead to
impaired and dysfunctional HBV-specific CD8+ T cell responses
in chronically infected patients have been reported. Therefore, it
is plausible that at least a part of immune-mediated liver damage
is due to immune cells other than virus-specific T cells (5).

In the present review, we will focus on the role of NK cells and
HBV-specific CD8+ T cells, which are thought to be responsible
for both virus control and disease pathogenesis.

NK CELLS
Natural killer cells represent the main effector cell popula-
tion involved in innate immune responses against intracellular
pathogens and abnormal cells (6). They are enriched in the liver
(7) and account for one-third of the intrahepatic lymphocytes
compared to 5–15% in the peripheral blood (8).

Natural killer cells do not express recombination-dependent
antigen-specific receptors, therefore it is assumed that stimula-
tion of NK cells is antigen-independent (9). However, NK cells
have several traits in common with CD8+ T cells (10, 11): they
share a common bipotential progenitor and exert similar killing
mechanisms. Additionally, a number of cell surface molecules,
referred to as“NK receptors”are also expressed on activated CD8+

T cells. Furthermore, murine NK cells have been described to
mediate long-lived hapten-specific recall responses leading to the
assumption of a NK cell memory (12).

Natural killer cell activation is regulated by the interplay of
several activating and inhibitory receptors (10, 13) and cytokines
such as type I IFN, interleukin (IL)-2, IL-12, IL-15, and IL-18
(14, 15). The best characterized activating receptor on the sur-
face of NK cells is NKG2D. This receptor recognizes molecules,
that are expressed at low levels on most cells but are upregulated
upon infection or stress, such as MICA, MICB, and RAET1 pro-
teins (10, 16, 17). Furthermore, NKp46 (18), NKp44 (19), and
NKp30 (20) are important receptors involved in target cell recog-
nition and killing (21). Another important NK cell stimulatory
receptor is CD16, also known as the Fc receptor FcγRIII, which
triggers antibody-dependent cell cytotoxicity (22). Moreover, NK
cells are regulated by inhibitory receptors, which are known to
mainly engage major histocompatibility complex (MHC) class I
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molecules expressed on the surface of target cells (23). Some of
these inhibitory markers belong to a distinct family of receptors
termed killer cell immunoglobulin-like receptors (KIRs), which
include both activating and inhibitory molecules (22). Addition-
ally, the CD94/NKG2A heterodimeric receptor is often used as an
inhibitory marker (24).

Depending on the distribution of activating versus inhibitory
signals and the prevalent cytokine milieu NK cells display at least
two effector functions: they are able to produce a variety of antivi-
ral active and immunoregulatory cytokines such as IFN-γ, tumor
necrosis factor (TNF), granulocyte–macrophage colony stimulat-
ing factor (GM-CSF), and IL-10 (25, 26) and they can directly
kill target cells through the release of perforin and granzymes
at immunological synapses (27). Since hepatocytes are consid-
ered to be relatively resistant to cytotoxicity of NK cells via
the perforin/granzyme pathway, tumor-necrosis-factor-related-
apoptosis-inducing ligand (TRAIL) is likely to play a major role in
hepatocellular damage (28).

Based on their expression of CD56, two NK cell subpopu-
lations can be defined: CD56dim and CD56bright. CD56dim NK
cells represent the major circulating subset and are regarded as
developmentally mature. Furthermore, this subset is thought to
exert mainly cytotoxic effector functions (29), although it has
been shown that CD56dim NK cells are also able to produce large
amounts of IFN-γ during the first hours after stimulation (30). By
contrast, CD56bright NK cells represent an earlier stage of matura-
tion. They comprise the minority in the peripheral blood and are
considered as the main cytokine producers (29, 31–33). However,
viral infections may alter these proportions, leading to a relative
enrichment of the CD56bright population (34, 35).

Next to their antiviral function, NK cells have also been shown
to regulate other immune cells thereby shaping both innate and
adaptive immune responses. Indeed, various studies focused on
the interaction between NK cells and innate immune cells such
as monocyte-derived dendritic cells, plasmacytoid dendritic cells
(pDCs), and macrophages. This crosstalk can modulate NK cell
functions by direct cell-to-cell contact or the activity of soluble
factors (36). For example, NK cell interaction with macrophages
and DCs via CD40L/CD40 drives production of IL-12, which in
turn not only induces NK cells to produce IFN-γ but also enhances
NK cell cytotoxicity (37–39). Additionally, NK cell function can
also be improved by type I IFN abundantly secreted by pDCs (40).
Furthermore, NK cells can also interact with components of the
adaptive immune system and may limit CD8+ T cell responses, as
it has been shown in LCMV infection (41–43).

Below, we will summarize the current knowledge about of NK
cells in acute and chronic HBV infection and discuss their role in
regulating HBV-specific CD8+ T cell immunity.

NK CELLS IN ACUTE HBV INFECTION
Viral replication usually results in the activation of an innate
immune response that is characterized by the rapid produc-
tion of type I IFN. These cytokines induce the expression of
interferon-stimulated genes (ISGs), which in turn exert several
intracellular antiviral mechanisms to limit viral spread, including
the upregulation of MHC I molecules on the surface of infected
cells (44). However, HBV seems not to induce any detectable

intrahepatic expression of ISGs in chimpanzees during the first
weeks of infection and therefore has been postulated to be a
“stealth virus” that does not activate the innate immune system
(45). This assumption has been challenged in vitro by the finding
that HBV replication elicits a strong and specific innate antivi-
ral response in HepaRG cells with an upregulation of IFN-β and
other ISGs resulting in a non-cytopathic clearance of HBV DNA
(46). Furthermore, a significant reduction in HBV DNA has been
reported in acutely infected chimpanzees long before the peak of
T cell infiltration and liver damage, suggesting a contribution of
non-cytopathic antiviral mechanisms to viral clearance (47). The
influx of NK cells that recognize infected cells in the absence of
MHC I expression has been suggested to contribute in this set-
ting. Moreover, the induction of IFN-γ and TNF in the liver of
chimpanzees during the described non-cytopathic pre-T cell phase
of viral clearance supports this hypothesis, because these effector
cytokines are produced not only by CD8+ T cells but also by NK
cells.

Since the incubation period of acute HBV infection is predom-
inantly asymptomatic and therefore difficult to study, only limited
and partially contradicting information about the role of NK cells
during the early stages of infection is available in humans. One
of the leading studies was performed during the preclinical phase
in two subjects with acute HBV infection characterized by persis-
tently normal alanine aminotransferase (ALT) levels (48). NK cells
were promptly activated before peak viremia occurred,as indicated
by the early increase of NK cells expressing the activation mark-
ers CD69 and NKG2D. According to this, the highest number of
circulating NK cells was found at an early stage in the incubation
period of patients with acute HBV infection (49).

However, an impaired NK cell function in patients with acute
hepatitis B has also been reported. Indeed, Dunn et al. showed
that NK cell activation in acutely HBV-infected patients is signif-
icantly inhibited compared to healthy subjects, especially during
the time of peak viremia (50). High viral load was also associ-
ated with a reduction of rather non-cytolytic than cytolytic NK
cell effector functions. In addition, type I IFN, IFN-λ1, and IL-
15, essential activators of NK cells, were barely detectable in these
patients, supporting the dogma of HBV being a stealth virus. How-
ever, IL-10 levels increased early in the course of infection and the
highest concentration was found at the time of peak viremia when
NK cell IFN-γ production was severely reduced. This suggests a
role for IL-10 in the inhibition of NK cell antiviral responses.
The authors confirmed in vitro that addition of exogenous IL-10
to activated NK cells induces significant suppression of NK cell-
derived IFN-γ, while blocking of IL-10 restored NK cell effector
function (50).

However, it has also been reported that NK cells exert higher
cytolytic activity and IFN-γ production during acute HBV infec-
tion. This was concomitant with the elevated expression of activat-
ing receptors such as NKp46, and lower levels of inhibitory mark-
ers, e.g., NKG2A (34). Furthermore, NK cell activation, measured
by the expression of CD69, CD38, and HLA-DR, was correlated
positively with ALT levels and negatively with viral load, suggesting
a close association of activated NK cells with liver necroinflamma-
tion and HBV clearance in acute HBV infection. In addition to the
altered phenotype, the frequency and subset distribution was also
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modified in patients with acute hepatitis B, showing a significant
enrichment of CD56bright NK cells (34, 35).

The discrepancy between these different studies may arise from
the fact that disease progression in the analyzed patients was either
asymptomatic or symptomatic in concert with normal and ele-
vated ALT levels, respectively. Overall, these results point to an
important role of NK cells that are activated during acute HBV
infection but might be functionally suppressed.

NK CELLS IN CHRONIC HBV INFECTION
Studies regarding phenotype and function of NK cells during
chronic HBV infection have revealed, in part, conflicting results.
Several reports conclude that NK cells exhibit selective defects in
their antiviral function. This functional dichotomy features a con-
served or enhanced cytolytic activity (51, 52) and a diminished
cytokine production (51, 53) that may contribute to viral persis-
tence and implicate a role for NK cells in disease pathogenesis.
The mechanisms leading to this functional impairment are still
not fully understood but thought to be heterogeneous.

Hepatitis B virus infection may alter the activation status and
receptor expression patterns on the surface of NK cells. Indeed,
the expression of inhibitory receptors such as NKG2A is elevated
while activating receptors, CD16 and NKp30, are downregulated
(53, 54) and this correlates with serum HBV DNA load. Interest-
ingly, antiviral therapy partially restores NK cell phenotype and
functionality (53). However, these findings are controversial, since
Bonorio et al. showed decreased levels of NKG2A-expressing NK
cells in chronic HBV infection (55) and it was also reported, that
HBV infection does not alter NKG2A expression on NK cells (35).
In addition to classical NK cell receptors other co-inhibitory mole-
cules involved in immune responses may impair NK cell function.
Of note, T cell immunoglobulin- and mucin-domain-containing
molecule-3 (Tim-3) has been shown to be upregulated on NK cells
during HBV infection and in vitro blockade was able to enhance
NK cell cytotoxicity (56).

An impaired NK cell activation and function may also arise
from modified expression patterns of ligands for inhibitory
and activating NK cell receptors. Indeed, it has been shown
that the decreased expression of NKG2D ligands, MICA/B, on
HBV-infected hepatocytes inhibits NK cell lysis (57).

Furthermore, the immunosuppressive cytokine environment
in chronic HBV infection, created through high levels of IL-10,
may inhibit the ability of NK cells to produce IFN-γ (58), as has
already been shown in acutely infected patients (50). This defect
persists in patients with chronic HBV infection receiving antiviral
therapy, but can be reversed in vitro by specific blockade of IL-10
and transforming growth factor (TGF)-β (58).

In addition, the interaction with other immune cells may alter
the reactivity of NK cells during persistent viral infection. For
example, several studies have revealed that HBV interferes with
pDCs, thereby modulating pDC-NK cell crosstalk in vivo and
in vitro (59–61). Although circulating and intrahepatic pDCs
from patients with chronic HBV infection showed a more acti-
vated phenotype, their ability to respond to toll-like receptor
(TLR) 9 stimulation was significantly impaired (60). Moreover,
patient-derived mature pDCs were poor activators of NK cell cyto-
toxic function due to their impaired IFN-α secretion and reduced

OX40L expression. HBV seems not only to directly inhibit pDC
maturation in a TLR9-dependent manner, but also to abrogate the
supporting function of monocytes regarding IFN-α production
by pDCs (59).

As mentioned above, NK cells may also exert regulatory func-
tions (41–43). This is supported by a study in patients with chronic
HBV infection,where in vitro depletion of NK cells increased HBV-
but not CMV-specific CD8+ T cell responses (2). Elevated expres-
sion of TRAIL receptor 2 (TRAIL-R2) renders HBV-specific CD8+

T cells more susceptible to apoptosis by TRAIL-expressing NK
cells. TRAIL-R2-expression patterns correlated with HBV DNA
titer, thus the regulatory role of NK cells may be relevant dur-
ing HBV flares. Longitudinal analysis of chronically HBV-infected
patients already revealed a temporal correlation between ALT flares
and TRAIL-expressing NK cells (62).

Taken together, these findings suggest that NK cells may exert
a non-classical regulatory next to their classical antiviral function
in HBV infection.

CD8+ T CELLS
CD8+ T cells are a major component of cellular adaptive immu-
nity. They normally mediate protection against intracellular
pathogens and tumor cells. In order to be properly activated,
CD8+ T cells require at least two signals: first, the recognition of
their cognate antigen presented by MHC I molecules on antigen-
presenting cells (APCs). This is mediated by the interaction of
the antigen-specific T cell receptor (TCR) with peptide-MHC I
complexes. Second, additional co-stimulatory signals have to be
provided by the same APC to prevent anergy. Furthermore, differ-
ent cytokine milieus may influence this activation process (63).
Upon antigen-recognition, naïve CD8+ T cells undergo clonal
expansion and differentiate into cytotoxic effector and memory T
cells (64). According to their differentiation status, they are char-
acterized by distinct expression patterns of surface markers such
as CD45RA, CD27, CD28, and CCR7 (65). Similar to NK cells, the
effector functions of CD8+ T cells comprise several mechanisms
such as the secretion of cytokines (IFN-γ and TNF), the release of
cytotoxic mediators (perforin/granzyme), and receptor-mediated
induction of apoptosis (e.g., through TRAIL) (63). In the follow-
ing, we will elaborate the current knowledge about phenotype and
function of CD8+ T cells in the context of acute and chronic HBV
infection.

CD8+ T CELLS IN ACUTE HBV INFECTION
Hepatitis B virus-specific CD8+ T cells play a major role in con-
trolling and resolving HBV infection. Indeed, strong HBV-specific
CD8+ T cell responses have been shown to correlate with viral
clearance during acute infection (66). The antiviral role of CD8+

T cells has been further confirmed by depletion studies in exper-
imentally infected chimpanzees, where in the absence of CD8+

T cells virus titer remained at high levels (3). Importantly, the
re-appearance of CD8+ T cells in the circulation coincided with
a decrease in viremia and the onset of liver disease. However, it
has been shown that virus-specific CD8+ T cells are functionally
impaired during the acute phase until infection is resolved (50,
66, 67). Furthermore, the mechanisms of CD8+ T cell-mediated
antiviral control are still debated.
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Indeed, studies in the transgenic mouse model revealed that
HBV-specific CD8+ T cells are able to abolish viral replication in
the liver while killing only a small fraction of hepatocytes (68).
This was mediated by inflammatory cytokines such as IFN-γ and
TNF. The contribution of non-cytolytic effector mechanisms has
been further supported by findings in a cell culture model, where
virus-specific CD8+ T cells were able to inhibit HBV replication in
HepG2 2.2.15 cells with only minimal cell lysis (69). Of note, the
authors could show that particularly IFN-γ and TNF are responsi-
ble for HBV inactivation in target cells, since blocking of these two
cytokines abrogated the non-cytolytic inhibition of virus replica-
tion. Furthermore, in acutely infected chimpanzees most of HBV
DNA elimination has been shown to occur before the peak of
T cell infiltration and liver injury, also suggesting non-cytolytic
effector mechanisms like the secretion of IFN-γ and TNF (47).
Still, the contribution of cytolytic effects is supported by several
studies (3, 70).

The development of cell culture models permits the investiga-
tion of the relative importance of cytolytic versus non-cytolytic
effector functions and their impact on the suppression of HBV
replication (71). Various cell lines transfected with the HBV
genome have been established, e.g., HepG2.117 (72), HepG2.2.15
(73), or HepAD38 (74). Although the secreted virions are infec-
tious, these cell lines are still quite artificial, since none of them is
susceptible for HBV infection. Until the recent discovery of human
sodium taurocholate cotransporting polypeptide (hNTCP) as
HBV entry receptor (75, 76) in vitro infection could only be
conducted in primary human hepatocytes, primary tupaia hepa-
tocytes, and in differentiated HepaRG cells. The latter was the
first hepatoma cell line being susceptible to HBV and supporting
the full viral replication cycle after DMSO-dependent differen-
tiation (77). However, cultures of differentiated HepaRG cells
represent a mixture of biliary-like epithelial cells and hepatocyte-
like cells and only the latter subset was shown to be susceptible
for HBV infection with an infection efficacy below 20% (78).
Hepatoma cell lines such as HuH7 and HepG2 cells lack hNTCP
expression and are therefore non-permissive to HBV infection.
Of note, infection rates with up to 70% can be achieved when
HepG2 cells are transduced with hNTCP (76). These novel cell
lines may be useful not only to study the molecular virology of
HBV but also to improve our understanding of the relative con-
tribution of cytolytic and non-cytolytic effector functions to viral
clearance.

CD8+ T CELLS IN CHRONIC HBV INFECTION
In chronically HBV-infected individuals, virus-specific CD8+ T
cell responses are rarely detectable (5, 79–82). The profiles of HBV-
specific CD8+ T cell responses depend on the stage of disease
and are highly influenced by the level of HBV replication. Indeed,
circulating multispecific HBV-specific CD8+ T cell responses are
predominantly detectable ex vivo in patients with low viral load. In
individuals with a high level of HBV replication (>107 copies/ml)
virus-specific CD8+ T cells were occasionally detectable only after
in vitro expansion (81). However, the mechanisms responsible
for the lack of functional CD8+ T cell responses are not com-
pletely understood. It might be that virus-specific CD8+ T cells
are deleted. Indeed, the elevated intracellular expression of the

pro-apoptotic protein Bcl2-interacting mediator (Bim) in HBV-
specific CD8+ T cells of chronically infected patients supports this
hypothesis (83).

Furthermore, HBV-specific CD8+ T cells may not or only insuf-
ficiently be primed by APCs and consequently may not expand
upon antigen-encounter. Of note, several studies suggest a dys-
function of DCs in chronically HBV-infected patients, includ-
ing reduced expression of co-stimulatory molecules, impaired
cytokine secretion, and lower allostimulatory capacity compared
to healthy subjects (84–87). According to this, HBV-specific CD8+

T cells would be expected to display a naïve phenotype, charac-
terized by high expression levels of CD45RA, CD27, CD28, and
CCR7 (65).

In addition, it is possible that they are not traceable since the
frequencies of virus-specific CD8+ T cell responses are below the
detection limit of conventional quantitative assays, as it has been
shown in chronic HCV infection (Schmidt, unpublished data).
New techniques for enumerating epitope-specific T cells from
human peripheral blood based on the combination of tetramer
staining, magnetic-bead enrichment, and multiparametric flow
cytometry (88) may address at least the latter two possibilities.

Virus-specific CD8+ T cells isolated from the peripheral blood
of chronically HBV-infected patients are functionally impaired
and seem to have lost most of their ability to proliferate and to
produce cytokines, like IFN-γ (82). The reported CD8+ T cell fail-
ure has been attributed to high levels of persisting viral antigens.
Despite the constant presentation of viral peptides on MHC mol-
ecules, circulating sub-viral particles, comprised of soluble HBV
surface antigen (HBsAg) along with HBeAg may drive chronic T
cell stimulation. Particularly, the latter has been implicated in alter-
ing the reactivity of virus-specific CD8+ T cells (89). Moreover,
accessory HBsAg seroconversion has been reported to induce a
more potent restoration of CD8+ T cell responses than HBV viral
load reduction alone (90).

CD8+ T cell dysfunction in chronic HBV infection follows a
well-established pattern with elevated expression of inhibitory
molecules such as programmed death-1 (PD-1) (82, 91), cyto-
toxic T lymphocyte antigen 4 (CTLA-4) (92), Tim-3 (93, 94), and
2B4 (CD244) (95) on T cells. Furthermore, the expression of cor-
responding ligands such as PD ligand (PD-L)1 has been shown to
be increased on hepatocytes (96). According to this, highly viremic
HBV-infected patients show a more severely impaired CD8+ T cell
phenotype and T cell dysfunction is more profound in the liver
than in the blood (91, 97). Blockade of these inhibitory pathways
may at least partially restore HBV-specific CD8+ T cell function-
ality, as it has been shown in vitro (82, 91, 92, 94, 95). The potential
relevance of blocking the PD-1 pathway was demonstrated in the
HBV mouse model where HBV-transgenic mice were treated with
blocking antibodies for PD-L1 prior to the adoptive transfer of
HBV-specific cytotoxic T cells (98). This treatment resulted in
an increased number of IFN-γ-producing CD8+ T cells in the
liver and in a delayed suppression of these CD8+ T cells. Fur-
thermore, a recent study could show that in vivo blockade of the
PD-1/PD-L1 pathway, together with entecavir treatment and DNA
vaccination, enhances virus-specific CD8+ T cell responses in the
woodchuck model, leading to sustained immunological control of
viral infection (99).
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FIGURE 1 | Natural killer cells as well as HBV-specific CD8+ T cells exhibit
their antiviral functions by cytolytic (perforin and granzyme) and/or
non-cytolytic (IFN-γ andTNF) mechanisms. However, CD8+ T cells express
antigen-specific T cell receptors (TCRs) that interact with peptide-MHC I
complexes on infected hepatocytes (H) whereas NK cell activation is thought
to be antigen-independent. Effector functions and phenotype of both cell
types are modulated during acute and chronic HBV infection. Indeed, different

mechanisms play a role in regulating both effector populations, such as DCs,
immunoregulatory cytokines (IL-10 and/or TGF-β) and expression of several
inhibitory receptors. Furthermore, lack of CD4+ T cell help and interaction with
regulatory T (Treg) cells may lead to CD8+ T cell dysfunction in chronically
HBV-infected patients resulting in Bim-mediated apoptosis. Importantly, NK
cells are also able to inhibit antiviral T cell responses by deleting HBV-specific
CD8+ T cells in a TRAIL-dependent manner.

The combined modulation of these inhibitory pathways along
with the activation of co-stimulatory pathways might be benefi-
cial (92, 95, 100, 101). However, a more detailed insight into the
relative contribution of individual inhibitory pathways to HBV-
specific CD8+ T cell dysfunction and concomitant the impact
of inhibitory receptor blockade on restoration of CD8+ T cell
responses is necessary.

Moreover, the lack of CD4+ T cell help contributes to defective
CD8+ T cell function (102). Increased regulatory T cell numbers
(103–105), together with immunosuppressive cytokines such as
IL-10 and TGF-β (50, 58, 106) impair virus-specific CD8+ T cell
responses. It has also been reported that increased intrahepatic
arginase levels (67, 107) and hence the lack of arginine lead to a
functional silencing of CD8+ T cells due to the downregulation of
the CD3ζ-chain (108).

Collectively, these studies demonstrate that several mechanisms
may contribute to the diminished frequency and function of virus-
specific CD8+ T cells in the chronic phase of HBV infection and
that combined modulation of different pathways may lead to a
restoration of HBV-specific T cell responses.

CONCLUSION
CD8+ T cell responses play an important role in HBV infec-
tion and contribute not only to viral clearance but also to liver
injury. In the setting of chronic infection, several mechanisms of
T cell dysfunction including expression of inhibitory molecules

and pro-apoptotic proteins, as well as suppressive cell subsets
and cytokines favor viral persistence (Figure 1). In addition, even
antivirally active NK cells, which exert a unique influence in the
early defense against HBV are supposed to control CD8+ T cells,
particularly during hepatic flares.

Cell culture models taking advantage of hepatoma cell lines that
are transduced with the recently identified HBV entry receptor,
hNTCP, may allow novel insights into HBV immunobiology and
pathogenesis, revealing the relative contribution of cytolytic and
non-cytolytic mechanisms to viral clearance. Furthermore,enrich-
ment techniques could uncover whether HBV-specific CD8+ T
cells are actually deleted in chronically HBV-infected patients and
could also elucidate the phenotype of the detectable virus-specific
CD8+ T cells. A better understanding of the mechanisms leading to
viral persistence may result in new therapeutic treatment strategies
that aim to remedy the T cell defects described, thereby augment-
ing functional responses and decreasing antigen-unspecific liver
damage.
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