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Human primary dendritic cells (DCs) are heterogeneous by phenotype, function, and tis-
sue localization and distinct from inflammatory monocyte-derived DCs. Current information
regarding the susceptibility and functional role of primary human DC subsets to Mycobac-
terium tuberculosis (Mtb) infection is limited. Here, we dissect the response of different
primary DC subsets to Mtb infection. Myeloid CD11c+ cells and pDCs (C-type lectin 4C+

cells) were located in human lymph nodes (LNs) of tuberculosis (TB) patients by histochem-
istry. Rare CD141hi DCs (C-type lectin 9A+ cells) were also identified. Infection with live
Mtb revealed a higher responsiveness of myeloid CD1c+ DCs compared to CD141hi DCs
and pDCs. CD1c+ DCs produced interleukin (IL)-6, tumor necrosis factor α, and IL-1β but not
IL-12p70, a cytokine important forTh1 activation and host defenses against Mtb.Yet, CD1c+

DCs were able to activate autologous naïve CD4+ T cells. By combining cell purification
with fluorescence-activated cell sorting and gene expression profiling on rare cell popula-
tions, we detected in responding CD4+T cells, genes related to effector-cytolytic functions
and transcription factors associated with Th1, Th17, and Treg polarization, suggesting mul-
tifunctional properties in our experimental conditions. Finally, immunohistologic analyses
revealed contact between CD11c+ cells and pDCs in LNs of TB patients and in vitro data
suggest that cooperation between Mtb-infected CD1c+ DCs and pDCs favors stimulation
of CD4+ T cells.

Keywords: Mycobacterium tuberculosis, human, CD1c+ DCs, CD141hi DCs, plasmacytoid DCs, CD4+ T cells

INTRODUCTION
Tuberculosis (TB) is caused by the intracellular bacterial pathogen
Mycobacterium tuberculosis (Mtb). Phagocytic cells such as
macrophages engulf bacteria entering the lung and initiate a
first line of defense, which controls Mtb growth and recruits
pro-inflammatory cells (1). Activation of the adaptive immune
responses, notably T cells, occurs only at later time points after
infection and involves the migration of infected dendritic cells
(DCs) to the draining lymph nodes (LNs) (2–4). Here, DCs prime
naïve T cells leading to expansion and polarization of effector
T cells and generation of memory T cells. Migration of DCs to
LNs involves interleukin (IL)-12p40-dependent mechanisms and
upregulation of CCR7 (5). Moreover, the bacterial antigens pre-
sented in the LNs need to reach a critical abundance to efficiently
activate a specific CD4+ T cell response (4). As a corollary, inhi-
bition of DC maturation and trafficking and, consequently, sub-
optimal antigen presentation, likely contribute to delayed CD4+

T cell responses.
Migratory and resident DCs are categorized in two main

groups: myeloid (m)DCs (CD11c+) and plasmacytoid (p)DCs.
Murine mDCs (CD11c+) comprise CD11b+ and CD11b– DCs
(6). After aerosol infection with Mtb, murine CD11b+ DCs are the
major subset harboring Mtb and trafficking from the lung to the

mesenteric lymph nodes (MLNs) (7). However, interferon (IFN)-γ
production of CD4+ T cells in the MLNs seems to be mediated by
non-infected CD11blow/– cells rather than by CD11b+ DCs. Thus,
so far, two unresolved questions remain to be answered: which DC
subsets initiate the activation of naïve T cells in LNs and which
type of T helper populations are primed in response to Mtb.

Functional specialization of DC subsets is determined by
intrinsic properties such as pattern recognition receptors and
external factors such as tissue localization, cytokine environment,
and type of pathogen encountered. For example, in the lung,
murine CD11b+(CD24+) DCs and the corresponding human
homolog CD1c+ DCs, activate IL-17+ CD4+ T cells in response
to Aspergillus fumigatus (8). On the contrary, human blood
CD1c+ DCs acquire regulatory functions when stimulated with
Escherichia coli (9). We showed that CD1c+ DCs produce pro-
inflammatory cytokines in response to the TB vaccine Bacille
Calmette–Guérin (BCG) and low levels of IL-10 (10).

Murine splenic CD11b– CD8α+ DCs and non-lymphoid tis-
sue CD11b– CD103+ DCs are highly related to human CD141hi

DCs (11). CD11b– CD8α+ DCs are susceptible to Listeria mono-
cytogenes infection and their depletion enhances host defense (12,
13). CD141hi DCs are well characterized for cross-presentation
and for their ability to present necrotic antigens by mean of
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C-type lectin 9A (CLEC9A) (14–16). This complex network of
DC subsets emphasizes differential susceptibility of distinct DC
populations to pathogens and pathogen-associated molecular
patterns.

In addition, distinct DC subsets may communicate during
infection to promote or inhibit T cell responses (17). Cross-talk of
mDCs and pDCs promotes cytotoxic T cell activation and IL-12
production in response to herpes simplex virus or TLR9 ligand
(18–20). Besides the crucial role of pDCs in viral infection (21),
we have shown that pDCs are activated by BCG-infected CD1c+

DCs and enhance BCG-specific CD8+ T cell responses indepen-
dently of TLR9 and type I IFN. Thus, cooperation of mDCs and
pDCs occurs during bacterial infection.

We embarked on the characterization of human DC responses
to Mtb infection by visualizing DC subsets in LNs of TB patients.
We determined the responsiveness of CD1c+ DCs, CD141hi DCs,
and pDCs to live Mtb infection and their ability to stimulate
autologous naive CD4+ T cells.

MATERIALS AND METHODS
MEDIA AND REAGENTS
For FACS sorting (FACS Aria II, BD Biosciences) and acquisi-
tion (FACSCanto II equipped with FACSDIVA Software, BD Bio-
sciences) the following anti-human antibodies were used: BDCA-
1-FITC, BDCA-4-PE, and BDCA-3-APC from Miltenyi Biotec;
CD3 Alexa Fluor 700 (UCHT1), CD4 Pacific Blue (RPA-T4),
CD11c Alexa Fluor 700 (B-ly6), CD14 Pacific Blue (M5E2), CD56
Pe-Cy7 (B159), and Annexin V APC from BD Biosciences; CD25
Alexa Fluor 488 (VT-072), CD19 Pe-Cy5 (HIB19), CD20 PerCP
(2H7), CD45RA Alexa Fluor 700 (HI100), and HLA-DR BV 570
(L243), from Biolegend; CD123 eFluor450 (6H6) and Propidium
Iodide (PI) from eBioscience; and CD40 PE (82111) and CD127
PE (40131) from R&D Systems. Cultures were performed using
complete RPMI media 1640 (Life Technologies) in the presence of
5% human serum (Lonza) without antibiotics.

CELL ISOLATIONS
Experiments with donor material were approved by the Ethics
Committee of the Charité University Hospital (Charité Uni-
versitätsmedizin) in Berlin, Germany [EA2/064/14]. Donations
received from blood bank donors were anonymized. DCs
were isolated from buffy coats obtained from the German
Red Cross blood bank (DRK-Blutspendedienst Ost) by Ficoll–
Hypaque gradient (Biochrom), as described previously (10).
Briefly, DCs were enriched from PBMCs by MACS separation
using BDCA-1-FITC, BDCA-4-PE, and BDCA-3-APC followed
by incubation with FITC-, PE-, and APC-beads. The positive
fraction was stained with lineage markers (lin) (α-CD3, α-
CD19, α-CD20, α-CD56, α-CD14) and α-HLA-DR and DCs
were further purified by cell sorting according to the following
staining: pDCs (lin−HLA-DR+BDCA-4+BDCA-1−BDCA-3−),
CD1c+ (=BDCA-1+) mDCs (lin−HLA-DR+BDCA-4−BDCA-
1+BDCA-3–), and CD141hi (=BDCA-3+) mDCs (lin−HLA-
DR+BDCA-4−BDCA-1−BDCA-3+). Naïve CD4+ T (CD3+) cells
were enriched using MACS beads (Miltenyi Biotec) followed by
sorting according to naïve (CD45RA+CD127highCD25–) and T

cell markers. Sorted cells with purity higher than 98% were used
for experiments.

CELL CULTURE CONDITIONS
A total of 25,000 CD1c+DCs,CD141hi DCs,or pDCs were infected
using virulent Mtb strain (H37Rv) expressing GFP at an MOI of
five. After 2 h, extracellular bacteria were removed by extensive
washing and cells were cultured for another 16 h unless other-
wise indicated. In co-culture conditions, unstimulated pDCs were
added to Mtb-infected mDC cultures, 2 h post-infection, at a 1:1
ratio and supernatants were harvested after 14 h. In some condi-
tions, CD1c+ DCs were stimulated with 100 ng/mL Lipopolysac-
charide (LPS; Sigma-Aldrich) and 2.5 µg/mL Resiquimod (R848;
Invitrogen) for 16 h.

To study naïve CD4+ T cell proliferation, 250,000 naïve CD4
T cells were stimulated at a 1:10 ratio (mDC subset:T cell) with
autologous DCs previously infected for 16 h with Mtb. Prolifera-
tion was visualized after 7 days by carboxyfluorescein succinimidyl
ester (CFSE) dilution.

FLOW CYTOMETRIC ANALYSIS
After Mtb infection or TLR stimulation, DCs were harvested and
labeled with α-hCD123 and α-hCD11c antibodies that allow dis-
tinction between pDCs (CD123high/lowCD11c–) and CD1c+ DCs
(CD123low/–CD11c+) in co-culture conditions. α-hCD141 was
used to label CD141hi DCs. Apoptotic cells were detected as
Annexin V+ PI– (early apoptotic cells) or Annexin V+ PI+ (late
apoptotic cells). Necrotic cells were detected as PI+ cells. Mean
fluorescence intensity of HLA-DR, CD40, and CD83 was showed
after subtraction from baseline values of unstimulated conditions.
Naïve CD4+ T cells were labeled with CFSE according to manufac-
turer’s instructions (Molecular Probes) and proliferation analyzed
after 7 days of culture with autologous DCs. Proliferating cells were
gated as CD4+CD3+CFSElow cells. Analysis was performed using
FlowJo (TreeStar).

ELISA
Unless otherwise indicated, ELISA was performed at 16 h post-
stimulation (2 h infection and additional 14 h incubation). IFN-α
was measured by VeriKine Human Interferon Alpha ELISA Kit
(PBL Interferon Source), granzyme B (GrB) by PeliKine Com-
pact Human Granzyme B Elisa Kit (Sanquin), IL-1β and IL-12p70
by R&D Systems, tumor necrosis factor (TNF)-α, and IL-6 by
Ready-SET-Go kit (eBioscience).

RT-PCR
Gene expression levels were analyzed simultaneously using the
96.96 Dynamic Array Integrated Fluidic Circuits (IFCs) from Flu-
idigm. After 7 days of proliferation, CD4+CD3+CFSElow cells
were sorted in triplicates of 100 cells and collected in a 96-
well PCR plate (Eppendorf). The genes of interest were pre-
amplified using a mix of TaqMan Gene expression Assays (Applied
Biosystems). The cDNA and the single TaqMan assays were then
loaded in a microfluidic chip using 96.96 IFC Controller HX
according to manufacturer’s protocol. Quantitative PCR was per-
formed with the BioMark™ HD System (Fluidigm). Data were
exported with the Real-time PCR Analysis Software (Fluidigm)
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FIGURE 1 | Immunostaining of DCs in LNs fromTB patients
and individuals withoutTB. (A–C) Immunostaining of pDCs
(CLEC4C, red) and (A) T cells (CD3+, green); (B) B cells (CD20+,
green); (C) CD11c+ cells (green). DAPI (blue) indicates cell nuclei.
(D,E) Immunostaining of CD141hi DCs (CLEC9A, red); and

(D) T cells (CD3+, green); or (E) B cells (CD20+, green). DAPI (blue)
indicates cell nuclei. Magnification 10× or 20×. Left: reactive LNs
from individuals without TB (no-TB LNs); right: LNs from TB
patients (TB LNs). One representative experiment out of three
controls (no-TB) and four TB cases shown.
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and analyzed with Microsoft Office Excel. ∆Ct was referred to
GAPDH (NM_001256799.1) transcript. The threshold for ∆Ct
calculation was set at Ct < 30 and Ct values >30 were excluded.
To compare data from different donors and chips, fold change
in transcripts (2–[(∆Ct)reference−∆Ct(value)]) was calculated rela-
tive to ∆Ct of CD4+CD3+CFSElow cells stimulated with Mtb-
infected CD1c+DCs (∆Ctreference). The following transcripts were
analyzed: GZMB (NM_004131.4), PRF1 (NM_000594.3), IRF4
(NM_001195286), CXCR3 (NM_001504), CCR7 (NM_001838),
TBX21 (NM_013351),RORC (NM_001001523),GATA3 (NM_001
002295), and FOXP3 (NM_001114377).

IMMUNOFLUORESCENCE
Formalin-fixed paraffin-embedded tissue blocks of LN specimens
from TB+ HIV– patients with pulmonary TB were obtained from
the Lazzaro Spallanzani National Institute for Infectious Diseases
(INMI), Translational Research Unit, Department of Epidemi-
ology and Preclinical Research, Rome, Italy. Specimens belong
to archived autopsies of patients with pulmonary TB and were
Mtb culture-positive or had positive stains for acid-fast bacilli. In
addition, LN tissue slides from patients with pulmonary TB were
obtained from Bio-Cat GmbH, Heidelberg, Germany.

Lymph node tissues from subjects without TB but under-
going cancer screening (Bio-Cat GmbH, Heidelberg, Germany)
were used as comparison group. Paraffin-embedded sections of 5-
µm thickness were deparaffinized and rehydrated. Epitopes were
heat-retrieved in a pressure cooker with Target Retrieval Solu-
tion, High pH (Dako), and tissue sections were blocked with
1% horse serum (PAA technologies), 5% donkey serum (PAA
technologies), 5% sheep serum, and 1% bovine serum albumin
(Sigma–Aldrich) in PBS with 0.05% Tween-20 (PBS-T) at room
temperature for 45 min. Goat polyclonal antibody (Ab) against
CLEC4C, sheep polyclonal Ab against CLEC9A (R&D Systems),
rabbit polyclonal Ab against CD3 (Dako), CD20 and CD11c
(Abcam), mouse monoclonal Ab against GrB (Monosan), were
applied to tissue sections at 4°C, overnight. After three washes
with PBS-T, sections were incubated with NL™ 557 donkey anti-
goat or anti-sheep Ab (R&D Systems) at room temperature for
45 min, washed and then incubated with Alexa Fluor 647 goat
anti-mouse and Alexa Fluor 488 goat anti-rabbit (Invitrogen)
at room temperature for 45 min. After PBS-T wash, nuclei were
stained with DAPI (Sigma) and tissue sections were mounted in
Confocal Matrix (Imm Tech). Images were captured by a Leica
DMR epifluorescence microscope equipped with Nikon Digital
DX M1200F.

STATISTICAL ANALYSIS
We performed statistical analysis using Graph Pad Prism 5 Soft-
ware. Group data were tested for normal distribution (Shapiro–
Wilk normality test). Wilcoxon signed-rank or Mann–Whitney
tests were used for paired or unpaired observations, respectively.
Analysis of Variance (ANOVA) was used to compare more than
two sets of data. Lines and error bars represent mean± SD. For
the increase of GrB and IFN-α concentrations, significance of the
interaction between treatment groups and time points was tested
using permutation test from the R package lmPerm version 1.1.

RESULTS
DISTRIBUTION OF pDCs AND mDCs IN LNs OF TB PATIENTS
We analyzed the distribution of DC populations in reactive LNs
of individuals without TB (no-TB) and TB patients. In both
groups, abundant pDCs (identified by CLEC4C staining) were
detected in close vicinity to CD3+ T cells (Figure 1A) but were
rare in B cell areas (Figure 1B). CD11c+ cells, including mDCs,
were regularly distributed in LNs of individuals without TB while
some clusters of cells were detected in TB patients (Figure 1C).
Among mDCs, CD141hi DCs (identified by CLEC9A staining)
were found in LNs of no-TB individuals within CD3+ and CD20+

cell areas (Figures 1D,E, left) but were rare in LNs of TB patients
(Figures 1D,E, right). At higher magnitude single CLEC9A cells
were clearly distinguishable and located in contact with CD3+ or
CD20+ cells in TB patients (Figures 2A,B).

CONTACT BETWEEN mDCs AND pDCs AND RELEASE OF GrB BY pDCs
IN LNs OF TB PATIENTS
We previously described that pDCs help CD1c+ DCs in the con-
trol of BCG infection and induction of mycobacteria-specific CD8
T cell response(s). In this context, pDCs produced GrB in high
abundance but not type I IFN (10). We determined whether Mtb
induces a similar cross-talk between pDCs and CD1c+ DCs. In
contrast to BCG stimulation (10), low concentrations of IFN-
α were detected in culture of pDCs with Mtb-infected CD1c+

DCs (MOI 5, 48 h post-infection) (Figure 3A, blue diamonds,
p < 0.05 compared to Mtb-infected CD1c+ DCs monocultures).
However, GrB production remained predominant (Figure 3A, red
circles, p < 0.001 compare to Mtb-infected CD1c+ DCs monocul-
tures) indicating that pDC response to mycobacterial infection is
skewed toward GrB production and regulated by the state of acti-
vation of infected mDCs rather than by the type of microorganism

FIGURE 2 | Identification of CD141hi DCs in LNs ofTB patients.
Immunostaining of CD141hi DCs (CLEC9A) with (A) T cells (CD3+, green)
and (B) B cells (CD20+, green). DAPI (blue) indicates cell nuclei.
Magnification 40×. One representative experiment out of three TB cases
shown.
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FIGURE 3 | Production of IFN-α and GrB after Mtb infection. (A) ELISA
of IFN-α (blue diamonds) and granzyme B (GrB) (red circles), at 4, 24, and
48 h after infection with Mtb. Only results from Mtb-infected CD1+–pDC

(Continued)

FIGURE 3 | Continued
cultures are shown (no detectable concentration of either GrB or IFN-α was
found in Mtb-infected CD1c+ DC monocultures). Three donors in one
experiment are shown (permutation test). Immunostaining of (B) contact
area between CD11c+ cells (blue) and pDCs (CLEC4C, red) and (C)
GrB+-producing pDCs (in red) or GrB+-producing CD3+ (in blue). GrB is
stained in green. Arrows indicate contact area (B) or CLEC4C–GrB
co-staining (C). Magnification 100×. One representative experiment out of
three TB cases shown.

(pathogenic Mtb vs. attenuated BCG) (10). Similarly, ex vivo co-
staining of LNs of TB patients revealed discrete contact areas
between CD11c+ DCs and pDCs (Figure 3B), as well as between
CD3+ cells and pDCs (Figure 3C) and the presence of GrB+ pDCs
(Figure 3C). This spatial distribution and functional capacity of
pDCs in LNs points to a cross-talk between pDCs and mDCs
during active TB.

Mtb-INFECTED CD1c+ DCs INDUCE NAÏVE CD4+ T CELL
PROLIFERATION, WHICH IS ENHANCED BY pDCs
To gain deeper insights into DC subset interplay during Mtb infec-
tion, CD1c+ DCs, CD141hi DCs, and pDCs were isolated from
peripheral blood of healthy donors. The subsets were cultured
with virulent Mtb-expressing GFP and analyzed for their ability
to prime naïve CD4+ T cells. Autologous naïve CD4+ T cells pro-
liferated in response to infected CD1c+ DCs but not to CD141hi

DCs and pDCs (Figures 4A,B). These differences could be due
to lower ability of CD141hi DCs and pDCs to phagocytose whole
bacilli (Figure 4C) and consequently, to present antigens to T
cells.

Proliferation of autologous naïve CD4+ T cells in response
to Mtb-infected CD1c+ DCs was enhanced by the presence of
pDCs (Figures 4A,B). A similar trend was observed when pDCs
were cultured with Mtb-infected CD141hi DCs although naive
CD4+ T cells were more responsive to infected CD1c+ DCs
(Figures 4A,B).

We then focused on the CD1c+DC and pDC interaction. Apop-
tosis of CD1c+ DCs was not affected by pDCs excluding that
pDCs killed CD1c+ DCs through type I IFN or GrB-mediated
mechanisms (22, 23) (Figures 5A,B). Similarly, pDCs did not
affect the number of Mtb-infected CD1c+ DCs (Figure 5C).
Contact with Mtb-infected CD1c+ DCs elicited higher expres-
sion of HLA-DR and CD40 but not of CD83 on the surface of
pDCs. (Figure 5D, bottom and data not shown). After infection,
CD1c+ DCs expressed HLA-DR, CD40, and CD83 (Figure 5D,
top) and produced IL-6, TNF-α, and IL-1β but not IL-23, TGF-β,
or IL-12p70 (Figures 5E,F and data not shown). We excluded a
functional defect in CD1c+ DCs since IL-12p70 was produced
in the presence of LPS (TLR4 ligand) and R848 (TLR7/8 lig-
ands) (24) and partially induced in infected cells triggered with
R848 (Figure 5F). These data identify CD1c+ DCs as the most
responsive DC subset to Mtb infection but also highlight their
dependency on additional stimuli for optimal IL-12 production.
Moreover the data reveal that the presence of pDCs favors CD4+

T cell expansion.
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FIGURE 4 | CD4+ T cell activation by CD1c+ DCs. (A) and (B) Naïve CD4 T
cells were labeled with CFSE and proliferation was measured after 7 days of
culture in the presence of autologous CD1c+ DCs±pDCs (CD1c), CD141hi

DCs±pDCs (CD141hi), or pDCs alone (pDC) previously stimulated with live
Mtb for 16 h. DC:T cell ratio was 1:10. (A) One representative flow cytometric
CD4 T cell staining shown; lymphocytes were gated according to
morphological parameters and doublets excluded. Proliferating CD4+ T cells
were gated as CD4+CD3+CFSElow cells. (B) Mean±SD of proliferating CD4+ T

cells in response to CD1c+ DCs±pDCs or CD141hi DCs±pDCs of at least
five donors in two independent experiments. (C) One representative gating
strategy of Mtb-infected CD1c+ DCs (top left), CD141hi DCs (top middle), and
pDCs (top right) and mean±SD of Mtb-infected cells of at least eight donors
in four independent experiments (bottom). Cells were infected at MOI 5 with
Mtb-expressing GFP and stained for specific DC marker after 16 h. Infected
cells were measured as percentage of GFP+ cells. Kruskal–Wallis ANOVA;
*p < 0.05, **p < 0.01, ***p < 0.001.

CD4+ T CELLS ACTIVATED BY MTB-INFECTED DCs UPREGULATE
CYTOLYTIC FUNCTIONS AND DISPLAY DIVERSE POLARIZATION
To characterize the phenotype of responding CD4+ T cells,
we performed gene expression profiling of sorted CD3+CD4+

CFSElow T cells by using a protocol that allows gene expression
analysis of rare populations (100 cells). CD4+ T cell expansion
was associated with upregulation of CXCR3 and downregula-
tion of CCR7 gene expression (Figure 6A) consistent with a
phenotype of activated T cells. In addition, proliferating CD4+

T cells upregulated the expression of IRF4, GrB (GZMB), and
perforin (PRF1) suggesting that they express cytolytic functions
(Figure 6B). Interestingly, gene expression profiling of CFSElow

CD4+ T cells revealed upregulation of Tbet (TBX21), RORγt
(RORC), and FOXP3 but not GATA3 transcripts (Figure 6C). The
presence of pDCs did not modulate the gene expression profile

of these transcription factors (Figures 6A–C). We conclude that
effector CD4+ T cells activated by Mtb-infected CD1c+ DCs are
heterogeneous and potentially polarized toward Th1, Th17, Treg
cells but not Th2 cells.

DISCUSSION
Dendritic cells are important players in the early phase of Mtb
infection mostly by modulating the activation of T lymphocytes
(25). The heterogeneity of DC subsets indicates a division of labor
during infection that could impact on the quality of the T cell
response. The role of primary DC subsets in Mtb infection, partic-
ularly in human TB, is incompletely understood. Here, we identify
both mDCs and pDCs in LNs of TB patients. Few CLEC9A+ cells,
the marker used to identify CD141hi DCs (15, 26, 27), are also
found in T and B cell areas.
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FIGURE 5 | Survival, infection and cytokine production by CD1c+ DCs
is not affected by pDCs. (A) One representative gating strategy used to
visualize DC subsets and apoptotic–necrotic CD1c+ DCs. After exclusion
of doublets, pDCs were gated as CD123high CD11c– cells and CD1c+ DCs
as CD123low/–CD11c+ cells. CD1c+ DCs were then gated as early apoptotic
cells (Annexin A+ PI–), late apoptotic cells (Annexin A+ PI+), and necrotic
cells (PI+). (B) Relative number of apoptotic and necrotic CD1c+ DCs at
different time points after Mtb infection in the presence (Mtb+pDCs) or
absence of pDCs (Mtb). The number was obtained by normalizing the
percentages of apoptotic–necrotic CD1c+ DCs after infection to the
percentages of the respective controls (CD1c+ DCs±pDCs in the

absence of Mtb). (C) Percentage of Mtb-infected (GFP+)-CD1c+ DCs in the
presence or absence of pDCs. (D) Mean fluorescence intensity of
HLA-DR, CD40, and CD83 in Mtb-infected mono- (white bars) or
co-cultures (black bars) gated on CD1c+ DCs (top) or pDCs (bottom panel)
(Mann–Whitney test). (E) Cytokine production by pDCs, CD1c+ DCs, or
CD1c-pDC cultures 16 h post-infection. (F) Production of IL-12p70 by
CD1c+ DC or CD1c+ DC-pDC cultures 16 h post-infection in the absence
(Mtb) or in the presence (Mtb/R848) of TLR7/8 ligands or after stimulation
with TLR4 and TLR7/8 ligands (LPS/R848). Control (Cntr) indicated
unstimulated cells. Data are obtained from six donors in two independent
experiments. One-way ANOVA; *p < 0.05, ***p < 0.001.
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FIGURE 6 | Gene expression profile of CD4 + T cells. Fold changes of
(A) CXCR3, CCR7, (B) IRF4, GrB (GZMB), perforin (PRF1), (C) Tbet (TBX21),
RORγT (RORC ), GATA3, and FOXP3 transcripts, measured in CD4+CD3+

CFSElow cells, in the presence (Mtb+pDC) or absence of pDCs (Mtb) and
unstimulated CD4+CD3+ cells (−). The threshold for ∆Ct calculation was set
at Ct < 30 and Ct values >30 were excluded. ∆Ct was calculated to GAPDH.
To compare data from different donors and chips, fold change in transcripts

(2−[(∆Ct)reference−∆Ct(value)]) was calculated relative to ∆Ct of CD4+CD3+CFSElow cells
stimulated with Mtb-infected CD1c+ DCs (∆Ctreference) since most of the
transcripts were undetectable in unstimulated conditions (−). In unstimulated
conditions (−), IRF4 and Tbet transcripts were detectable only in one and two
samples out of six, respectively. Mean ±95% confidential interval of at least
five donors in two independent experiments shown. Wilcoxon signed-rank
test; *p < 0.05; n.d., non-detectable.

We demonstrate that CD1c+ DCs engulf and respond to live
Mtb more efficiently than CD141hi DCs and pDCs. After infec-
tion, they upregulated HLA-DR and CD40, which are required
for CD4+ T cell priming (28). CD1c+ DCs produced pro-
inflammatory cytokines, but not IL-12p70. Optimal production
of IL-12 by CD1c+ DCs has been found to depend on TLR 4/7/8
triggering and to be promoted by IFN-γ or CD40L (24, 29, 30).
Moreover, macrophages were found to require a prime signal by
IFN-γ to produce IL-12 in response of Mtb (31). Thus, it is likely
that the lack of IL-12 is due to absence of adequate stimuli. It is
known that Mtb interferes with macrophage and DC activation
by modulating cytokine production and MHC class II expres-
sion (32–34). Recognition of mannosylated lipoarabinomannan
(ManLam) by DC-SIGN also inhibits monocyte-derived (mo)DC
functions and induces IL-10 (35, 36). Primary human DCs do
not express DC-SIGN or mannose receptor (37, 38) and whether
Mtb actively inhibits IL-12 signaling in primary CD1c+DCs needs
further investigation.

The inhibition of moDC functions is not absolute since moDCs
still produce cytokines and induce Th1 cells (39, 40). Similarly, we
found that CD1c+ DCs are still able to stimulate naïve CD4+ T
cells to become effector T cells. Furthermore, bacterial numbers
could affect functions of DCs, and consequently T cell activation:

low numbers may delay T cell responses (4, 41), whereas high
numbers of bacilli could inhibit DC function or induce T cell
exhaustion (42). To understand the physiological state of acti-
vation of CD1c+ DCs and their antigen presentation capacity, a
closer look at these cells in LNs or lungs of Mtb-infected indi-
viduals is essential albeit limited by scarce availability of human
tissues.

We found that CD141hi DCs fail to directly activate naïve CD4+

T cells. However, mice lacking essential transcription factors for
CD8α+ DC and tissue CD11b−CD103+ DC development are sus-
ceptible to Mtb infection (43, 44). Although these transcription
factors influence the functions of other cell types, these studies sug-
gest that CD8α+ and CD11b−CD103+ DCs are indeed involved
in protection against TB. Since localization and cytokine environ-
ment affect DC function, it is likely that immature blood CD141hi

DCs respond less efficiently than LN-resident CD141hi DCs to
Mtb infection in the absence of additional stimuli. In fact, when
properly stimulated with TLR ligands and cytokines, CD141hi DCs
produce IFN-β, IFN-λ, and IL-12 (15, 24, 45) and can therefore
participate in optimal Th induction. In addition, CD141hi DCs are
potent cross-presenting cells (11, 15) and they may play a role in T
cell activation by presenting antigens from bystander-infected cells
rather than by direct antigen presentation. Intriguingly, priming
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of CD4+ T cells in LNs of infected mice has been found to be
mediated by non-infected CD11b− DCs rather than Mtb-infected
CD11b+ DCs (7). Whether this subset of CD11b− DCs also com-
prise murine CD103+ DCs still needs to be addressed. In human
TB a deeper analysis of CD141hi DCs from LNs will be more
informative in determining the relevance of CD141hi and whether
they cooperate with Mtb-infected myeloid DCs to activate a T cell
response.

We show that contact between CD11c+ cells and pDCs occurs
in LNs of TB patients. Furthermore, by using the specific pDC
marker CLEC4C we identified the presence of GrB–pDCs, thus
supporting previous data (46). GrB production in response to BCG
was associated with enhanced IL-1β release by CD1c+ DCs and
reduced bacterial growth (10). This phenotype was not observed
in response to Mtb. Mtb activates type I IFN in macrophages and
moDCs (47), and type I IFN has been shown to inhibit IL-1β pro-
duction (48). Despite the low levels of IFN-α detected, it is possible
that Mtb triggered the type I IFN pathway thereby counteracting
the effect of pDCs on IL-1β release. Whereas GrB–pDCs alone
acquire suppressive functions (49) we demonstrate here that they
did not kill CD1c+ DCs; rather they strongly supported CD4+ T
cell proliferation.

The presence of pDCs apparently did not affect activation of
responding CD4+ T cells – at least at the gene transcript level
analyzed here. Activated CD4+ T cells expressed transcripts of
cytotoxic effector molecules such as perforin and GrB. Transcrip-
tion factors for Th1, Th17, and Treg, but not Th2, cells were also
upregulated. It has been shown that a large proportion of memory
T cells in latent Mtb infection express a unique CXCR3+CCR6+

Th1 phenotype (50) but it remains unclear whether they are
derived from Th1 or Th17 lineages. While we found that interplay
of infected CD1c+ DCs and pDCs induced CD4+ T cell prolif-
eration, further studies on activated CD4+ T cells and antigen
specificity will determine their features and if they differentiate
into memory T cells.

Taken together, these data suggest that communication between
Mtb-susceptible and resistant DC subsets, plays an essential role in
host defense to TB, thus calling for deeper investigations. Conse-
quently, we propose that, while CD1c+ DCs are the more respon-
sive DC subset to Mtb infection, pDCs help Mtb-infected CD1c+

DCs by intensifying stimulation during priming of naïve CD4+

T cells.
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