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Extracellular vesicles (EVs) are membrane vesicles, which are secreted by a variety of cells
that have a relevant role in intercellular communication. EVs derived from various cell types
exert different effects on target cells. Mesenchymal stromal cells (MSCs) are stem cells
that are ubiquitously present in different tissues of the human body, and MSC-derived EVs
take part in a wide range of biological processes. Of particular relevance is the effect of
MSCs on tumor growth and progression. MSCs have opposing effects on tumor growth,
being able either to favor angiogenesis and tumor initiation, or to inhibit progression of
established tumors, according to the conditions. Different studies have reported that EVs
from MSCs may exert either an anti- or a pro-tumor growth effect depending on tumor
type and stage of development. In this review, we will discuss the data presented in the
literature on EV-mediated interactions between MSCs and tumors.

Keywords: mesenchymal stem cells, extracellular vesicles, anti-tumor effect, pro-tumorigenic activity, in vivo tumor
models

INTRODUCTION
Mesenchymal stromal cells (MSCs) are multipotent cells that
reside in various tissues, and possess the capacity to differentiate
into different mesodermal lineages (1–8). MSCs can be recruited to
the site of inflammation and tissue injury/repair, as well as within
the tumor environment (9–12). In this context, several studies
have shown that MSCs may support tumor growth in vivo (13–
17), whereas others have reported an anti-tumorigenic effect for
these cells (18–23). MSCs isolated from different tissues, such as
human adipose tissue (24), breast (25), and palatine tonsils (26),
have been shown to have the capacity to interfere with cancer cell
proliferation, blocking tumor cell cycle in G0/G1 phases.

The different effects of MSCs on tumor growth depend on
the tumor models, but also on the dose and time of adminis-
tration of cell treatments (12). In particular, MSCs co-injected
with tumor cells have been shown to support angiogenesis, thus
facilitating tumor growth (13–17, 27). Conversely, intravenous or
intra-tumor injection of MSCs in established tumors led to inhibi-
tion of tumor growth (18–21, 24). The exact mechanisms of these
opposite effects remain unclear.

In vitro experiments have shown that cell contact between
MSCs and tumor cells is not required for MSC biological activ-
ity, as the anti-proliferative effect was also observed with MSC-
conditioned medium (22, 28). This observation has led to the
suggestion that paracrine/soluble factors are involved instead.

Extracellular vesicles (EVs) (exosomes and shedding microvesi-
cles) are nano-particles secreted by various cell types, which
contain protein, lipids, and genetic material, such as mRNA and
miRNA. Transfer of this biological material to adjacent or distant
cells may facilitate communication between different cell types.
Secreted EVs express molecules that reflect the cells of origin and,
in the field of regenerative medicine, EVs derived from MSCs

(MSC-EVs) have been shown to be able to mimic the therapeutic
effects of the MSCs in kidney, cardiac, and brain injuries (29, 30).
EVs released from MSCs could also be involved in the effects of
MSCs on tumor growth and behavior. Several studies describing
the influence of MSC-EVs on tumor growth have been reported.
Similar to the case of MSCs, the released EVs can also have oppo-
site effects on tumor growth, depending on the tumor type and
the experimental animal models.

STATE OF THE ART ON MSC-EV CONTENT
Mesenchymal stromal cell-EVs express surface molecules that are
characteristic of the cells origin, such as CD29, CD73, CD44,
and CD105 (31). Moreover, MSC-EVs contain cytoplasmatic pro-
teins associated with intracellular vesicle biogenesis and traffick-
ing (RAB protein family), and proteins associated with MSC
self-renewal and differentiation (TGF-β, MAPK, PPAR, etc.) (32).

Mesenchymal stromal cell-EVs also contain nucleic acids
(mRNA and non-coding RNA). The mRNAs present in EVs are
representative of the multiple differentiation and functional prop-
erties of MSCs, including transcripts related to several different cell
functions (e.g., the control of transcription, cell proliferation, and
immune regulation) (33). EVs from MSCs also contain mRNA
for receptors of specific growth factors, such as mRNA for the
insulin growth factor 1 (IGF-1) receptor (34). MSC-EVs are able
to transfer the IGF-1 receptor mRNA to target renal tubular cells
in an in vitro model of renal toxic injury, inducing proliferation of
proximal tubular cells (34).

EVs released by MSCs, also contain specific non-coding RNA,
such as miRNAs. miRNAs are small non-coding RNAs that reg-
ulate gene expression post-transcriptionally by targeting specific
mRNAs. EVs from different cell types have been shown to contain
selected patterns of miRNAs (35, 36), which can be subsequently
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transferred to target cells (36, 37). The EV-shuttled miRNAs were
functionally active, evident from their ability to down-regulate
proteins targeted by selected transferred miRNAs (36–39).

Gene ontology analysis of the molecules targeted by the highly
expressed miRNAs in MSC-derived EVs revealed genes involved in
multi-organ development, cell survival, and differentiation (36).

ANTI-TUMOR EFFECT OF MSC-EVs
It has been demonstrated that MSC-EVs inhibited the prolifera-
tion of HepG2 hepatoma, Kaposi’s sarcoma (KS), and Skov-3 ovar-
ian cancer cell lines, in vitro (40). Specifically, MSC-EVs increased
the percentage of tumor cells in G0/G1 phase, indicating a block
in cell cycle progression. Moreover, in hepatoma and KS cancer
cell lines, MSC-EV treatment induced apoptosis, as demonstrated
by cytofluorimetric analyses (sub-G1 peak in cell cycle studies and
activation of Caspase 8 and/or 9) and by Tunel assay. By con-
trast, in Skov-3 cells, EVs induced cell death by necrosis. Gene
array profiles showed that, after 24 h of in vitro stimulation with
MSC-EVs, different genes were modulated in the various cancer
cell lines. In particular, the activation of negative regulators of the
cell cycle (e.g., retinoblastoma 1 and retinoblastoma-like 1 and 2,
etc.), and the down-regulation of genes involved in cell cycle pro-
gression (e.g., different types of cyclins) have been reported (40).
These gene variations may explain the arrest of cell proliferation,
which results in cell death by apoptosis or necrosis, observed in
the different cancer cell lines after MSC-EV treatment (40).

To define the effect of EVs on tumor growth in vivo, HepG2,
KS, and Skov-3 cells were subcutaneously injected into SCID mice.
After tumors were established (15 mm3 in volume), treatment with
EVs began, by means of weekly intra-tumor injections of MSC-
EVs. Administration of MSC-EVs significantly inhibited tumor
growth of all the tested cell lines (40).

The specificity of MSC-EVs was demonstrated by the absence
of in vitro and in vivo anti-tumor effects of EVs that were derived
from human dermal fibroblasts (40, 41).

Another recent paper described the effect of EVs derived from
human cord blood Wharton’s jelly MSCs (hWJMSC-EVs) on the
growth of T24 bladder tumors in vitro and in vivo (41). As shown
for BM-MSCs, hWJMSC-EVs also inhibited cancer cell viability
by cell cycle arrest, and by induction of apoptosis, in a dose-
dependent fashion, both in vitro and in vivo. In this case, T24
cells were pre-stimulated with EVs prior to in vivo injection in
nude mice. The anti-proliferative and pro-apoptotic effects were
mediated by the down-regulation of Akt phosphorylation and the
up-regulation of Caspase-3 cleavage (41).

In addition, EVs derived from human liver stem cells (HLSCs)
have been demonstrated to have an anti-tumor effect. HLSCs
inhibited the growth of HepG2 hepatoma, primary hepatocel-
lular carcinoma, lymphoblastoma, and glioblastoma cells, both
in vitro and in vivo (42). This study was the first to report a rel-
evant role of miRNA, shuttled by stem cell-derived EVs, in the
anti-tumor effect. Different approaches have been used to demon-
strate the role of miRNAs in the anti-tumor effect of EVs. First of
all, HLSC lines deprived of miRNA content by Dicer silencing
were generated (42). These HLSC populations, and their derived
EVs, showed a significant reduction of the anti-tumor miRNAs –
miR223 (43, 44), miR31 (45, 46), miR122 (47–49), and miR214

(50–52). EVs derived from Dicer knock-down HLSCs showed a
significant reduction of anti-tumor activities, both in vitro and
in vivo (42). Another approach for demonstrating the involve-
ment of these miRNAs in the anti-tumor activity of EV-HLSCs
was the use of specific miRNA inhibitors against the anti-tumor
miRNAs shuttled by EV-HLSC, such as miR451, miR223, miR24,
miR125b, and miR31. This strategy resulted in a reduction of
the pro-apoptotic in vitro activity of EV-HLSCs on hepatoma
cells (42). Moreover, the relevance of miR31 and miR451 in the
anti-tumor effect of EV-HLSCs was supported by experiments
showing that the correspondent miRNA mimics induced tumor
regression (42).

Extracellular vesicles derived from murine MSCs were also
shown to significantly down-regulate the expression of vascular
endothelial growth factor (VEGF) in breast cancer cells, caus-
ing an inhibition of angiogenesis both in vitro and in vivo (53).
EVs derived from MSCs were shown to shuttle anti-angiogenic
molecules. Specifically, they were particularly enriched in miR16,
known to target VEGF (54). Treatment with MSC-derived EVs
did not affect tumor cell proliferation and viability, but down-
regulated the mRNA and protein levels of VEGF in tumor cells, in
a dose-dependent manner (53). The transfer of miR16 from MSCs
to cancer cells by means of EV has been indicated as the main
mechanism for the anti-angiogenic effect of murine MSC-derived
exosomes (53).

PRO-TUMOR GROWTH EFFECT OF MSC-DERIVED EVs
When human gastric and colon cancer cell lines (SGC-7901 and
SW480, respectively) were mixed with MSCs or MSC-derived EVs,
and injected subcutaneously in nude mice, an increase of tumor
incidence and growth was observed (55). This effect was attributed
to an enhancement of cancer cell proliferation in vivo, as shown
by an increase of the proliferating cell nuclear antigen (PCNA)
positive cells in tumors. In vitro, the pro-proliferative effect on
cancer cells was not observed, and there were no differences in the
percentage of cells in the G0/G1, S, and G2/M phases between
EV-treated and untreated cells. The authors observed a dose-
dependent increment of VEGF and CXCR4 mRNA and protein in
cancer cells at 48 h after incubation with exosomes. Indeed, VEGF
and CXCR4 are critical for tumor growth and angiogenesis. These
data suggested that EVs did not directly stimulate proliferation
of cancer cells, but rather induced a pro-angiogenic program that
could favor tumor engraftment and growth. This pro-angiogenic
effect was confirmed in vivo, where an increment of tumor vascu-
larization was observed. Moreover, the authors reported that EV
treatment enhanced VEGF expression in cancer cells by activation
of the ERK1/2 pathway. Inhibition of this pathway counteracted
the increase of VEGF levels induced by EV treatment (55).

The same group that demonstrated the anti-tumor activity of
hWJMSC-EVs in bladder cancer recently reported that the same
EVs can in fact promote growth and aggressiveness of a renal
carcinoma cell line (786-0), both in vitro and in vivo (56). In
this context, after 48 h of incubation, EVs facilitated the cell cycle
progression from G0/G1 to S phase. These data were confirmed
in vivo, by detection of up-regulation of cyclin D1 expression,
which favors the cell cycle transition from G1 to S phase. Interest-
ingly, pre-treatment of EVs with RNase abrogated both the in vitro
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Table 1 | EVs from different MSC source have opposite effect on

different tumor types.

Source of EVs Tumor type Effect on

tumor growth

Reference

Human BM-MSCs Hepatoma Inhibition 40

Kaposi’s sarcoma Inhibition

Ovarian cancer Inhibition

Gastric and colon

cancer

Promotion 55

Murine BM-MSCs Brest cancer Inhibition 53

Cord blood

Wharton’s jelly MSCs

Bladder cancer Inhibition 41
Renal cancer Promotion 56

HLSCs Hepatoma Inhibition 42

Lymphoblast Inhibition

Glioblastoma Inhibition

and in vivo effects of EVs on tumor cells, indicating the crucial
involvement of the mRNAs, shuttled by EVs, in promoting prolif-
eration in renal carcinoma cells. In addition, when renal carcinoma
cells were mixed with EVs and subcutaneously injected in mice,
the authors observed an up-regulation of hepatocyte growth factor
(HGF) expression, at the mRNA and protein levels. hWJMSC-EVs
containing HGF mRNA, with subsequent delivery of this mRNA
into cancer cells, via EVs, may be one of the possible mechanisms
of action. Moreover, after EV treatment, activation of the AKT
and ERK1/2 pathways was observed in cancer cells, both in vitro
and in vivo. To demonstrate the association of HGF induction
with activation of AKT and ERK1/2, a c-Met inhibitor was added
in vitro to block HGF/c-Met signaling. Under these conditions, the
EV-induced activation of AKT and ERK1/2 was abrogated, with a
consequent inhibition of cancer cell proliferation (56).

These results (Table 1) reveal that the same EVs can have
opposite effects on different tumors, highlighting the necessity
of comparative studies on different cell types in order to identify
whether MSC-derived EVs exert a beneficial or a detrimental effect
on the particular tumor.

DIFFERENT APPROACHES FOR INCREASING THE
ANTI-TUMOR EFFECT OF MSC-DERIVED EVs FOR CLINICAL
APPLICATION
Given these variable results, it is evident that, before even begin-
ning to consider MSC-derived EVs as a potential therapeutic tool,
it is necessary to define the mechanisms of their anti-tumor activ-
ity and the application context. This requires the identification
of molecules with potential healing properties for a given tumor,
and the development of strategies for vesicle loading and specific
targeting. As EVs protect nucleic acids from degrading enzymes,
one possible approach is the de novo expression, or the increased
expression, of specific components (mRNA, miRNA, and siRNA)
with anti-tumor activity, by genetic modification of MSCs. Over-
expression of specific miRNAs in the cells of origin leads to an
augmented secretion of these miRNAs in EVs (39). Recently, the
possibility of using EVs, purified by MSCs, as a vehicle to delivery

anti-tumor miRNA has been tested, in a rodent model of malig-
nant glioma (57). MSCs were transfected with a plasmid encoding
for miR-146, and EVs were recovered 48 h later. Plasmid-expressed
miRNA was thus packaged into EVs. These particular EVs were
tested in vivo by direct intracranial injection in rats with gliosar-
coma. A single intra-tumor injection of miR-146 EVs was shown
to significantly reduce tumor size (57).

The characteristic of EVs of being able to cross the blood–
brain barrier, may allow delivery of therapeutic substances to
tumors of the nervous system. MSCs and brain parenchymal
cells were shown to reciprocally communicate via EVs by trans-
fer of miR-133b, ensuing modulation of neurite outgrowth (58).
Specific targeting for neurons was achieved by Alvarez-Erviti
et al. (59), who engineered EV-producing cells to express the
protein Lamp2b fused to the neuron-specific RVG peptide, in
order to obtain neuronal localization, and to deliver BACE-1
siRNA. In this way, they were able to obtain silencing of BACE-
1, which is a beta secretase responsible for generation of toxic
beta amyloid formation and deposition in Alzheimer’s disease
(59). Several other studies have indicated the possibility of ex
vivo manipulation of miRNA content of EVs, for therapeutic
purposes (60–62).

Moreover, EVs may deliver biologically active proteins that
could influence the phenotype of recipient cells. For example,
MSCs have been successfully transduced with viral vectors so that
they release functional interferon alpha (IFN-α), which is clinically
used to treat various types of cancer (63). In this case, injection of
MSC-producing IFN-α, the derived EVs with tropism for tumors,
can provide an innovative therapy for cancer treatment, by direct
delivery of IFN-α into tumors.

CONCLUSIONS
In the contest of cancer, EVs derived from MSCs have been
shown to mimic most of the beneficial and detrimental effects
of the cells of origin. These opposing effects observed in different
tumor types could depend on the different pathways involved.
It is therefore critical to identify which molecules, shuttled by
EVs, could interfere with these pathways, and therefore which
kind of tumors may benefit from MSC-EV treatment. Another
critical point is the timing of EV treatment. Studies based on
pre-incubation of cancer cells with EVs have mainly provided
information on their role in tumor engraftment and growth, but
without providing a therapeutic strategy. The intra-tumor admin-
istration of EVs in an established tumor better demonstrates a
therapeutic application for EVs. However, local administration
may be complicated in patients, and studies are required to eval-
uate whether an intravenous injection of EVs is equally efficient.
As in the case of MSCs, EVs may accumulate within tumors, and,
therefore, could be exploited for drug delivery. Anti-tumor miR-
NAs and specific siRNAs are candidates for delivery by EVs. To
envisage a therapeutic use of EVs, a scalable production of non-
immunogenic EVs is necessary. MSCs are potential candidates
for this, but the cell senescence with the subsequent cell culture
passages need to be encompassed. A possible strategy, developed
by Chen et al. (64) was based on oncogenic immortalization of
human embryonic stem cell-derived MSCs. These authors showed
a quantitative persistent production of EVs that did not contain
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the oncogene, and maintained the same properties of EVs derived
from non-immortalized cells.

In conclusion, native MSC-derived EVs have been shown to
possess therapeutic potential in some but not all tumors. The
strategies to engineer EVs may be exploited to deliver anti-tumor
molecules, by crossing physiological barriers.
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