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Dengue viruses (DENVs) cause approximately 390 million cases of DENV infections annu-
ally and over 3 billion people worldwide are at risk of infection. No dengue vaccine is
currently available nor is there an antiviral therapy for DENV infections. We have developed
a tetravalent live-attenuated DENV vaccine tetravalent dengue vaccine (TDV) that consists
of a molecularly characterized attenuated DENV-2 strain (TDV-2) and three chimeric viruses
containing the pre-membrane and envelope genes of DENV-1, -3, and -4 expressed in
the context of the TDV-2 genome. To impact dengue vaccine delivery in endemic areas
and immunize travelers, a simple and rapid immunization strategy (RIS) is preferred. We
investigated RIS consisting of two full vaccine doses being administered subcutaneously or
intradermally on the initial vaccination visit (day 0) at two different anatomical locations with
a needle-free disposable syringe jet injection delivery devices (PharmaJet) in non-human
primates. This vaccination strategy resulted in efficient priming and induction of neutral-
izing antibody responses to all four DENV serotypes comparable to those elicited by the
traditional prime and boost (2 months later) vaccination schedule. In addition, the vaccine
induced CD4+ and CD8+T cells producing IFN-γ, IL-2, andTNF-α, and targeting the DENV-2
NS1, NS3, and NS5 proteins. Moreover, vaccine-specific T cells were cross-reactive with
the non-structural NS3 and NS5 proteins of DENV-4. When animals were challenged with
DENV-2 they were protected with no detectable viremia, and exhibited sterilizing immunity
(no increase of neutralizing titers post-challenge). RIS could decrease vaccination visits and
provide quick immune response to all four DENV serotypes. This strategy could increase
vaccination compliance and would be especially advantageous for travelers into endemic
areas.

Keywords: dengue, vaccine, non-human primates, neutralizing antibodies, needle-free delivery,T cell responses

INTRODUCTION
Millions of people living in tropical and subtropical parts of the
world are infected with dengue viruses (DENVs) each year (1, 2).
The dramatic spread of the disease has been mainly attributed
to the geographical expansion of the mosquito vector combined
with inadequate measures of vector control, increased human
travel, and urbanization (3). DENVs circulate in nature as four
distinct serotypes (DENV-1 to DENV-4), each capable of causing
a spectrum of disease ranging from subclinical infection to dengue
fever (DF), and sometimes to life-threatening dengue hemorrhagic
fever (DHF), and dengue shock syndrome (DSS) (1, 4, 5). Nor-
mally, infection with one dengue serotype will confer long-term
protection against reinfection by the same serotype. However, in
case of reinfection by a heterologous dengue serotype, there is
the potential risk of antibody-dependent enhancement (ADE) of

disease associated with the presence of cross-reactive antibodies
(6) and/or cross-reactive T cells (7, 8). Therefore, vaccine develop-
ment against DENV has focused on tetravalent formulations that
can simultaneously provide protection to all four DENV serotypes.

Currently, there are several candidate DENV vaccines at various
stages of preclinical and clinical testing (9). This article describes a
live-attenuated tetravalent dengue vaccine (TDV) consisting of a
molecularly characterized attenuated DENV-2 strain (TDV-2) and
three chimeric viruses containing the pre-membrane and enve-
lope genes of DENV-1, -3, and -4 expressed in the context of the
TDV-2 genome (TDV-1, TDV-3, and TDV-4, respectively) (10–
15). TDV has been extensively tested in preclinical studies (16,
17), two completed Phase 1 clinical trials, and is currently tested
in Phase 2 clinical trials in dengue endemic areas. It was shown
to be well-tolerated in healthy adults and induced neutralizing
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antibody responses to all four dengue serotypes (Osorio et al., in
preparation; George et al., in preparation).

To improve dengue vaccine delivery globally and in diverse
clinical settings an easy delivery method is required combined
with a vaccination schedule that will improve compliance. Delivery
approaches such as those using jet injectors have been considered
as alternatives to the conventional needle and syringe (N–S) injec-
tion, with some on the market, and others being tested in clinical
trials (18). In this non-human primates (NHP) study, we evaluated
the administration of TDV via the subcutaneous (SC) or intrader-
mal (ID) routes using a needle-free delivery device developed by
PharmaJet (PhJ). In addition, we investigated rapid immunization
strategy (RIS) to administer animals with double doses of vaccine
(two separate injection sites, one dose at each site) on day 0 (0,
0). Our results indicated that this RIS strategy induced immune
responses comparable to those elicited when two doses are given
53 days apart.

MATERIALS AND METHODS
VIRUSES AND VACCINES
DENV-2 New Guinea C (NGC) used as challenge virus in this
study was generously provided by Dr. Steven Whitehead (National
Institutes of Health, Bethesda, MD, USA). For neutralizing anti-
body assays, we used virus strains from which the prM and E
genes of each live-attenuated dengue vaccine serotype were derived
(DENV-1 16007, DENV-2 16681, DENV-3 16562, and DENV-4
1036). DENVs were grown in Vero cells or C6/36 cells in Dul-
becco’s modified minimal essential medium (DMEM) containing
5% fetal bovine serum (FBS) and penicillin–streptomycin.

The four vaccine viruses were generated from cDNA clone-
derived DENV-2 VV45R virus (based on the genome of DENV-2
PDK-53), and the DENV-2 PDK-53-based chimeras expressing the
prM and E genes of DENV-1 16007, DENV-3 16562, or DENV-4
1036. The construction and characterization of these viruses has
been previously reported (10, 19).

NON-HUMAN PRIMATES
Twelve adult male, DENV seronegative cynomolgus macaques
originating from Vietnam were used. The animals were placed
in quarantine for 30 days prior to study start. The study was con-
ducted at the Charmany Instructional Facility of the University
of Wisconsin, Madison, WI, USA in compliance with the Animal
Care Regulations.

EXPERIMENTAL ANIMAL STUDY DESIGN
In this study, groups of monkeys (n= 3) received the TDV for-
mulated into either 0.5 ml for SC administration or 0.1 ml for
ID delivery using the PhJ device. Each full dose of the tetrava-
lent vaccine used in this study contained 2× 104 PFU of TDV-1,
5× 104 PFU of TDV-2, 1× 105 PFU of TDV-3, and 3× 105 PFU
of TDV-4 vaccine viruses. This vaccine constitutes the clinical
trial material used for two Phase 1 studies conducted in USA and
Colombia, as well as Phase 2 studies currently ongoing in endemic
areas.

Each animal in the first two groups received two injections on
day 0, one in each arm ID or SC. A third group of animals was
injected SC on day 0 and 53 using the PhJ device. Control animals

received PBS via the ID route using PhJ. On day 90, all animals
were challenged SC with 105 PFU of DENV-2 (NGC strain) using
N–S. Serum samples were collected on days 0, 3, 5, 7, 10, 12, 14,
53, 64, 67, and 88 post-primary immunization to analyze vaccine
viremia, and days 91, 93, 95, 97, 99, 101, 102, and 104 to analyze
DENV-2 NGC viremia after challenge. Serum samples also were
collected on days 0, 30, 53, 75, 88, and 104 to determine neutral-
izing antibody titers to each serotype. PBMCs from group 2 and 4
were collected to measure T cell responses.

SERUM VIRAL RNA
Viral RNA in serum samples was measured using a quantitative
reverse transcription-polymerase chain reaction (qRT-PCR) as
follows. Viral RNA was extracted from 140 µl of each individual
serum sample using a QIAamp viral RNA kit (Qiagen, Valencia,
CA, USA) and eluted in 60 µl elution buffer. Viral RNA stan-
dards, used to create a standard curve in all qRT-PCR assays,
were in vitro transcribed from cDNA clones and quantified as
previously described (20). E-gene primers, TaqMan probes, and
RNA standards were serotype specific (Table 1). Using a different
fluorophore for each serotype specific probe (sequences available
upon request), qRT-PCRs were performed in duplex: one reaction
quantified TDV-1 and TDV-2 vaccine viruses while a separate one
quantified TDV-3 and TDV-4 viruses RNA. Following DENV-2
NGC challenge, viral RNA was quantified in a singleplex qRT-
PCR. All qRT-PCR reactions were performed in a final volume of
25 µl using the QuantiTect Virus+ROX Vial Kit (Qiagen,Valencia,
CA, USA). The reactions contained 5 µl extracted RNA, 0.4 µM
of each primer, and 0.2 µM probe. The reaction was conducted in
the iQ5 iCycler system (Bio-Rad Laboratories) using the following
cycle; 1 cycle of 50°C for 20 min at room temperature (RT), 1 cycle
of 95°C for 5 min, and 50 cycles of 95°C for 15 s. Limit of detection
for the qRT-PCR was determined for each viral RNA standard by
creating a standard curve consisting of nine replicates per dilu-
tion. While the sensitivity reached 3.9 copies/reaction (~2.7 log10

copies/ml), 3.6 log10 copies/ml met the criteria of a 100% detection

Table 1 | E protein primers used in this study.

Sequence

ANTI-SENSE PRIMERS

CD1-1593 CAA GGC AGT GGT AAG TCT AGA AAC C

CD2-2116 TCT TAA ACC AGT TGA GCT TCA GTT GT

CD3-2000 CCA CTG GAT TGG CTG TGA TC

CD4-843 GCG CGA ATC CTG GGT TT

SENSE PRIMERS

D1-1459 GACCGACTACGGAACCCTTACAT

D2-1929 TCC ATG CAA GAT CCC TTT TGA

D3-1872 CGC AGC ATG GGA CAA TAC TC

D4-637 GCTGGTGCAATCTCACGTCTA

PROBES

CD1-1519P CTC GTT AAA ATC TAG CCC TGT CCT AGG TGA ACA

AT – FAM

D2-2000P ACC CAA TTG TGA CAG AAA AAG ATA GCC CAG TC – TET

D3-1914P AAG ATG CAC CCT GCA AGA TTC CTT TCT C – TET

CD4-699P TCC GTT CTC CGC TCT GGG TGC AT – FAM
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rate as well as a low (≤0.5) cycle threshold standard deviation of
the replicates and was used as a cutoff for the assay.

MICRONEUTRALIZATION ASSAY
Serum samples were incubated at 56°C for 30 min to inactivate
complement and possible adventitious agents. Heat-inactivated
serum samples then were tested for neutralizing activity using a
viral immunofocus reduction microneutralization assay and ana-
lyzed by an AID ELISpot reader (San Diego, CA, USA). Briefly,
96-well tissue culture plates were seeded with Vero cells at a den-
sity of 1.3× 105 cells/ml in 100 µl/well. Cells were grown at 37°C
in a 5% CO2 incubator for 48 h. Twofold serial serum dilutions
were prepared in a separate 96-well plate and then mixed with
virus suspension containing 100 PFU followed by incubation at
4°C for 13–15 h. Culture medium was discarded from the Vero cell
plates and then 30 µl of the serum–virus mixture was added to
each well in triplicate followed by incubation at 37°C for 2 h. Con-
trol positive and negative serum samples were also included. An
overlay medium with 1.2% carboxymethyl cellulose was added
(100 µl/well) and cells were incubated as above for 2 days for
DENV-4, 2.5 days for DENV-1 and -3, and 3 days for DENV-2.
After incubation, the overlay was removed and cells were fixed
with 85% cold acetone for 10 min at RT. Acetone was then dis-
carded and plates were stored at−20°C until further use. Prior to
staining, plates were equilibrated to RT, and washed three times
with PBS to rehydrate the cells and to remove any residual overlay.
Rabbit anti-DENV polyclonal antibody diluted (1:1000) in PBS-
T containing 2.5% (w/v) dry milk powder was added, and plates
were incubated at 37°C for 2 h. Plates were washed three times with
PBS-T and incubated with anti-rabbit antibody conjugated with
horse radish peroxidase (HRP) at 37°C for 2 h. Finally, plates were
washed three times with PBS-T and incubated with the substrate
(3-amino-9-ethylcarbozole) for 10–30 min or until plaques were
visible. The plates were then washed with water and air-dried. The
viral immunofoci were quantified on an ELISpot reader. Fifty per-
cent of the average number of foci in the negative control serum
defined the cutoff point. The serum dilution closest to the cutoff
was recorded as the reciprocal neutralizing titer.

INTRACELLULAR CYTOKINE SECRETION ASSAY BY FLOW CYTOMETRY
To assess the functional capability of TDV-elicited dengue-specific
T cells, we performed intracellular cytokine staining (ICS) assays.
For positive control, we used Staphylococcus Enterotoxin B (SEB)
stimulation, for negative control, we used tissue culture medium
devoid of added stimulatory peptides. Peptide arrays used in this
study (Table 2) were obtained from the National Institute of
Allergy and Infectious Diseases Biodefense and Emerging Infec-
tions Research Resources Repository (BEI Resources). Individual
peptides were prepared as 10 mM stock solutions for NS1 and
NS5 and 15 mM for NS5 peptides. An aliquot of 0.5–1.5× 106

PBMC in 200 µl total volume was incubated with peptides at
5 µM final concentration in the presence of anti-CD28 (clone
L293), anti-CD49d (clone 9F10), and CD107a PE (clone H4A3)
antibodies, and 1 µg per test of Brefeldin A (Sigma-Aldrich, St.
Louis, MO, USA) and Golgi Stop at 37°C in a 5% CO2 incu-
bator overnight. Cells were stained for the surface expression of
CD3 (PE-CF594 clone SP34-2), CD4 (PerCP-Cy5.5-conjugated

Table 2 | Peptide arrays.

Serotype/peptides aa. Number Virus strain Cat. no. (NBI)

DENV-2 NS1 47 New Guinea C NR-508

DENV-2 NS3 83 New Guinea C NR-509

DENV-2 NS5 155 New Guinea C NR-2746

DENV-4 NS3 106 Singapore/8976/1995 NR-2756

DENV-4 NS5 156 Singapore/8976/1995 NR-4205

clone L200), CD8 (Pacific Blue-conjugated clone RPA-T8), and
live/dead fixable Aqua Dead Cell stain (Invitrogen), washed twice
with FACS buffer, and fixed with 2% paraformaldehyde. Cells
were then permeabilized with 0.1% saponin buffer, intracellularly
stained for IFN-γ (Alexa Fluor 700-conjugated clone 4S.B3), TNF-
α (FITC-conjugated clone Mab11), and IL-2 (APC-conjugated
clone MQ1-17H12), washed twice with saponin buffer, and fixed
with 2% paraformaldehyde. All fluorescent-labeled antibodies and
reagents were purchased from BD Biosciences except when men-
tioned. Sample data were acquired on a SORP BD LSR II equipped
with a 50 mW 405 violet, a 100 mW 488 blue, and a 50 mW 640
red laser (BD Biosciences) using FACSDiva version 6.1 acquisition
software. We collected approximately 150–300 thousand events in
the lymphocyte gate defined by forward and side scatter parame-
ters. Data were analyzed by FlowJo™ 9.4.2 software (Tree Star, Inc.,
Ashland, OR, USA). Background values from peptide stimulated
values were subtracted. The frequency of cytokine-positive T cells
was presented as the percentage of gated CD4+ or CD8+ T cells.

RESULTS
VACCINE VIRAL RNA FOLLOWING IMMUNIZATION
Following immunization, the presence of vaccine viral RNA in
the serum was monitored by qRT-PCR of sequential bleeds col-
lected over a period of 14 days post-primary immunization. TDV
induced detectable TDV-2 virus replication from day 5 to 14 for
animals injected SC, and day 7–12 for those injected ID (Table 3).
No viral RNA from TDV-1, -3, and -4 vaccine viruses was detected
in any of the groups on samples collected over a period of 14 days
post-primary immunization.

NEUTRALIZING ANTIBODY RESPONSES ELICITED BY VACCINATION
The individual neutralizing antibody titers and kinetics of anti-
body responses elicited by TDV are shown in Table 4. Overall,
administration of the vaccine by the ID or SC routes using the
RIS (0, 0 vaccination schedule) induced comparable neutralizing
antibody titers to all four serotypes. In all cases, the dominant
neutralizing antibody response was to DEN-2, whereas TDV-4
was the least immunogenic component of the tetravalent vaccine
formulation.

CHARACTERIZATION OF T CELL RESPONSES ELICITED BY THE VACCINE
To determine the target proteins of the T cell response elicited by
TDV, PBMCs from immunized animals (group 2) collected on day
53 post-priming were restimulated in vitro with pools of peptides
encompassing the entire sequence of DENV-2 NS1, NS3, and NS5
proteins (Table 2). As shown in Figure 1, CD4+ T cells predom-
inantly targeted the NS1 protein and to a lesser extent the NS3
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and NS5 proteins, producing IFN-γ (a), IL-2 (b), and TNF-α (c).
The vaccine also elicited CD8+ T cells mainly recognizing epitopes
from the NS1 protein and to a lesser degree from NS3 and NS5
proteins (Figure 2). In particular, responses to the NS1 were char-
acterized by the production of IFN-γ (a), IL-2 (b), TNF-α (c), and
expression of CD107a+ marker (d). In contrast, T cell responses
in PBS immunized animals (group 4) were comparatively very low
(Figures 1 and 2). In addition, vaccine-specific CD8+ IFN-γ pro-
ducing T cells were cross-reactive with epitopes from the NS3 and
NS5 non-structural proteins of DENV-4 (Figure 3A) and were
shown to express the CD107a+marker (Figure 3B). A similar pat-
tern of T cell responses recognizing predominantly the NS1 protein
with no significant differences in frequencies of CD4+ and CD8+

T cells were also measured in group 3 (data not shown).

Table 3 |TDV-2 virus RNA detected in the serum after primary

immunization withTDV.

Group Dosing

schedule

No. of animals positive for viral RNA

Day 5 Day 7 Day 10 Day 12 Day 14

1 TDV PhJ/ID

(day 0, 0)

– 1/3 3/3 2/3 –
(4.8) (4.5–4.9) (3.9–4.3)

2 TDV PhJ/SC

(day 0, 0)

1/3 3/3 3/3 1/3 –

(3.8)a (4.0–4.3) (3.7–4.7) (4.0)

3 TDV PhJ/SC

(day 0, 60)

1/3 3/3 3/3 3/3 2/3

(3.8) (4.5–5.4) (3.8–5.3) (3.2–4.8) (3.7–5.0)

4 PBS PhJ/ID

(day 0, 60)

– – – – –

Results are averages from duplicate or triplicate data.

Samples with titers <3.6 log10 copies/ml were considered negative.
aData in parenthesis represent range of titers in log10 copies/ml.

PROTECTION FROM DENV-2 NGC CHALLENGE
Since TDV-2 constitutes the backbone of TDV in this study, we
examined the protective efficacy of this vaccine against challenge
with DENV-2 NGC strain. Upon DENV-2 NGC challenge viral
RNA was detected in the serum of all mock-immunized animals
(Table 4). None of the vaccinated animals displayed DENV-2
NGC RNA. When the neutralizing antibody responses to DENV-2
were compared before and after challenge there was no signifi-
cant increase in antibody titers in all vaccinated groups suggesting
that DENVax elicits sterilizing immunity to DENV-2 (Table 5). In
contrast, mock vaccinated animals developed a strong anti-DEN-2
neutralizing antibody response after challenge (Table 5).

DISCUSSION
To facilitate global dengue prevention and control through effec-
tive vaccination, a simple and practical method of administration
is highly desirable. This study examined several aspects of vaccine
delivery in the NHP model. In particular, we compared immune
responses elicited by the SC and ID routes using a needle-free dis-
posable syringe jet injection (DSJI) delivery device and assessed
RIS as an alternative to the traditional prime/boost vaccination
schedule. Immunization with TDV resulted in the detection of
only TDV-2 virus RNA in the serum of vaccinated animals. This is
consistent with our previous observations in the NHP model (17).
The absence of post-boost viremia in animals that received a prime
and booster immunization (0, 60) suggests that priming with the
tetravalent vaccine was effective in eliciting immune responses able
to reduce and control viral replication upon secondary exposure.

The use of a needle-free DSJI delivery device to administer
TDV provided strong evidences suggesting the feasibility of an
alternate approach to ID administration. Indeed, measurement
of neutralizing antibody responses demonstrated that the vaccine
was highly immunogenic. However, responses were unbalanced
with anti-DEN-2 neutralizing titers being the highest and those
against DEN-4 the lowest. This finding is consistent with previous

Table 4 | Kinetics of neutralizing antibody responses in animals vaccinated withTDV SC or ID using the PharmaJet device.

NHP ID Vaccine regimen Day 30 Day 53 Day 88

Day 1 Day 2 Day 3 Day 4 Day 1 Day 2 Day 3 Day 4 Day 1 Day 2 Day 3 Day 4

CY0503 0, 0 PhJ/ID 40 1280 160 20 160 1280 40 10 80 5120 20 40

CY0504 80 640 40 10 40 2560 40 5 80 2560 20 40

CY0505 320 1280 2560 320 160 640 640 160 80 640 160 40

GMT 101 1016 254 40 101 1280 101 20 80 2032 40 40

CY0473 0, 0 PhJ/SC 2560 10,240 160 40 640 5120 80 20 320 1280 40 20

CY0474 1280 320 1280 160 640 640 640 160 320 320 160 80

CY0475 640 320 640 320 640 320 320 80 160 320 160 160

GMT 1280 1016 508 127 640 1016 254 64 254 508 101 64

CY0493 0, 60 PhJ/SC 160 2560 160 20 80 2560 10 20 320 2560 80 40

CY0494 320 640 640 160 320 640 320 10 80 640 160 80

CY0495 640 2560 320 40 640 2560 40 80 1280 2560 160 40

GMT 320 1613 320 50 254 1613 50 25 320 1613 127 50

GMT, geometric mean titer.
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FIGURE 1 | CD4+ T cell responses toTDV target the non-structural
proteins ofTDV-2. Responses are shown as percentage of cytokine-positive
T cells from DENV-2 peptide arrays stimulated PBMCs with the background

percentage of cytokine-positive T cells in medium only treated cells
subtracted. Peptide arrays for NS5 were split into two pools; NS5-1 and
NS5-2. PBMCs from PBS immunized animals were used as controls.

observations made in preclinical animal models (10, 16, 17) and in
Phase 1 clinical trials conducted in the USA and Colombia (Oso-
rio et al., and George et al., in preparation) using N–S delivery
with a prime/boost schedule. Since DENV-2 is the most frequent
serotype implicated in DHF/DSS in secondary DENV infections
(21) it could be argued that immunization with TDV could be
advantageous in conferring protection against this serotype. When
antibodies induced by the 0, 0 and 0, 53 vaccination schedule
by the SC route were compared, the overall titers to all four

DENV serotypes were similar. This suggests that the 0, 0 immu-
nization schedule can efficiently prime the immune system for
tetravalent responses, which can be sustained at high levels up to
3 months. Therefore, this vaccination schedule could be especially
advantageous for travelers in endemic areas.

In the context of vaccination, it is critical to characterize the
profile of T cell responses and determine the target proteins of
this response. The recent analysis of T cell responses from a large
cohort of DENV-infected individuals has highlighted the role of T
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FIGURE 2 | CD8+ T cell responses toTDV target the non-structural
proteins ofTDV-2. Responses are shown as percentage of cytokine-positive
T cells from DENV-2 peptide arrays stimulated PBMCs with the background

percentage of cytokine-positive T cells in medium only treated cells
subtracted. Peptide arrays for NS5 were split into two pools; NS5-1 and
NS5-2. PBMCs from PBS immunized animals were used as controls.

cells in prevention of development of disease (22). In this study, we
demonstrated that SC PhJ delivery of TDV using RIS is effective in
inducing CD4+ and CD8+ T cells. Both T cell subsets produced
IFN-γ, TNF-α, and IL-2 highlighting their Th1-type immune pro-
file. In addition, using peptide arrays we demonstrated that they
predominantly recognized sequences from the NS1 protein and
to a lesser extent from NS3 of DENV-2. Moreover, we observed

that the TDV-2 backbone elicited cross-reactive T cell responses
to the highly conserved NS proteins of DENV-4. Similarly, we
have observed cross-reactivity with the NS proteins of DENV-1
and E proteins of each serotype (data not shown). Overall, these
findings highlight the potential of TDV-2 backbone to elicit a
broad range of cross-reactive T cell responses to all four DENV
serotypes.
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FIGURE 3 |Tetravalent dengue vaccine elicits CD8+ IFN-γ producingT
cells that cross-react with NS3 and NS5 proteins of DENV-4 (A) and
express the CD107a+ marker (B). Responses are shown as percentage of
T cells from DENV-4 peptide arrays stimulated PBMCs with the background
percentage of positive T cells in medium only treated cells subtracted.
Peptide arrays for NS5 were split into two pools; NS5-1 and NS5-2. At the
time of PBMC testing, peptides arrays for DENV-4 NS1 protein were not
available.

The protective efficacy of TDV was assessed against challenge
with DENV-2 NGC. All vaccinated animals were protected against
DENV-2 NGC as shown by the lack of viral RNA post-challenge,
whereas control animals were positive for viral RNA. At the time
of challenge, animals from all treatment groups had high levels
of anti-DEN-2 neutralizing antibodies (GMT > 300) and their
titers were not boosted following challenge. This suggests that
the vaccine elicited sterilizing immunity against DENV-2 NGC.
Although this study was designed to measure efficacy of TDV
using a short-term immunization and challenge protocol, we cur-
rently plan to address the longevity of the neutralizing antibody
response to vaccination and its impact on protection against chal-
lenge with all DENV serotypes. Moreover, the recently published
data of the first clinical proof-of-concept efficacy study of a TDV
demonstrated safety but only partial efficacy against some but not
all DENV viruses, and showed that the standard plaque reduc-
tion neutralization test used as the primary immune correlate
failed to predict efficacy (23). Therefore, further studies are needed
to measure neutralization using different cell substrates (24, 25).
Despite the limitations of the NHP model to mimic human dis-
ease, efficacy studies based on the presence of viremia as an end
point can provide critical information about the protective capac-
ity of candidate DENV vaccines since there are several lines of
evidences supporting the view that the severity of disease corre-
lates with increased levels of viremia (26, 27). In conclusion, the
delivery of our live-attenuated TDV using the PhJ needle-free DSJI
technology has the potential to impact future mass vaccination
campaigns.
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Post-challenge viremia (log10 copies/ml)

Anti-DEN-2 Abs Day 1 Day 3 Day 5 Day 7 Day 9 Day 11

TDV PhJ/ID (day 0, 0) CY0503 5120 5120 – – – – – –

CY0504 2560 1280 – – – – – –

CY0505 640 640 – – – – – –

TDV PhJ/SC (day 0, 0) CY0473 1280 2560 – – – – – –

CY0474 320 640 – – – – – –

CY0475 320 320 – – – – – –

TDV PhJ/SC (day 0, 60) CY0493 2560 2560 – – – – – –

CY0494 640 640 – – – – – –

CY0495 2560 2560 – – – – – –

PBS PhJ/ID (day 0, 60) CY0479 5 2560 – 4.8 4.9 4.8 – –

CY0481 5 640 – 4.1 4.9 4.9 3.7 4.7

CY0488 5 1280 – 4.5 5.8 5.2 – –
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