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Extracellular adenosine-dependent suppression and redirection of pro-inflammatory activities 
are mediated by the signaling through adenosine receptors on the surface of most immune 
cells. The immunosuppression by endogenously-produced adenosine is pathophysiologically 
significant since inactivation of A2A/A2B adenosine receptor (A2AR/A2BR) and adenosine-
producing ecto-enzymes CD39/CD73 results in the higher intensity of immune response and 
exaggeration of inflammatory damage. Regulatory T cells (Treg) can generate extracellular 
adenosine, which is implicated in the immunoregulatory activity of Tregs. Interestingly, 
adenosine has been shown to increase the numbers of Tregs and further promotes their 
immunoregulatory activity. A2AR-deficiency in Tregs reduces their immunosuppressive 
efficacy in vivo. Thus, adenosine is not only directly and instantly inhibiting to the immune 
response through interaction with A2AR/A2BR on the effector cells, but also adenosine 
signaling can recruit other immunoregulatory mechanisms, including Tregs. Such interaction 
between adenosine and Tregs suggests the presence of a positive feedback mechanism, 
which further promotes negative regulation of immune system through the establishment of 
immunosuppressive microenvironment
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IntroductIon
Although efficient elimination of pathogens is attributable to the positive feedback nature of immune 
activation, immune cells also have negative feedback mechanisms that would limit the extent of 
expansion and effector functions of immune cells. The downregulation of immune response could 
be not only a homeostatic mechanism, but also an important reaction in protecting vital tissues from 
non-specific inflammatory damage. Therefore, when the pathogens are cleared, the positive feedback 
loop of the immune system needs to be broken to save healthy tissues from unnecessary collateral 
damage. Such endogenous mechanisms terminating inflammation have been a target of research and 
drug development to modulate the intensity of inflammation.

There are different classes of endogenous anti-inflammatory mechanisms ranging from molecules 
as small as carbon monoxide to professional suppressor cells including regulatory T cells (Treg) 
(Figure 1). Small molecules such as prostanoids and glucocorticoids are well-known negative regu-
lators of immune response and are clinically important due to their pharmacological properties. 
Negative regulators such as anti-inflammatory cytokines (IL-10 and TGF-beta) and cellular proteins 
[indoleamine-2,3-dioxygenase (IDO), CTLA-4, and PD-1] represent the focus of extensive studies 
for the last several decades (1, 2). Indeed, blockade of CTLA-4 and PD-1 has currently  progressed 
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FIgure 1 | endogenous immunoregulatory mechanisms from tiny 
molecule to cells. Molecular weight of CTLA-4 represents the approximate 
size of a homodimer. Tregs express CTLA-4 and produce IL-10 and adenosine.

into promising cancer treatments (3, 4). Some negative regula-
tors of immune response may be produced in response to stress. 
Extracellular adenosine represents a  physiological negative regula-
tor, which increases as a result of metabolic change during hypoxic 
stress. The intensive interest to adenosine-dependent immunoregu-
lation developed relatively recently.

function of A2AR implied a possible involvement of its natural 
ligand, endogenously formed adenosine, in the spontaneous con-
trol of immune response. This concept was conclusively proven 
using A2AR-deficient mice in which the induction of acute hepatitis 
inflicted much more severe inflammatory  tissue damage than in 
wild-type controls (10). Importantly, the study showed that the 
lack of A2AR, despite other functional anti-inflammatory mecha-
nisms, was sufficient to exaggerate inflammation, indicating the 
non-redundant significance of extracellular adenosine in the self-
control of inflammatory activities. Exacerbation of various types 
of inflammation in A2AR-deficient mice generalized the A2AR-
dependent control of inflammation (11–14).

Metabolic changes during inflammation favor the increase 
of extracellular adenosine (discussed in the next chapter). 
Inflammation destroys pathogens along with damage to surround-
ing tissue. In response, adenosine produced from the damaged 
tissue can suppress proinflammatory activities and prevent further 
damage. In inflamed and severely hypoxic tissues, local adenosine 
levels can reach high enough to activate not only A2AR but also 
low-affinity receptors such as A2B-adenosine receptor (A2BR) 
(15–17). In many instances, the effect of A2BR stimulation is also 
immunosuppressive as shown by the inhibition of inflammatory 
tissue injury by A2BR agonist and by exaggerated inflammation 
in A2BR-deficient mice (16, 17). A2BR plays a distinctive role in 
controlling inflammation, e.g., induction of tolerogenic antigen-
presenting cells (APC) by alternative activation (18, 19). Thus, the 

Table 1 | Adenosine receptor expression in immune cells and signaling 

pathway.

A1 A2A A2B A3

Distribution Dendritic 
cells
Macropha-
ges
Neutrophils

Dendritic 
cells
Macrophages
Neutrophils
Mast cells
T cells
NK cells
NKT cells

Dendritic 
cells
Macropha-
ges
Mast cells

Dendritic 
cells
Macrophages
Neutrophils
Mast cells

Signal
transduc-
tion

Gi
cAMP ↓
PLC ↑

Gs
cAMP ↑

Gs/Gq
cAMP ↑
PLC ↑ 

Gi
cAMP ↓
PLC ↑

Key concepT 1 | extracellular adenosine
In the intracellular compartment, adenosine represents an important 
component of energy metabolism and nucleic acid synthesis. However, 
extracellular adenosine plays a distinct role in the intercellular signaling via 
cell surface adenosine receptors. Key concepT 2 | Alternative activation

Alternatively activated macrophages are those activated in a Th2-type cytokine 
milieu. However, this term is more widely used to represent anti-inflammatory 
macrophages including those induced in the presence of IL-10, TGF-β or 
glucocorticoids. Alternatively activated macrophages are involved in resolution 
of inflammation and tissue remodeling.

inflammation-related increase of extracellular adenosine initiates 
negative feedback responses via A2AR and A2BR. The adenosine-
A2AR/A2BR pathway serves as an indispensable immunoregulatory 
mechanism that regulates the extent of immune response.

Where extracellular adenosIne comes From
Dephosphorylation of ATP results in adenosine formation. In 
the extracellular compartment, this metabolism is mediated by 
ecto-5′-nucleotidases, i.e., CD39 and CD73. CD39 catalyzes 
degradation of ATP to AMP, and CD73 further converts AMP 

ImmunoregulatIon by endogenous adenosIne
The importance of adenosine receptor signaling has been recog-
nized in the central nervous and cardiovascular systems (5, 6). 
Pharmacological studies of adenosine receptor signaling in the 
immune system have established that this pathway has immuno-
suppressive effects. In general, administration of adenosine or its 
analogs has been shown to block inflammation in various organs 
such as the liver, lung, kidney, heart, and digestive tract (7, 8). A vari-
ety of inflammatory responses are susceptible to adenosine receptor 
agonists, especially those capable of stimulating A2A-adenosine 
receptor (A2AR) (7, 9).

A2AR is ubiquitously expressed in a wide variety of immune cells 
including T cells, B cells, NK cells, NKT cells, macrophages, dendritic 
cells, and granulocytes (Table 1). The strong  anti- inflammatory 
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to adenosine (Figure 2). Extracellular adenosine may be taken 
up to the intracellular compartment through nucleoside trans-
porters on the plasma membrane, or it may be metabolized to 
inosine by adenosine deaminase (ADA). Intracellular adenosine 
may be re-phosphorylated to AMP by the activity of adenosine 
kinase. Extracellular adenosine concentration is largely reduced 
in mice lacking CD73, suggesting that degradation of adenine 
nucleotides is responsible for the production of extracellular 
adenosine (20, 21). In contrast, inhibitors of ADA and nucleoside 
transporters increased extracellular adenosine, suggesting the 
importance of these pathways in the removal of extracellular 
adenosine (22, 23).

Extracellular adenosine levels are known to increase in the event 
of inflammation (11, 24–26). This increase may be associated with 
the release of adenosine and adenine nucleotides in inflamed tis-
sues. Activated polymorphonuclear cells (PMN) were shown to 
release AMP, which contributed to adenosine increase after metabo-
lism by CD73 (27). It is also likely that inflammatory tissue damage 
causes uncontrolled leakage of adenine nucleotides from critically 
damaged cells. Skin irritant was shown to induce ATP and ADP 
release from keratinocytes (28).

Inflammatory tissue damage, especially damage on vasculature, 
disturbs blood flow resulting in a diminished oxygen supply. In 
addition, a massive accumulation of inflammatory effector cells 
increases local oxygen demand. The deficit in oxygen supply and the 
increase in oxygen demand cause local hypoxia in inflamed tissue. 
Tissue hypoxia seems to be conductive to the increase of extracel-
lular adenosine concentration. Hypoxia is known to induce CD39 
and CD73 (29, 30) but to inhibit adenosine kinase (31, 32). The 
increase of adenosine formation and the decrease of removal thus 
favor adenosine accumulation under hypoxia. Adenosine can also 
positively regulate CD73 expression and further enhance adenosine 
formation (33).

Since formation of extracellular adenosine is crucial to down-
regulation of inflammatory responses, deficiency in adeno-
sine metabolism should affect the intensity of inflammation. 
Exaggerated inflammation in CD39-deficient and CD73-deficient 
mice suggested that degradation of extracellular adenine nucleo-
tides by CD39 and CD73 is a major source of adenosine for limiting 
inflammation (34–37). Similarly, further metabolism of adenosine 
plays a significant role in controlling the extracellular concentration 
of adenosine. Inhibitors of ADA and adenosine kinase promote 
adenosine increase and consequently suppress inflammation (22, 
23, 38). The anti-inflammatory effect was also evident after the inhi-
bition of cellular adenosine uptake by nucleoside transporters (39).

adenosIne ProductIon as a mechanIsm oF 
ImmunoregulatIon by regulatory t cells
Regulatory T cells are a subset of CD4+ T cells expressing CD25 and 
FoxP3, a transcriptional factor, which regulates the immunosuppres-
sive activity of Tregs. Immunoregulation offered by Tregs is  critically 

Key concepT 3 | Foxp3
Forkhead box P3 (FoxP3) is a transcription factor that is crucial for development 
and immunoregulatory function of Tregs. FoxP3 expression is often regarded 
as a signature of Tregs, especially in mice.

FIgure 2 | Metabolism of extracellular adenosine and its effect on 
cellular immunity. The activities of CD39 and CD73 produce extracellular 
adenosine. Extracellular adenosine decreases by adenosine deaminase 
(ADA)-dependent catabolism and by cellular uptake through nucleoside 
transporters (NT). Adenosine in the intracellular compartment is converted to 
AMP by adenosine kinase (AK) or catabolized by ADA. When extracellular 
levels of adenosine increase, it stimulates A2AR (high-affinity) and A2BR 
(low-affinity) on immune cells. Adenosine is suppressive to effector T (Teff), 
NK, and NKT cells. The immunosuppressive activity may be further enhanced 
by adenosine-mediated induction of Tregs, tolerogenic antigen-presenting 
cells (APC), and myeloid-derived suppressor cells (MDSC).

important because the lack of Treg leads to the pathogenesis of auto-
immune disorders (40, 41). Tregs have various  immunosuppressive 
molecules including TGF-β, IL-10, CTLA-4, and galectin-1, although 
it is still unclear, which mechanism is the most important for the 
immunoregulatory activity. Among these mechanisms, Tregs were 
found to actively produce extracellular adenosine and block activa-
tion of effector cells through A2AR (42, 43).

Unlike conventional resting T cells, Tregs were found to express 
both CD39 and CD73 at high levels (44–46). These nucleotidases 
on the surface of Tregs were enzymatically active, therefore, Tregs 
were capable of producing extracellular adenosine from ATP. 
Since inhibitors of CD39 and CD73 reduced the immunoregula-
tory activity of Tregs (44, 47, 48), production of adenosine was 
suggested to represent, at least in part, the immunosuppressive 
mechanism of Tregs. Tregs were less efficient against A2AR-deficient 
effector T cells or in the presence of A2AR antagonist (45, 47). 
These results indicate that adenosine produced from Tregs executes 
immunosuppression by triggering A2AR-dependent inhibition of 
effector cell activation. This mechanism is functional in both mice 
and human Tregs. Human T cells from older people tend to pro-
duce larger amount of extracellular adenosine compared to those 
obtained from younger subjects (49). It might be interesting to 
study adenosine-dependent immunoregulation by Tregs from the 
point of view of immunosenescence.

Upon interaction with A2AR, adenosine increases cAMP lev-
els, and subsequent activation of protein kinase A is responsible 
for the inhibition of cell activation. When Tregs suppress immune 
response, an increase of cAMP is observed in the target cells (50, 51). 
Other mechanisms triggering cAMP increase may be also involved 
in the immunoregulatory activity of Tregs. Indeed, Tregs express 
cyclooxygenase-2 (COX-2) and produce PGE

2
, which stimulates 

cAMP production in target cells (52, 53). Along with adenosine, 
PGE

2
 from Tregs was found to play a role in the immunoregulatory 

activity of Tregs.
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Biological significance of adenosine-dependent immunoregula-
tion by Tregs was demonstrated in various in vivo models of inflam-
matory disorders. While adoptive transfer of wild-type Tregs strongly 
attenuates inflammation, the transfer of CD73-deficient Tregs could 
not prevent inflammation including gastritis, acute lung inflam-
mation, ischemia–reperfusion injury, and graft-versus-host disease 
(14, 48, 54, 55). Similarly, Tregs lacking CD39 failed to block T cell 
infiltration in contact hypersensitivity (56). In humans, Tregs from 
AIDS patients and cancer patients express CD39 and CD73 at higher 
levels than healthy subjects, suggesting adenosine production from 
Tregs during immunosuppression in humans (57). This evidence 
increasingly emphasizes the significance of adenosine-producing 
activity among a variety of immunoregulatory mechanisms of Tregs.

regulatIon oF treg actIvIty by adenosIne
When the first paper reported adenosine production from Treg, 
the other group reported an in vivo study, which might implicate 
roles of A2AR in Treg functions (58). In that study, colitis induction 
by CD4+ CD45RBhi naïve T cells and the preventive effect of CD4+ 
CD45RBlow cells were examined using T cells derived from wild-
type and A2AR-deficient mice. Co-transfer of CD4+ CD45RBlow 
cells, which contain Tregs, blocked CD4+ CD45RBhi cell-induced 
pathogenesis; however, colitis by A2AR-deficient CD4+ CD45RBhi 
cells was resistant to the preventive effect of CD4+ CD45RBlow cell 
co-transfer. Having been published before the identification of 
adenosine-producing activity in Tregs, the data might have been 
enigmatic at that time. Retrospectively, this report might imply 
immunoregulatory activity of adenosine produced by Tregs pre-
sented in CD4+ CD45RBlow fraction. However, the paper pre-
sented other puzzling data indicating that A2AR-deficient CD4+ 
CD45RBlow cells were not as effective as wild-type CD4+ CD45RBlow 
cells in preventing colitis. Was this data implying that A2AR expres-
sion was essential to full activation of Tregs?

It was hypothesized that activity of Tregs might be under con-
trol of tissue oxygen tension and extracellular adenosine levels 
(59). Based on the presence of consensus sequences of hypoxia-
responsive element and cAMP-responsive element in the promoter 
region of anti-inflammatory molecule genes, it was speculated that 
hypoxia and adenosine would be responsible for the regulation 
of immunosuppressive activity of Tregs. Although the effect of 
hypoxia on Tregs is still arguable (60–63), the speculation was 

of ischemia–reperfusion injury. Moreover, A2AR-deficient Tregs 
were found to be less efficacious in protecting tissues from inflam-
matory damage, suggesting that endogenous adenosine positively 
controls the immunoregulatory activity of Tregs in vivo (48). 
A2AR-dependent expansion of Tregs may be important in sup-
pressing inflammatory disorders such as graft-versus-host disease 
and experimental autoimmune uveitis because the induction of 
immunoregulatory activity required A2AR expression (65, 66).

The enhancement of immunoregulatory activity may be due 
to cAMP increase by A2AR stimulation. HIVgp120 binds to CD4 
on human Tregs and stimulates immunoregulatory function. 
This reaction is mediated by the increase of cAMP in Tregs (67). 
Stimulation of β

2
-adrenergic receptor, which also induces cAMP, 

can enhance Treg activity as it was observed with A2AR stimula-
tion (68). Conversely, immunoregulatory activity of Tregs attenu-
ates after treatments reducing cAMP levels, e.g., adenylate cyclase 
inhibition or activation of cAMP phosphodiesterase (69–71). 
Mechanisms for adenosine-mediated promotion of Treg activity 
may include recruitment of other anti-inflammatory mechanisms. 
For instance, COX-2 is inducible by A2AR stimulation to produce 
potentially anti-inflammatory metabolite PGE

2
 (72). Although 

A2AR-dependent induction is not directly demonstrated in Tregs, 
COX-2 is one of the immunosuppressive mechanisms of Tregs as 
discussed in the previous chapter.

Tregs develop in the thymus (natural Treg) or in the periphery 
by inducing functional differentiation from conventional T cells 
(inducible Treg) (40, 41). A2AR stimulation enhanced not only 
proliferation of natural Tregs but also induction of new Tregs from 
FoxP3− T cells (64). T cell stimulation in the presence of A2AR 
agonist induced FoxP3 and LAG3 mRNA in T cells, suggesting 
newly induced Tregs (73). A2AR agonist further enhanced devel-
opment of inducible Tregs by TGF-β (65). In addition to A2AR, 
A2BR also plays a role in the induction of Tregs. Agonist of A2BR 
promoted, but A2BR-deficiency prevented, Treg induction (74). 
In human Tregs, vasoactive intestinal peptide (VIP) was shown 
to promote Treg induction via cAMP (75). It is possible that the 
adenosine-dependent induction of Tregs may be again mediated 
by cAMP induction.

Thus, Tregs not only utilize adenosine as one of their immuno-
suppressive mechanisms, but also receive positive regulation from 
adenosine to enhance the number and immunosuppressive activity 
of Tregs (Figure 3). Since both Tregs and adenosine modify immune 
response in the negative direction, it seems reasonable that these 
two elements are mutually enhancing their production and activity.

modulatIon oF treg actIvIty through the 
InterventIon to adenosIne-a2ar PathWay
Excess adenosine in ADA deficiency causes a detrimental effect on 
immune cells and results in severe combined immunodeficiency. 
Pegylated ADA (PEG-ADA) has been used for treatment by decreas-
ing adenosine levels in these patients. A recent report suggested a 
decrease of Treg activity in mice and humans after treatment with 
PEG-ADA (76). It may be possible to manipulate Treg activity in 
vivo through intervention in the adenosine-A2AR pathway.

Conversely, adenosine-producing CD73 is inducible by TGF-β 
(77). TGF-β induces Tregs, and the increase of adenosine-producing 
activity may contribute to the enhancement of immunoregulatory 

Key concepT 4 | effect of hypoxia on Tregs
Hypoxia has been reported to induce FoxP3 in T cells and increase Treg 
abundance. Such changes are mediated by HIF-1α. However, other reports 
demonstrated downregulation of Tregs in the presence of HIF-1α, suggesting 
a complicated role of HIF-1α for Tregs.

proven to be true at least for the adenosine part. When T cells 
were stimulated with allogenic cells (mixed lymphocyte culture), 
A2AR agonist strongly inhibited activation of cytotoxic effector 
T cells. However, in the same cell culture, A2AR agonist mas-
sively increased the CD4+ FoxP3+ population (64). Supporting the 
hypothesis above, those Tregs expanded in the presence of A2AR 
stimulation demonstrated an increase in CTLA-4 expression and a 
significantly stronger immunoregulatory activity (64). Consistent 
with this observation, pretreatment of Tregs with A2AR agonist 
before cell transfer enhanced their efficacy in vivo in the  prevention 

Ohta and Sitkovsky Adenosine regulates regulatory T cells

Frontiers in Immunology www.frontiersin.org July 2014 | Volume 5 | Article 304 | 4

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org/
http://www.frontiersin.org/Immunology/archive


activity of the induced Tregs. In addition to the induction of Tregs, 
this cytokine is also involved in functional differentiation of naïve 
CD4+ T cells into Th17 cells. Although Th17 cells have been known 
for their proinflammatory activities, they indeed express CD39 and 
CD73 and are capable of suppressing T cell activation by produc-
ing adenosine (78). Interestingly, such function was found only in 
Th17 cells induced by TGF-β + IL-6, whereas those induced in the 
absence of TGF-β were not immunosuppressive. CD73-inducing 
activity of TGF-β may be responsible for this difference. In addition 
to TGF-β, various agents including triiodothyronine (T3), IFN-
α, indomethacin, and rosuvastatin are capable of inducing CD73 
(79–82). Interestingly, anti-inflammatory action of some clinical 
medications is explained by the increase of adenosine. Methotrexate 
(83, 84) and sulfasalazine (85, 86) can increase adenosine concen-
tration high enough to suppress inflammatory response through 
A2AR. This increase in adenosine is dependent on CD73 activity. It 
is possible that clinical use of such agents promote immunoregu-
lation by Tregs. Indeed, among these CD73 inducers, statins were 
shown to increase the number and function of Tregs (87, 88).

The promotion of Treg-dependent immunoregulation should be 
beneficial to alleviate many inflammatory disorders and to facilitate 
successful tissue transplantation (89, 90). In hematopoietic stem 
cell transplantation, transfer of Tregs should be able to suppress 
graft-versus-host disease, which is caused by the attack of recipient-
derived lymphocytes to the host cells and is occasionally lethal (90, 
91). Adenosine receptor stimulation will be useful to increase the 
recovery of Tregs during in vitro expansion and to promote their 
efficacy after the transfer.

FIgure 3 | Mechanisms of T cell regulation by extracellular adenosine. 
Extracellular adenosine can be produced by activities of CD39 and CD73 on cell 
surface. And its interaction with A2AR directly inhibits T cell activation. Tregs 
express both CD39 and CD73 at high levels and use adenosine for their 
immunoregulatory activity. Adenosine enhances immunoregulatory activity of 
Tregs via A2AR signaling. A2AR signaling in effector T cells may induce 
differentiation into Tregs. There might be a positive feedback loop between 
adenosine and Treg-dependent immunoregulation. Moreover, adenosine 
increases tolerogenic APCs, which are poor stimulators of effector T cells.  
Thus, adenosine suppresses T cell immunity both by directly inhibiting 
activation of effector T cells and indirectly by producing the immunosuppressive 
environment. By employing different mechanisms, the immunosuppression  
by adenosine might be quickly effective and persistent.

While immunoregulation by Tregs is crucial to prevent auto-
immunity, ironically, the same mechanism benefits tumor tissue 
by providing protection against immune attack. Accumulation 
of Tregs represents the immunosuppressive nature of the 
tumor microenvironment, and elimination of Tregs improves 

Key concepT 5 | Tumor microenvironment
It has long been a question why immunotherapy mightily struggles against 
tumors in vivo even with highly active immune cells. Tumors contain a number 
of immunosuppressive mechanisms and inactivate incoming anti-tumor 
immune cells. Countermeasure to the immunosuppression in tumor 
microenvironment is complementary to the current protocol of immunotherapy 
and is expected to improve tumor regression.

 immunological tumor regression (1, 2, 92). Adenosine was also 
demonstrated to accumulate in tumors (93, 94). Tissue hypoxia, 
which is conductive to the increase of extracellular adenosine lev-
els, is not uncommon in tumors due to the disorganized prolifera-
tion of tumor cells and poor blood flow (95, 96). The significance 
of adenosine in tumors was demonstrated when A2AR-deficient 
mice, but not wild-type mice, underwent complete regression of 
solid tumor (94). The tumor-protective role of adenosine was fur-
ther demonstrated by retarded growth or enhanced elimination 
of tumors in A2BR-deficient mice (97, 98) and CD73-deficient 
mice (99, 100). Adenosine can directly down-regulate effector 
functions of anti-tumor immune cells and may also indirectly 
suppress anti-tumor immune response by promoting Treg activi-
ties. Moreover, among other effects of adenosine is the prefer-
ential alternative activation of APCs (18, 19) and induction of 
myeloid-derived suppressor cells (101), both of which lead to 
inactivation of immune cells. Wrapped in extracellular adenosine, 
tumor cells employ multiple mechanisms to evade anti-tumor 
immune response.

Key concepT 6 | Myeloid-derived suppressor cells
A population of myeloid-derived suppressor cells (MDSCs) includes immature 
forms of macrophages, granulocytes and dendritic cells. MDSCs express 
immunosuppressive molecules (arginase and reactive oxygen/nitrogen 
species) and strongly suppress T-cell activities.

Maintaining the capability of eliminating cancer cells by host 
immune cells is a great advantage in the effective treatment of 
cancer. Anti-tumor immunity is expected to have a positive 
impact either alone or complementary to surgical removal of 
the tumor mass because immune cells should be able to seek 
out and destroy hidden and metastatic cancer cells. Improving 
anti-tumor T cell activity by A2AR antagonists (94, 102, 103) 
and CD73 inhibitors (102, 104) suggests promise for disengag-
ing the adenosine-mediated immunosuppression in the tumor 
microenvironment.

Thus, intensity of inflammation may be manipulated by inter-
vening in the adenosine-A2AR/A2BR pathway. The direction of 
manipulation, either inhibition or promotion, will be dependent 
on the nature of disease. Enhancement of the adenosine-mediated 
immunoregulation will be beneficial to treat inflammatory disor-
ders such as acute lung injury, arthritis, inflammatory bowel dis-
eases, and diseases accompanying ischemia–reperfusion injury. 
The same strategy may promote successful hematopoietic stem 
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In addition, adenosine can induce APCs that are capable of 
producing immunosuppressive molecules such as TGF-β, IL-10, 
arginase, IDO, and COX-2 (18, 19). Induction of these molecules 
indicates alternative activation of APCs, which leads to the inhibi-
tion of T cell activation. While A2AR mediates inhibition of classical 
proinflammatory activation of APCs, A2BR may play a major role 
in the induction of alternative activation. Indeed, APCs stimu-
lated in the presence of adenosine became a tolerogenic phenotype 
that is quite inefficient in producing effector T cells. Furthermore, 
adenosine may suppress antigen-specific activation of T cells by 
interfering with the migration of T cell and APCs in the draining 
lymph node (110).

As we discussed, adenosine promotes expansion of Tregs and 
their immunoregulatory activity. The rise of professional immu-
noregulatory cells would be of great importance in the adenosine-
inducible immunosuppressive environment. Immune activation in 
the presence of adenosine can establish a memory of exposure to 
the immunosuppressive signal.

Most of these cellular reactions to adenosine seem to be medi-
ated by cAMP. Both A2AR and A2BR are coupled to Gs protein, and 
stimulation of these receptors can increase cAMP production by 
adenylate cyclase (Table 1). The increase of cAMP activates protein 
kinase A, but activation of Epac also happens at least after A2AR 
stimulation (111). The adenosine receptor signaling pathway that 
results in promotion of Treg activity is yet to be elucidated.

Research has revealed that adenosine is capable of regulating a 
wide range of immunoregulatory mechanisms. Notably, adenosine 
actively promotes Treg-mediated immunoregulation by increasing 
cell number and by enhancing their activity. Thus, immunosuppres-
sion by adenosine involves quick, counteractive, and direct inhibi-
tion of immune activation and long-term effect, e.g., anergic T cells, 
tolerogenic APCs, Tregs, and myeloid-derived suppressor cells. By 
evoking all these mechanisms, adenosine may play an important 
role in establishing an immunosuppressive environment, which 
can be seen in tumors. It is also interesting that adenosine acts as 
a regulator of other endogenous immunoregulatory mechanisms.
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