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Exosomes mediate intercellular communication and participate in many cell processes
such as cancer progression, immune activation or evasion, and the spread of infection.
Exosomes are small vesicles secreted to the extracellular environment through the release
of intraluminal vesicles contained in multivesicular bodies (MVBs) upon the fusion of these
MVBs with the plasma membrane. The composition of exosomes is not random, sug-
gesting that the incorporation of cargo into them is a regulated process. However, the
mechanisms that control the sorting of protein cargo into exosomes are currently elusive.
Here, we review the post-translational modifications detected in exosomal proteins, and
discuss their possible role in their specific sorting into exosomes.

Keywords: post-translational modifications, exosomes, ubiquitination, sorting, multivesicular bodies

INTRODUCTION
Post-translational modifications (PTMs) of proteins are biochem-
ical changes generated after the synthesis of polypeptides on ribo-
somes. PTMs include changes to the chemical nature of aminoacid
residues and also structural modifications that affect the interac-
tive ability of proteins, and consequently their stability, subcellular
localization, and activation state (1, 2). There are many types of
PTM that can be classified according to the nature of the mate-
rials added: (1) a chemical group (phosphate, acetate, etc.), (2)
carbohydrates, (3) lipids, (4) aminoacids, (5) other polypeptides,
and (6) an isoprenyl group (Table 1). A protein can undergo many
PTMs, changing its properties and broadening its capacity to adapt
to cellular needs (2). Some modifications are reversible and are
strictly regulated by the enzymes responsible for their addition
or removal, acting as a dynamic switch that allows the cell to
adjust protein functions according to requirements. Dysregulation
of PTMs or mutation of modified residues are linked to disease,
including cancer, neurodegenerative disorders such as Alzheimer,
and cardiovascular disease, highlighting the importance of these
protein modifications (3–7).

A specific pattern of PTMs is detected in exosomes, 50–200 nm
diameter vesicles secreted by most cells to the extracellular envi-
ronment. Once released, exosomes can adhere to or be internalized
by recipient cells, and in this way mediate cell-to-cell commu-
nication in a variety of contexts. Exosomes form through the
invagination of the limiting membrane of specific endosomic
compartments called multivesicular bodies (MVBs) (22). The
resulting intraluminal vesicles (ILVs) are released as exosomes
upon fusion of MVBs with the plasma membrane. Alternatively,
MVBs can fuse with lysosomes, leading to degradation of their
content. Exosomes have a specific composition of lipids, proteins,
and RNAs; however, the mechanisms that control the sorting of
molecules into these exosomal-proteins vesicles remain elusive.
Here, we review the PTMs detected in exosomal proteins, and
discuss their possible role in their specific sorting into exosomes.

UBIQUITINATION AND SUMOylation
Post-translational modifications increase the versatility of proteins
by influencing their activation state, stability, subcellular localiza-
tion, and ability to interact with other proteins. A particularly
effective means of increasing protein versatility is the addition of
ubiquitin, which can be attached to a target protein at a num-
ber of positions and in a variety of ways. The C-terminal glycine
of ubiquitin usually forms an isopeptide bond with the ε-amino
group of a lysine residue present in the target protein, resulting in
mono-ubiquitination. In some cases, E4 ubiquitin ligases can add a
poly-ubiquitin chain to a mono-ubiquitinated site (23). The equa-
tion becomes even more complicated considering that ubiquitin
has seven lysines, and the fate of the target protein is determined
by which lysine forms the link in the poly-ubiquitin chain: chains
linked through lysine-48 (Ub-K48) label target proteins for degra-
dation in the proteasome; Ub-K63 chains seem to be important
for the DNA-damage response, endocytosis, autophagy, and sig-
nal transduction; Ub-K11 chains are implicated in endoplasmic-
reticulum-associated degradation (ERAD); and Ub-K29 chains are
involved in lysosomal degradation (24–33). Moreover, in some
cases, ubiquitin can be linked through residues other than lysine,
such as the N-terminal through the free amino group or the
sulfhydryl group of cysteine residues (34).Ubiquitination can also
compete with other PTMs, such as sumoylation or acetylation, and
can enhance others such as phosphorylation (35–37).

Ubiquination, thus denotes a complex network of PTMs, and
its role in the sorting of proteins into exosomes is far from under-
stood. There seems to be consensus that ubiquitination is necessary
for sorting proteins into ILVs destined for degradation through the
fusion of the encompassing MVB with lysosomes. This process is
mediated by the endosomal sorting complex required for transport
machinery (ESCRT complex) and affects proteins such as epithe-
lial growth factor receptor (EGFR) (38) (Figure 1). This machinery
recognizes ubiquitinated cargoes and catalyzes the abscission of
endosomal invaginations, forming ILVs that contain the sorted
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FIGURE 1 | Post-translational modifications of exosomal proteins.
Membrane receptors such as EGFR and MHCII are ubiquitinated and sorted
to MVBs. Then, they follow a degradative pathway by the fusion with
lysosomes. Note that non-ubiquitinated-MHCII can be sorted into
exosomes. Ubiquitinated LMP2A and ubiquitinated and phosphorylated
FasL follow a secretory pathway where both modified proteins are delivered

into exosomes. Non-membrane proteins like SUMOylated hnRNPA2B1,
phosphorylated and oxidized γ-synuclein, and phosphorylated tau are
packed into exosomes. Myristoylated TyA protein is able to oligomerize,
leading to the formation of shedding vesicles. Ubiquitinated ARRDC1 can
induce plasma membrane budding by an ESCRT complex-depending
mechanism, producing ectosomes.

cargo [reviewed in Raiborg and Stenmark (39)]. The ESCRT com-
plex consists of four subcomplexes, ESCRT-0, -I, -II, and -III, and
several accessory proteins. ESCRT-0, -I, and -II contain ubiquitin-
binding subunits that interact directly with ubiquitinated cargo.
The directional flow of cargo from ESCRT-0 to ESCRT-I and -II
might be regulated by PTMs. In fact, the ESCRT-0 subunits are
known to be phosphorylated and to be mono-ubiquitinated (40–
42). The latter modification keeps these subunits in an inactive
form owing to intramolecular interactions between their ubiq-
uitin interacting motifs and the appended ubiquitin (43, 44).
However, the role of ubiquitin and the ESCRT complex in the
sorting of proteins into ILVs for exosome secretion is still unclear,
and MVB biogenesis, exosome secretion, and exosomal-protein
sorting have been reported in an ESCRT/ubiquitin-independent
manner [reviewed at Villarroya-Beltri et al. (45)].

The Epstein-Barr virus (EBV) protein LMP2A (latent mem-
brane protein 2A) is ubiquitinated in exosomal fractions (16).
LMP2A contains two PXYY motifs, through which it associates
with neural precursor cell expressed developmentally down-
regulated protein 4 (Nedd4)-family ubiquitin ligases (16). Ubiq-
uitination of LMP2A leads to endocytic transport of the protein
from the plasma membrane to MVBs. Nedd4 E3 ubiquitin lig-
ases are able to bind directly to target proteins though the PPXY
motif, but proteins lacking this motif can bind Nedd4 through
the adaptor Nedd4-family-interacting protein 1(Ndfip1), lead-
ing to their ubiquitination (46). Ndfip1 is involved not only in
protein degradation, but also in protein traffic to exosomes (46).
Ndfip1 overexpression increases the protein content of exosomes
and enhances exosomal sorting of normally absent proteins, such
as Nedd4, Nedd4-2, and Itch. These exosomal proteins moreover
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appear to be highly ubiquitinated, suggesting that Ndfip1 trans-
fers other ubiquitinated proteins to exosomes (46) (Figure 1).
For example, the Ndfip1 adaptor function is required for exo-
somal export of phosphatase and tensin homolog deleted on
chromosome 10 protein (PTEN) ubiquitinated on lysine 13 (17).

With other proteins, however, ubiquitination appears to be
unimportant or inhibitory to exosomal export. Secretion into exo-
somes of small integral membrane protein of the lysosome/late
endosome (SIMPLE) is enhanced by mutations in its PPXY motif,
which mediates its binding to E3 ubiquitin ligases (18). Ubiqui-
tination is also not required for the packaging of major histo-
compatibility complex II (MHC-II) into exosomes (47). The use
of a chimeric-ubiquitinated-MHC-II molecule does not specif-
ically lead these molecules into exosomes, and forcing MHC-II
ubiquitination by expression of membrane-associated ring finger
(C3HC4) 8 (MARCH) E3 ubiquitin ligase does not enrich MHC-
II molecules in exosomes, though it does completely deplete them
from the plasma membrane. Moreover, directed-mutagenesis of
all MHC-II lysine residues does not impair the exosome sorting
of these receptors (47). However, ubiquitination of the MHC-II
cytoplasmic domain, required for recognition by the ESCRT com-
plex, is important for sorting membrane MHC-II to MVBs for
lysosomal degradation (48). The non-ubiquitination of MHC-
II molecules present in exosomes suggests that this PTM is not
involved in sorting to these vesicles. The two mechanisms for
loading MHC-II into MVBs are engaged for different physi-
ological functions. Thus, whereas ubiquitin-dependent sorting
takes place in immature DCs, in which ubiquitinated receptors
are degraded in lysosomes, in activated-DCs, non-ubiquitinated
MHC-II-containing exosomes are efficiently delivered to interact
with T cells, enhancing antigen specific MHC-II-mediated pre-
sentation (48) (Figure 1). Heat shock protein 70 (HSP70) also
seems to be sorted into exosomes independently of its ubiquitina-
tion. Thus, although deletion of the deubiquitin domain of COP9
signalosome complex subunit 5 (CSN5) enhances packing of ubiq-
uitinated HSP70 into exosomes, knockdown of the entire CSN5
protein increases the levels of both modified and non-modified
HSP70 in exosomes (19).

Mass spectrometry analysis of PTMs in extracellular vesicles
released by insulinoma cells identified multiple poly-ubiquitinated
proteins (49). Enrichment of exosomes in poly-ubiquitinatied
proteins was also demonstrated by an approach based on the use
of FK1 antibody (which only binds poly-ubiquitinated proteins)
and P4D1 (which labels poly- and mono-ubiquitinated proteins)
(50). Other studies suggest that exosomal proteins are preferen-
tially mono-ubiquitinated or de-ubiquitinated, based on western
analysis showing discrete ubiquitinated protein bands rather than
smeared bands (19).

Ubiquitination has been shown to be important for the secre-
tion of a novel type of extracellular vesicle, distinct from exosomes,
called arrestin-domain-containing protein 1(ARRDC1)-mediated
microvesicles (ARMMs). ARMMs directly bud from the plasma
membrane upon interaction of the tumor susceptibility gene
101 protein (TSG101) with a PSAP motif in ARRDC1, which
is localized through its arrestin domain at the plasma mem-
brane (20). ARRDC1 in vesicles is ubiquitinated by the E3 ligase
WW domain-containing protein 2 (WWP2). Down-regulation of

WWP2 decreases ARRDC1 protein level in vesicles, and a PPXY-
mutant of ARRDC1 strongly inhibits ARMM secretion, suggesting
that ARRDC1 ubiquitination promotes ARRDC1 sorting into
vesicles and ARMM secretion (20) (Figure 1).

Another ubiquitin-like modifier called small ubiquitin-related
modifier (SUMO) has been found to modify the exosomal-protein
heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1).
This modification affects the ability of this protein to export micro
ribonucleic acids (miRNAs) into exosomes, probably by affecting
its binding to miRNAs (21). hnRNPA1 in exosomes was also found
to be modified, increasing its molecular weight by about 12 kDa
on gel electrophoresis (21) (Figure 1). This change in molecu-
lar weight of hnRNPA2B1 and other proteins has been shown
before (49).

OTHER PTMs: PHOSPHORYLATION AND GLYCOSYLATION
Mass spectrometry analysis of extracellular vesicles also detects
phosphorylated proteins (49). Phosphorylation and ubiquitina-
tion co-regulate sorting of Fas ligand (FasL) into secretory lyso-
somes by controlling its entry into MVBs (8). FasL contains a
proline-rich domain (PRD) in the cytosolic tail to which tyrosine
kinases, such as FGR, FYN, and LYN bind, and phosphorylation
of tyrosine residues by these kinases enhances internalization to
MVBs. The flanking regions of the PRD contain lysines, which are
mono-ubiquitinated. Mutation of these lysines impairs the local-
ization of FasL in MVBs, but mutation of the tyrosines does not
affect mono-ubiquitination. Phosphorylation is thus not required
for ubiquitination, but both PTMs are necessary for incorporation
of FasL into to MVBs (8) (Figure 1).

Phosphorylation is also involved in incorporation of the Ca2+-
dependent phospholipid-binding protein Annexin A2 into exo-
somal membranes, through the action of raft-resident kinases,
such as SRC or LYN on Tyr-23 (9). Aberrant phosphorylation of
the protein tau on threonine-181 promotes its incorporation into
exosomes, resulting in the spreading of this abnormally processed
protein in Alzheimer disease patients (10).

The protein γ-synuclein is transported in exosomes in its mod-
ified form. This modification consists of oxidation of Met-38 and
Tyr-39, which confers prion-like properties and causes the forma-
tion of toxic aggregates. The spreading of these aggregates is in
part mediated by the exosomal transport of oxidated-γ-synuclein
to glial cells (11) (Figure 1).

Carbohydrate modifications, involved in protein trafficking,
cellular recognition, and communication of cells with their extra-
cellular environment, have also been studied in extracellular vesi-
cles (12, 13, 51). Vesicles of diverse cells types are enriched in
proteins with high mannose, polylactosamine, α-2,6-sialic acid,
and complex N-linked glycans adjuncts; in contrast, there is a com-
parative under-representation of specific glycan epitopes, such as
terminal blood group A and B antigens (12, 13). Exosome glycan
profiles of different cell sources, such as T-cells, melanoma and
colon cancer cells, and biological fluids like breast milk, are very
similar, although they conserve some features of their parent mem-
branes (13). The carbohydrate fingerprint detected in exosomes is
less diverse than that observed in parent cells, but correspond to
a conserved fraction of the parent cellular membrane that display
a particular glycan profile (13). The variability observed between
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cellular and exosomal carbohydrate signatures has been suggested
to indicate different membrane microdomain origins of these vesi-
cles (13). It has been described that polyLacNac and high mannose
modifications associated with galectins and VIP36 are responsible
for the oligomerization of glycoproteins that mediate their sorting
into Golgi-derived vesicles (12, 52–55). Galectins and galectin-
associated proteins have also been detected in exosomes so it is
possible that glycosylation may also play a role in the sorting cargo
into extracellular vesicles (12, 13).

Membrane anchors have also been shown to be important
for the budding of vesicles derived from the plasma membrane.
An N-terminal acylation tag serves as a signal for the import
of highly oligomeric cytoplasmic proteins, like the yeast protein
TyA, into shedding vesicles (56). The membrane anchor that
most effectively promotes TyA budding is myristoylation. How-
ever, targeting of TyA to the endosomal membrane by fusion to
a Phosphatidylinositol-3-phosphate (PI3P) binding domain does
not produce the same effect (15) (Figure 1).

CONCLUDING REMARKS
Post-translational modifications decorate proteins and drive their
fate in cells by affecting multiple parameters including stabil-
ity and localization. Different modifications can affect the same
protein; sometimes competing with each other or being mutu-
ally exclusive, but in other cases can promote other modifica-
tions. Enzymes controlling PTMs additionally show very specific
patterns of expression, activation, and subcellular localization,
exponentially increasing the diversity and potentiality of cellular
proteomes.

Different types of PTMs have been found in exosomal pro-
teins; however, the role of these modifications in the localization
of proteins into exosomes is not clear. The enigmatic role of ubiq-
uitination, whose final consequences seem to differ depending on
the target protein, is a particular case in point. The type of ubiq-
uitination may also account for the fate of the modified protein,
and could be a key determinant for its loading in exosomes. In
some cases, ubiquitination seems to target the protein into MVBs
destined for degradation, whereas sorting of proteins into MVBs
that fuse with the plasma membrane to release exosomes seems
to be ubiquitin-independent, clearly pointing to the existence of
different types of MVB with different sorting mechanisms.

Specific protein modifications can reflect a particular patholog-
ical condition. The presence of modified proteins in exosomes can
therefore make them invaluable tools for diagnosis, since modifi-
cations could be easily detected in exosomes obtained from body
fluids without the need for invasive tissue biopsies.
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