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INTRODUCTION

Obesity is a risk factor for the development of asthma. Obese mice exhibit innate airway
hyperresponsiveness (AHR), a characteristic feature of asthma, and IL-17A is required for
development of AHR in obese mice. The purpose of this study was to examine the tempo-
ral association between the onset of AHR and changes in IL=17A during the development
of obesity by high-fat feeding in mice. At weaning, C57BL/6J mice were placed either on
mouse chow or on a high-fat diet (HFD) and examined 9, 12, 15, 18, or 24 weeks later. Airway
responsiveness to aerosolized methacholine (assessed via the forced oscillation technique)
was greater in mice fed HFD versus chow for 24 weeks but not at earlier time points. Bron-
choalveolar lavage and serum I[=17A were not affected by either the type or duration of diet,
but increased pulmonary /L 77a mRNA abundance was observed in HFD versus chow fed
mice after both 18 and 24 weeks. Flow cytometry also confirmed an increase in Il-17A%
8 T cells and Il-:17A*T CD4* T (Th17) cells in lungs of HFD versus chow fed mice. Pul-
monary expression of Cfd (complement factor D, adipsin), a gene whose expression can
be reduced by I[-17A, decreased after both 18 and 24 weeks in HFD versus chow fed mice.
Furthermore, pulmonary Cfd mRNA abundance correlated with elevations in pulmonary
I177a mRNA expression and with AHR. Serum levels of TNFa, MIP-1a, and MIP-18, and
classical markers of systemic inflammation of obesity were significantly greater in HFD
than chow fed mice after 24 weeks, but not earlier. In conclusion, our data indicate that
pulmonary rather than systemic Il-17A is important for obesity-related AHR and suggest
that changes in pulmonary Cfd expression contribute to these effects of I-17A. Further,
the observation that increases in //77a preceded the development of AHR by several weeks
suggests that Il-17A interacts with other factors to promote AHR. The observation that the
onset of the systemic inflammation of obesity coincided temporally with the development
of AHR suggest that systemic inflammation may be one of these factors.
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placing them on high-fat diets (HFD) also develop AHR over time

Obesity is an important risk factor for the development of asthma
(1-5). Obesity-related asthma is more prevalent among women
and is typically non-atopic in nature (6, 7). Importantly, in
obese non-atopic asthmatics, airway hyperresponsiveness (AHR),
a defining feature of asthma, can be attenuated by weight loss (6,
8). Obesity decreases the efficacy of asthma control medications
(5, 9), making these patients difficult to treat. Understanding the
mechanistic basis for obesity-related asthma may allow for the
development of therapeutics that is effective in this population.
Innate AHR is a common feature of obese mice, suggesting
that these mice may be useful in understanding the relation-
ship between obesity and asthma. Mice that are genetically defi-
cient in leptin or its receptor (ob/ob or db/db mice) and mice
that are genetically deficient in carboxypeptidase E, an enzyme
involved in processing neuropeptides involved in eating behaviors
(Cpe™ mice) each exhibit AHR compared to age- and gender-
matched wildtype (WT) mice (10-13). Mice rendered obese by

(14, 15).

IL-17A has been linked to the development of innate AHR in
obese mice (15): compared to chow, HED feeding results in both
obesity and AHR in WT mice, whereas AHR is not observed in
mice deficient in IL-17A despite equal induction of obesity. To
further evaluate the role of IL-17A, we examined the temporal
association between the development of AHR and changes in IL-
17A in C57BL/6] mice fed chow or a HFD for up to 24 weeks. Our
results indicated an increase in II17a mRNA abundance in lung
tissue that preceded the development of AHR in HED versus chow
fed mice.

A previous microarray analysis comparing gene expression in
lung tissue from obese Cpe/® versus lean WT mice identified sev-
eral genes that were significantly affected by obesity (16). Because
of the requirement for IL-17A for induction of AHR by HFD (15),
we searched for evidence linking IL-17A to expression of these
genes to assist in determining how IL-17A might lead to AHR.
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Among these genes, we identified two, Cfd (complement factor
D/adipsin) and Cx3clI (fractalkine), whose expression is reported
tobeaffected by IL-17A (17, 18). Hence, we also examined the tem-
poral association between the development of AHR, pulmonary
I117a mRNA expression, and pulmonary Cfd and Cx3c/I mRNA
expression in mice fed chow or HFD for up to 24 weeks. There was
no effect of HFD on pulmonary Cx3clI expression, but pulmonary
Cfd expression significantly declined in HFD versus chow fed mice,
consistent with previously reported declines in pulmonary Cfd
expression in Cpe/™ mice (16). Moreover, changes in Cfd coincided
temporally with changes in Il17a, and our results indicate a sig-
nificant correlation between pulmonary Cfd expression and both
pulmonary 11174 and AHR, suggesting that changes in pulmonary
Cfd expression contribute to the ability of IL-17A to promote
obesity-related AHR.

MATERIALS AND METHODS

ANIMALS

This study was approved by the Harvard Medical Area Standing
Committee on Animals. Male C57BL/6] mice were placed on a
HFD [Research diet (D12451)] or control normal chow (Pico-
Lab, LabDiet, St. Louis, MO) at weaning (approximately 3 weeks
of age). Mice were kept on the diet for 9, 12, 15, 18 or 24 weeks.
Db/db and WT (C57BL/6]) controls were purchased from The
Jackson Laboratories and housed for 4 weeks before use, during
which time they were fed a standard mouse chow diet. Db/db mice
and their WT controls were 10 weeks old at the time of study.

PROTOCOL

Baseline pulmonary mechanics and airway responsiveness to
inhaled aerosolized methacholine were assessed in otherwise
unchallenged chow fed or HFD fed mice. Mice were assessed 9,
12, 15, 18, or 24 weeks after initiation of the diet. After lung func-
tion measurements, mice were euthanized, blood was collected
by right ventricular puncture, and bronchoalveolar lavage (BAL)
was performed. The lungs were then flushed of blood by injecting
10 ml of cold PBS through the right ventricle after creating a large
excision in the left ventricle. The left lung was excised and used for
flow cytometry. The right lung was excised and placed in RNAlater
(Qiagen, Germantown, MD, USA) for subsequent preparation of
RNA for real time PCR.

MEASUREMENT OF PULMONARY MECHANICS AND AIRWAY
RESPONSIVENESS

Mice were anesthetized with sodium pentobarbital (50 mg/kg) and
xylazine (7 mg/kg) and instrumented for the measurement of pul-
monary mechanics and airway responsiveness to methacholine by
the forced oscillation technique using a Flexivent system (SciReq,
Montreal, QC, Canada). The chest wall was opened bilaterally to
expose the lungs to atmospheric pressure and a positive end expi-
ratory pressure of 3cm H;O was applied. Volume history was
standardized by thrice inflating the lungs to 30 cm H,O airway
opening pressure. Pulmonary mechanics were then assessed after
inhalation of aerosolized PBS and after successive aerosolizations
of methacholine in concentrations increasing in half log incre-
ments from 0.3 to 100 mg/ml. Inflation to 30 cm H,O followed
completion of measurements at each concentration and the next

aerosolization was initiated 1 min after this inflation. The follow-
ing parameters were measured, as previously described (19), every
15 s for 3 min after each concentration of methacholine: Newton-
ian resistance (Rn), which largely reflects the conducting airways,
and the coefficients of lung tissue damping (G) and lung tissue
elastance (H), which reflect changes in the lung tissue, including
airway closure. At each concentration of methacholine, the three
highest values of Rn, G, and H were averaged and used to construct
dose response curves. We also calculated the effective concentra-
tion of methacholine required to double G (EC200G) by log linear
interpolation between the two doses bounding the point where G
is doubled.

BRONCHOALVEOLAR LAVAGE

Bronchoalveolar lavage was performed by twice instilling and
withdrawing 1 ml of PBS. BAL was spun and the pelleted cells
counted as previously described (20). BAL supernatant was stored
at -80°C until assayed for complement factor D (adipsin, Apcam,
Cambridge, MA, USA), IL-17A (Biolegend, San Diego, CA, USA),
and IL-23 (eBioscience, San Diego, CA, USA).

REAL TIME qPCR

Total RNA was prepared as previously described (21). RNA con-
centration and purity was determined using a small volume spec-
trophotometer (Nanodrop, Thermo Scientific, USA). RNA was
converted into ¢cDNA using a commercial kit (SuperScript III
for qRT-PCR, Invitrogen). All expression values were normal-
ized to 36B4 expression using the AACt method. Primers for
Rplp0 (36B4), Cfd, Cx3cll, 1123a (p19), I117a, and Ccl20 (MIP3a)
have all been described previously (16, 22). Primers for Illo were
forward — CGGCAAAGAAATCAAGATGG and reverse TTCAGAGAGA-
GATGGTCAATGG; for I11f forward — cTGTGTCTTTCCCGTGGACC and
reverse — CAGCTCATATGGGTCCGACA; and for IL-6 forward — cca-
GAGAGGAGACTTCACAG and reverse — CAGAATTGCCATTGCACAAC.

FLOW CYTOMETRY

Left lungs were harvested and placed on ice in RPMI 1640 media
containing 2% FBS and HEPES. Lungs were digested, prepared for
flow cytometry, and analyzed as previously described (22). The fol-
lowing antibodies were used: Alexa Fluor 647 anti-IL-17A (clone:
TC11-18H10.1), PE anti-TCR3 (clone: GL3), PE-cy7 anti-CD45
(clone: 30-F11), and Alexa Flour 488 anti-CD4 (clone: GK1.5) (all
antibodies from Biolegend). These antibodies were used to deter-
mine the total number of CD4 cells, 3 T cells, IL-17A™ y8 T cells,
IL-17ATCD45" cells, and IL-17ATCD4™ T cells.

SERUM CYTOKINES

Serum was prepared from harvested blood using microtainer
tubes (Becton Dickinson, NJ, USA) and stored at —80°C until
assayed. Serum cytokines and chemokines were assayed by mul-
tiplex assay as previously described (10, 16) (Eve Technologies,
Calgary, AB, Canada). We used ELISA to assay serum IL-17A and
TNFa (Biolegend for IL-17A and R&D Systems for TNFa).

STATISTICS
Data were analyzed by factorial ANOVA using STATISTICA soft-
ware (StatSoft, Tulsa, OK, USA), with diet and weeks on diet
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as main effects. Fisher’s least significant difference test was used
as a post hoc test. A p value <0.05 was considered statistically
significant.

RESULTS

BODY MASS

Factorial ANOVA indicated that both the type (p <0.001) and
duration (p < 0.001) of the diet had a significant effect on body
mass (Figure 1). In both chow fed and HFD fed mice, body mass
increased with time. Additionally, body mass was significantly
higher in the HFD than the chow fed mice at all-time points except
9 weeks.

PULMONARY MECHANICS AND AIRWAY RESPONSIVENESS

Obesity increases baseline pulmonary mechanics in mice (10,
11, 16). We examined the development of these changes with
HED. Factorial ANOVA indicated no significant effect of HFD
feeding on Rn, though there was a significant effect of time
on the diet (p <0.02), possibly as a result of lung and airway
growth (Figure 2A). In contrast, both G and H were significantly
increased in HED versus chow fed mice (p < 0.01) (Figures 2B,C).
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FIGURE 1 | Mice fed a high-fat diet developed obesity. Body mass in
C57BL/6J mice fed mouse chow or a high-fat diet (HFD) for up to 24 weeks.
Body mass was measured on the day when the mice were euthanized.
Results are mean =+ SE of data from 6 to 12 mice per group. *p < 0.01
versus chow fed mice with the same duration of diet.

Increases in G and H were observed by 18 weeks on the diet
and sustained through 24 weeks. Compared to chow fed mice,
HFD fed mice had significantly greater airway responsiveness
and a corresponding significantly reduced EC200G after 24 weeks
on the diet, whereas there was no consistent difference at ear-
lier time points (Figure 3). Results shown in Figure 3 indi-
cate the response to methacholine as measured by changes in
G. Essentially, similar results were obtained for H, which can
be impacted by airway closure, whereas no change in respon-
siveness was observed using Rn as the outcome indicator (data
not shown).

IL-17A IS ELEVATED IN LUNGS OF HFD VERSUS CHOW FED MICE

Mice deficient in IL-17A do not develop AHR with high-
fat feeding (15), suggesting an important role for IL-17A in
the development of the innate AHR of obesity. Consequently,
we explored the temporal relationship between the onset of
IL-17A expression and the pulmonary phenotype induced by
HFD. Neither serum nor BAL IL-17A was affected by the HFD
(Figures 4A,B). In contrast, qPCR indicated greater pulmonary
Il17a mRNA abundance in HFD versus chow fed mice after
both 18 and 24 weeks on the diet (Figure 4C). Flow cytome-
try on cells dissociated from lungs of mice after 24 weeks on
the diet confirmed an increase in IL-17ATCD45" cells in lungs
of HFD versus chow fed mice (Figure 4D) and also indi-
cated increases in both IL-17A" y8 T cells and IL-17ATCD4"
(Th17) cells (Figures 4E,F). There was also a significant increase
in total y3 T cells, whereas total CD4™ cells were unchanged
(Figures 4G,H).

To examine potential causes for the increase in I117a mRNA
expression in HFD fed mice (Figure 4C), we examined the time
course of changes in Illa, IL1b, I123a, 116, and Ccl20. IL-1a, IL-
1B, IL-6, and IL-23 are each drivers of IL-17A production (23) and
CCL20is a chemoattractant for IL-17A producing T cells (24). Fac-
torial ANOVA indicated an effect of duration (p < 0.05) but not
type of diet on Ccl20 mRNA abundance. Follow up analysis indi-
cated that the difference lay in the 24-week-mice, which exhibited
increased Ccl20 mRNA compared to other time points (Figure 5).
Neither BAL IL-23 nor pulmonary II23a mRNA expression was
impacted by the type or duration of dietary feeding, nor was there
any impact on pulmonary Illa, IL1b, or II6 mRNA expression
(data not shown).
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FIGURE 2 | High-fat feeding increased baseline pulmonary mechanics.
Baseline pulmonary mechanics in mice fed chow or HFD for up to 24 weeks.
Rn, Newtonian resistance; G and H, coefficients of lung tissue damping and
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lung tissue elastance, respectively. Results are mean + SE of data from five to
nine mice per group. *p < 0.05 versus chow fed mice with the same duration
of diet.
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FIGURE 3 | High-fat feeding induced airway hyperresponsiveness. using H, the coefficient of lung tissue elastance. (F) Log concentration of
(A-E) Airway responsiveness to inhaled aerosolized methacholine in mice fed methacholine required to double G (log EC200G). Results are mean + SE of
chow or HFD for 9, 12, 15, 18, or 24 weeks. Results shown indicate changes data from four to eight mice per group. *p < 0.05 versus chow fed mice with
in G, the coefficient of lung tissue damping. Similar results were obtained the same duration of diet.

POSSIBLE ROLE OF ADIPSIN

To determine how IL-17A might lead to AHR, we revisited a
microarray analysis of genes whose expression is significantly dif-
ferent in lungs of obese Cpe® versus lean WT mice (16). Among
these genes, two genes, Cfd and Cx3cll, whose mRNA expres-
sion levels are reduced in lungs of Cpe/ versus WT mice (10,
16), have also been shown to be impacted by IL-17A. In particu-
lar, IL-17A reduces Cfd mRNA expression in adipose tissue (18)
and reduces Cx3cll expression in ocular endothelial cells (21).
qPCR confirmed a time-dependent decrease in pulmonary Cfd
mRNA abundance in HFD versus chow fed mice (Figure 6A),
consistent with previous observations in lungs of Cpe mice.
Significant differences were observed at 18 and 24 weeks of diet
(Figure 6A), the same time points where diet-related changes in
I117a mRNA were observed (Figure 4C). Because we have also
observed innate AHR in db/db versus WT mice, we also mea-
sured Cfd expression in db/db mice to determine if changes in
pulmonary Cfd expression were consistent across the multiple
forms of obesity that exhibit AHR. We observed significantly
reduced Cfd mRNA expression in lungs of obese db/db versus
lean WT mice (Figure 6B). BAL adipsin was also reduced in
both HFD versus chow fed mice (p <0.01) and in db/db versus
WT mice (p < 0.05) (Figures 6C,D). Importantly, in the 24-week-
mice, there was a correlation between Cfd mRNA and 11172 mRNA
expression (Figure 7A) and between Cfd mRNA and the EC200G

(Figure 7B), an index of AHR. In contrast, there was no significant
difference in pulmonary Cx3cll mRNA abundance between chow
fed and HFD fed mice, or between WT and db/db mice, although
there was a trend toward reduced Cx3clI mRNA abundance in
both types of obesity (Figures 6E,F).

SYSTEMIC INFLAMMATION

Low grade systemic inflammation is now recognized as a com-
mon feature of obesity and has been shown to contribute to a
wide variety of the comorbidities of obesity including type 2
diabetes (25) and atherosclerosis (26). Increases in pulmonary
I117a expression preceded the induction of AHR by several weeks
(Figure 4C), suggesting the additional involvement of factors that
developed more slowly. To determine if obesity-induced systemic
inflammation might be one of these factors, we measured mul-
tiple cytokines in the serum by multiplex assay over the course
of development of obesity. Factorial ANOVA indicated that com-
pared to chow feeding, high-fat feeding caused a time-dependent
increase in serum MIP-1a, MIP-1f, and TNFa (p < 0.05 in each
case) (Figures 8A—C), consistent with observations of others (25,
27, 28). While there was a trend toward increases in all three of
these moieties after 18 weeks on the diet, the effect did not achieve
statistical significance until 24 weeks. We also observed signifi-
cantly greater IL-2 in serum of 24-week-old HFD versus chow fed
mice (Figure 8D).
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FIGURE 4 | High-fat feeding increased pulmonary IL-17A. Serum cells (F), and total y8 T cells (G) and CD4+ cells (H) in lungs of mice fed
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DISCUSSION

Body mass was significantly greater in HFD than chow fed mice
after 12 weeks of diet (Figure 1). This difference was maintained
through 24 weeks. Nevertheless, compared to chow fed mice, HFD
fed mice did not develop changes in pulmonary mechanics until
18 weeks (Figure 2) and did not develop AHR until 24 weeks on
the diet (Figure 3), even though the magnitude of differences in
body mass was no greater at this time than at 12 weeks of diet
(Figure 1). This delay between the onset of obesity and the onset
of AHR is consistent with previous observations in HFD fed mice
(14), and may be the result of the time required for the induc-
tion of conditions necessary for recruitment of IL-17A™ cells to
the lung. IL-17A is required for the development of AHR in HFD
fed mice (15), and we also observed a delay between the onset of
increases in body mass (Figure 1) and the onset of increases in
pulmonary Il17a expression (Figure 4C). Indeed, the induction of
significant changes in pulmonary Il17a expression (Figure 4C) by
HED coincided with increases in pulmonary mechanics (Figure 2)
and preceded the development of AHR by several weeks (Figure 3).

Our data suggest that obesity-related reductions in pulmonary
Cfd expression may contribute to effects of IL-17A that pro-
mote obesity-related AHR. Obesity-related AHR is observed not
just in mice rendered obese by high-fat feeding (Figure 3) but
also in obese db/db (11) and obese Cpef“t mice (29). Simi-
larly, pulmonary expression of Cfd was reduced in all three
types of obese mice [Figures 6A,B for HFD and db/db mice
and (10, 16) for Cpef‘” mice]. Decreased complement factor D
has also been reported in the serum and adipose tissue (30)
and in the liver (31) of obese mice. Importantly, changes in
pulmonary Cfd expression coincided temporally with changes
in pulmonary Il17a expression (Figure 4C). Additionally, we
observed a significant inverse correlation between pulmonary
expression of Cfd and Il17a (Figure 7A) in the 24-week-mice (at
which time AHR was present in the HFD mice). The correla-
tion between I117a and Cfd (Figure 7A) is consistent with reports
of decreased Cfd expression in adipocytes treated with IL-17A
(18). Importantly, pulmonary Cfd expression also correlated with
AHR (Figure 7B).
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The mechanistic basis for the relationship between pulmonary
Cfd expression and AHR is not established. Complement fac-
tor D cleaves factor B after it has bound to C3 (H20) resulting
in activation of the alternatively activated complement pathway
(32). Others have reported reduced allergen induced AHR in
factor B-deficient and C3a-deficient mice. These data suggest
that attenuated activation of the alternative pathway, as would
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FIGURE 5 | Pulmonary Cc/20 mRNA expression increased with time on
diet. Pulmonary Cc/20 mRNA expression in mice fed chow or HFD for up to
24 weeks. Results are mean 4 SE of data from four to eight mice per group.
#p < 0.05 versus other durations of diet

be expected with the reduced Cfd expression observed in obese
mice [Figures 6A,B (31, 33)], would reduce, not augment airway
responsiveness as observed in obese mice (Figure 3). However,
there is some evidence that complement can also serve a protec-
tive role in the lung. Lung injury occurs in multiple models of liver
injury and depletion of complement with cobra venom factor in
mice with liver injury increases NF-kB activation and inflamma-
tion in the lung (34), events that might be expected to promote
AHR. In this context, it is important to note that liver pathol-
ogy is a common feature of obese mice (35). In addition, using a
bioinformatics approach, Couto Alves et al. (36) identified signif-
icant interactions between T cell activation and the complement
system in patients with allergic rhinitis, including reductions in
expression of most complement species, including CFD.
Increases in serum IL-17A are observed both in Cpe’ mice (16)
and in db/db mice (unpublished observations) and serum IL-17A
is also elevated in obese human subjects (37). However, there was
no change in serum IL-17A with either the type or duration of diet
(Figures 4A,B). The substantially greater increases in body mass
extant in the genetically obese Cpe/* and db/db mice than in HED
mice may explain this apparent discrepancy. However, the absence
of increases in serum IL-17A (Figure 4A) despite increases in AHR
(Figure 3) with HFD, in conjunction with the observations that
obesity-related AHR does not occur in IL-17A-deficient mice (15),
suggest that the source of the IL-17A that is important for AHR is
the lung not the blood. Indeed, we observed increases in IL-17A™
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FIGURE 6 | Obesity decreased pulmonary complement factor D. chow or HFD for up to 24 weeks (C) or in WT versus db/db mice (D).
Pulmonary Cfd (A,B) and Cx3cl1 (E,F) mRNA expression in mice fed Results are mean + SE of data from three to eight mice per group.
chow or HFD for up to 24 weeks (A,E) or in lean wildtype (WT) versus *p < 0.05 versus chow fed mice with the same duration of diet or in
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cells in the lung tissue of HFD versus chow fed mice (Figure 4).
IL-17A expressing cells were only examined at 24 weeks, the time
point at which we observed AHR (Figure 3). We did not exam-
ine ILC17 cells, but did observe increases in both IL-17AT y§ T
cells and Th17 cells (Figure 4), consistent with the observations
of others (15). The observation that IL-17A producing cells are
increased by HFD feeding is not unique to the lung. Compared to
chow, HFD also increases the number of IL-17A% cells in other
organs and tissues, including spleen, liver, and joints (38—40).
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FIGURE 7 | Pulmonary Cfd correlates with pulmonary //77a and AHR.
Correlation between pulmonary Cfd and //77a mRNA expression (A) and
between log EC200G and pulmonary Cfd mRNA expression (B) in mice fed
chow or HFD for 24 weeks. Note that reductions in EC200G indicate
increased airway responsiveness and that increases in dCt indicate
reductions in the expression of that gene.

We found no evidence of a role for either IL-6 or IL-23 in the
induction of pulmonary IL-17A" T cells during HFD. Instead,
leptin, an adipose-derived hormone that increases in obesity may
be involved. The mechanistic basis for effects of IL-6 and IL-23 on
IL-17A involves activation of STAT3 (41), and leptin also induces
STAT3 activation (42). Indeed, leptin receptors are expressed on
T cells and leptin can induce the differentiation of T cells into IL-
17A producing cells (43). We also observed increased pulmonary
mRNA expression of Ccl20, a chemoattractant for IL-17A produc-
ing cells, after 24 weeks (Figure 5), though there was no significant
difference in Ccl20 expression between chow and HFD mice. Such
increases, in conjunction with leptin-mediated increases in circu-
lating IL-17A™" T cells in the HFD mice, would be expected to
increase the number of IL-17A" cells in the lungs.

The co-incident changes in pulmonary mechanics (Figure 2)
and pulmonary Il17a expression (Figure 4C) may be the result of
direct effects of IL-17A on airway smooth muscle that promote
contractility (44). Increases in G and H occur not only with HFD
butalso in Cpe/™, db/db,and ob/ob mice (10,11, 13, 16),and may be
the result of small airway closure, a phenomenon that also occurs
in human obesity (45-48). However, the observation that increases
in pulmonary Il17a expression preceded the development of AHR
suggests that factors in addition to IL-17A are required for the
induction of AHR. Our data suggest that the systemic inflamma-
tion of obesity may be one of these factors. There was a delay
between the onset of increases in body mass and the onset of sys-
temic inflammation (Figure 8) consistent with previous reports
(49), but the onset of systemic inflammation (Figure 8) was co-
incident with the development of AHR (Figure 3), both being
observed at 24 weeks of diet but not earlier. In other systems,
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FIGURE 8 | High-fat feeding caused systemic inflammation. Serum MIP-1a (A), MIP-18 (B), TNFa (C), and IL-2 (D) in mice fed chow or HFD for up to
24 weeks. Results are mean + SE of data from six to nine mice per group. *p < 0.05 versus chow fed mice with the same duration of diet.

B 60-
— *
E
[=]
£ 40
=8
a
=
= 20
3
H
0 ™
12 15 18 24

Weeks on the diet

v
)
o

J

- - N
o L] o
1 1 1

Serum IL-2 (pg/ml)
L4 ]

o

il E 1

Weeks on the diet

www.frontiersin.org

September 2014 | Volume 5 | Article 440 | 7


http://www.frontiersin.org
http://www.frontiersin.org/Inflammation/archive

Mathews et al.

Obesity and airway hyperresponsiveness

IL-17A synergizes with other cytokines including TNFa to pro-
mote changes in cell function (50) and similar synergistic effects
of TNFa and IL-17A may be necessary to drive AHR in obesity. The
observations that both IL-17A (15) and TNFR2 (16) are required
for the development of AHR in obese mice are consistent with this
hypothesis.

In conclusion, it has been previously established that IL-17A
is required for obesity-related AHR. Data presented here extend
those observations by showing that pulmonary rather than sys-
temic IL-17A is important for obesity-related AHR and sug-
gest that changes in pulmonary Cfd expression contribute to
the AHR-promoting effects of IL-17A. Further, the observations
that increases in pulmonary Il17a mRNA expression preceded,
whereas the onset of the systemic inflammation of obesity coin-
cided temporally with the development of AHR suggest that
systemic inflammation may interact with IL-17A to promote
AHR.

ACKNOWLEDGMENTS
This study was supported by National Institutes of Environmental
Health Sciences grants ES-013307, ES-000002, and ES022556.

REFERENCES
. Beuther DA, Sutherland ER. Overweight, obesity, and incident asthma. Am J
Respir Crit Care Med (2007) 175(7):661-6. doi:10.1164/rccm.200611-17170C
. Ford ES. The epidemiology of obesity and asthma. J Allergy Clin Immunol (2005)
115(5):897-909. doi:10.1016/j.jaci.2004.11.050
. Litonjua AA, Gold DR. Asthma and obesity: common early-life influences
in the inception of disease. J Allergy Clin Immunol (2008) 121(5):1075-84.
doi:10.1016/j.jaci.2008.03.005 quiz 85-6,
. Shore SA, Johnston RA. Obesity and asthma. Pharmacol Ther (2006)
110(1):83-102. doi:10.1016/j.pharmthera.2005.10.002
. Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular
approaches. Nat Med (2012) 18(5):716-25. doi:10.1038/nm.2678
. Dixon AE, Pratley RE, Forgione PM, Kaminsky DA, Whittaker-Leclair LA,
Griffes LA, etal. Effects of obesity and bariatric surgery on airway hyperre-
sponsiveness, asthma control, and inflammation. J Allergy ClinImmunol (2011)
128(3):508.e—15.e. doi:10.1016/j.jaci.2011.06.009
. Chen H, Blanc PD, Kamath T, Lee JH, Sullivan SD. Assessing the impact of
asthma control on quality of life in patients with severe or difficult-to-treat
asthma. CHEST ] (2006) 130:955—d—6S. doi:10.1378/chest.130.3.890
. Maniscalco M, Zedda A, Faraone S, Cerbone MR, Cristiano S, Giardiello C, et al.
Weight loss and asthma control in severely obese asthmatic females. Respir Med
(2008) 102(1):102-8. doi:10.1016/j.rmed.2007.07.029
. Sutherland ER, Lehman EB, Teodorescu M, Wechsler ME. Body mass index and
phenotype in subjects with mild-to-moderate persistent asthma. J Allergy Clin
Immunol (2009) 123(6):1328.e—34.e. doi:10.1016/j.jaci.2009.04.005
10. Zhu M, Williams AS, Chen L, Wurmbrand AP, Williams ES, Shore SA. Role of
TNFR1 in the innate airway hyperresponsiveness of obese mice. J Appl Physiol
(2012) 113(9):1476-85. doi:10.1152/japplphysiol.00588.2012
11. Lu FL, Johnston RA, Flynt L, Theman TA, Terry RD, Schwartzman IN, et al.
Increased pulmonary responses to acute ozone exposure in obese db/db mice.
Am ] Physiol Lung Cell Mol Physiol (2006) 290(5):L856—65. doi:10.1152/ajplung.
00386.2005
12. Arteaga-Solis E, Zee T, Emala Charles W, Vinson C, Wess J, Karsenty G. Inhi-
bition of leptin regulation of parasympathetic signaling as a cause of extreme
body weight-associated asthma. Cell Metab (2013) 17(1):35—48. doi:10.1016/j.
cmet.2012.12.004
13. Shore SA, Rivera-Sanchez YM, Schwartzman IN, Johnston RA. Responses
to ozone are increased in obese mice. J Appl Physiol (2003) 95(3):938-45.
doi:10.1152/japplphysiol.00336.2003
14. Johnston RA, Theman TA, Lu FL, Terry RD, Williams ES, Shore SA. Diet-induced
obesity causes innate airway hyperresponsiveness to methacholine and enhances
ozone-induced pulmonary inflammation. J Appl Physiol (2008) 104(6):1727-35.
doi:10.1152/japplphysiol.00075.2008

—

[

w

'S

v

(=}

~

oo

Nl

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28

29.

30.

31.

32.

33.

34.

35.

Kim HY, Lee HJ, Chang Y], Pichavant M, Shore SA, Fitzgerald KA, etal.
Interleukin-17-producing innate lymphoid cells and the NLRP3 inflamma-
some facilitate obesity-associated airway hyperreactivity. Nat Med (2014)
20(1):54-61. doi:10.1038/nm.3423

Williams AS, Chen L, Kasahara DI, Si H, Wurmbrand AP, Shore SA. Obe-
sity and airway responsiveness: role of TNFR2. Pulm Pharmacol Ther (2013)
26(4):444-54. doi:10.1016/j.pupt.2012.05.001

Silverman MD, Zamora DO, Pan Y, Texeira PV, Baek SH, Planck SR, et al. Con-
stitutive and inflammatory mediator-regulated fractalkine expression in human
ocular tissues and cultured cells. Invest Ophthalmol Vis Sci (2003) 44(4):1608-15.
doi:10.1167/i0vs.02-0233

Zuniga LA, Shen W], Joyce-Shaikh B, Pyatnova EA, Richards AG, Thom C,
et al. IL-17 regulates adipogenesis, glucose homeostasis, and obesity. J Immunol
(2010) 185(11):6947-59. doi:10.4049/jimmunol.1001269

Johnston RA, Zhu M, Hernandez CB, Williams ES, Shore SA. Onset of obe-
sity in carboxypeptidase E-deficient mice and effect on airway responsive-
ness and pulmonary responses to ozone. ] Appl Physiol (2010) 108(6):1812-9.
doi:10.1152/japplphysiol.00784.2009

Kasahara DI, Kim HY, Williams AS, Verbout NG, Tran J, Si H, et al. Pulmonary
inflammation induced by subacute ozone is augmented in adiponectin-deficient
mice: role of IL-17A. ] Immunol (2012) 188(9):4558-67. doi:10.4049/jimmunol.
1102363

Shore SA, Williams ES, Chen L, Benedito LAP, Kasahara DI, Zhu M. Impact of
aging on pulmonary responses to acute ozone exposure in mice: role of TNFR1.
Inhal Toxicol (2011) 23(14):878-88. doi:10.3109/08958378.2011.622316
Mathews JA, Williams AS, Brand JD, Wurmbrand AP, Chen L, Ninin FM,
et al. Gammadelta T Cells are required for pulmonary IL-17A expression after
ozone exposure in mice: role of TNFalpha. PLoS One (2014) 9(5):¢97707.
doi:10.1371/journal.pone.0097707

Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu Rev
Immunol (2009) 27:485-517. doi:10.1146/annurev.immunol.021908.132710
Hirota K, Yoshitomi H, Hashimoto M, Maeda S, Teradaira S, Sugimoto N,
et al. Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints
via CCL20 in rheumatoid arthritis and its animal model. J Exp Med (2007)
204(12):2803-12. doi:10.1084/jem.20071397

Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor
necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science
(1993) 259(5091):87-91. doi:10.1126/science.7678183

Linton MF, Fazio S. Macrophages, inflammation, and atherosclerosis. Int ] Obes
Relat Metab Disord (2003) 27(Suppl 3):535-40. doi:10.1038/s].ij0.0802498
Chiang S-H, Bazuine M, Lumeng CN, Geletka LM, Mowers J, White NM, et al.
The protein kinase ikke regulates energy balance in obese mice. Cell (2009)
138(5):961-75. d0i:10.1016/j.cell.2009.06.046

. Yepuru M, Eswaraka ], Kearbey JD, Barrett CM, Raghow S, Veverka KA,

etal. Estrogen receptor-{beta}-selective ligands alleviate high-fat diet- and
ovariectomy-induced obesity in mice. J Biol Chem (2010) 285(41):31292-303.
do0i:10.1074/jbc.M110.147850

Johnston RA, Theman TA, Shore SA. Augmented responses to ozone in obese
carboxypeptidase E-deficient mice. Am ] Physiol Regul Integr Comp Physiol
(2006) 290(1):R126-33. doi:10.1152/ajpregu.00306.2005

Flier J, Cook K, Usher P, Spiegelman B. Severely impaired adipsin expression
in genetic and acquired obesity. Science (1987) 237(4813):405-8. doi:10.1126/
science.3299706

Shillabeer G, Hornford J, Forden JM, Wong NC, Russell JC, Lau DC. Fatty acid
synthase and adipsin mRNA levels in obese and lean JCR:LA-cp rats: effect of
diet. J Lipid Res (1992) 33(1):31-9.

Xu Y, Ma M, Ippolito GC, Schroeder HW Jr, Carroll MC, Volanakis JE. Com-
plement activation in factor D-deficient mice. Proc Natl Acad Sci U S A (2001)
98(25):14577-82. doi:10.1073/pnas.261428398

Frederich RC, Hamann A, Anderson S, Lollmann B, Lowell BB, Flier JS. Leptin
levels reflect body lipid content in mice: evidence for diet-induced resistance to
leptin action. Nat Med (1995) 1(12):1311-4. doi:10.1038/nm1295-1311
Glasgow SC, Kanakasabai S, Ramachandran S, Mohanakumar T, Chapman WC.
Complement depletion enhances pulmonary inflammatory response after liver
injury. ] Gastrointest Surg (2006) 10(3):357—64. doi:10.1016/j.gassur.2005.06.
033

Marchesini G, Moscatiello S, Di Domizio S, Forlani G. Obesity-associated liver
disease. J Clin Endocrinol Metab (2008) 93(11 Suppl 1):574-80. doi:10.1210/jc.
2008-1399

Frontiers in Immunology | Inflammation

September 2014 | Volume 5 | Article 440 | 8


http://dx.doi.org/10.1164/rccm.200611-1717OC
http://dx.doi.org/10.1016/j.jaci.2004.11.050
http://dx.doi.org/10.1016/j.jaci.2008.03.005
http://dx.doi.org/10.1016/j.pharmthera.2005.10.002
http://dx.doi.org/10.1038/nm.2678
http://dx.doi.org/10.1016/j.jaci.2011.06.009
http://dx.doi.org/10.1378/chest.130.3.890
http://dx.doi.org/10.1016/j.rmed.2007.07.029
http://dx.doi.org/10.1016/j.jaci.2009.04.005
http://dx.doi.org/10.1152/japplphysiol.00588.2012
http://dx.doi.org/10.1152/ajplung.00386.2005
http://dx.doi.org/10.1152/ajplung.00386.2005
http://dx.doi.org/10.1016/j.cmet.2012.12.004
http://dx.doi.org/10.1016/j.cmet.2012.12.004
http://dx.doi.org/10.1152/japplphysiol.00336.2003
http://dx.doi.org/10.1152/japplphysiol.00075.2008
http://dx.doi.org/10.1038/nm.3423
http://dx.doi.org/10.1016/j.pupt.2012.05.001
http://dx.doi.org/10.1167/iovs.02-0233
http://dx.doi.org/10.4049/jimmunol.1001269
http://dx.doi.org/10.1152/japplphysiol.00784.2009
http://dx.doi.org/10.4049/jimmunol.1102363
http://dx.doi.org/10.4049/jimmunol.1102363
http://dx.doi.org/10.3109/08958378.2011.622316
http://dx.doi.org/10.1371/journal.pone.0097707
http://dx.doi.org/10.1146/annurev.immunol.021908.132710
http://dx.doi.org/10.1084/jem.20071397
http://dx.doi.org/10.1126/science.7678183
http://dx.doi.org/10.1038/sj.ijo.0802498
http://dx.doi.org/10.1016/j.cell.2009.06.046
http://dx.doi.org/10.1074/jbc.M110.147850
http://dx.doi.org/10.1152/ajpregu.00306.2005
http://dx.doi.org/10.1126/science.3299706
http://dx.doi.org/10.1126/science.3299706
http://dx.doi.org/10.1073/pnas.261428398
http://dx.doi.org/10.1038/nm1295-1311
http://dx.doi.org/10.1016/j.gassur.2005.06.033
http://dx.doi.org/10.1016/j.gassur.2005.06.033
http://dx.doi.org/10.1210/jc.2008-1399
http://dx.doi.org/10.1210/jc.2008-1399
http://www.frontiersin.org/Inflammation
http://www.frontiersin.org/Inflammation/archive

Mathews et al.

Obesity and airway hyperresponsiveness

36.

37.

38.

39.

40.

4

—_

42,

43.

44.

45.

Couto Alves A, Bruhn S, Ramasamy A, Wang H, Holloway JW, Hartikainen
AL, etal. Dysregulation of complement system and CD4+ T cell activation
pathways implicated in allergic response. PLoS One (2013) 8(10):e74821.
doi:10.1371/journal.pone.0074821

Sumarac-Dumanovic M, Stevanovic D, Ljubic A, Jorga J, Simic M, Stamenkovic-
Pejkovic D, et al. Increased activity of interleukin-23/interleukin-17 proinflam-
matory axis in obese women. Int J Obes (2009) 33(1):151-6. doi:10.1038/ijo.
2008.216

Danzaki K, Matsui Y, Ikesue M, Ohta D, Ito K, Kanayama M, etal
Interleukin-17A deficiency accelerates unstable atherosclerotic plaque forma-
tion in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol (2012)
32(2):273-80. doi:10.1161/ATVBAHA.111.229997

Harley IT, Stankiewicz TE, Giles DA, Softic S, Flick LM, Cappelletti M, et al.
IL-17 signaling accelerates the progression of nonalcoholic fatty liver disease in
mice. Hepatology (2014) 59(5):1830-9. doi:10.1002/hep.26746

Jhun JY, Yoon BY, Park MK, Oh HJ, Byun JK, Lee SY, et al. Obesity aggravates
the joint inflammation in a collagen-induced arthritis model through deviation
to Th17 differentiation. Exp Mol Med (2012) 44(7):424-31. doi:10.3858/emm.
2012.44.7.047

. Subramaniam SV, Cooper RS, Adunyah SE. Evidence for the involvement of

JAK/STAT pathway in the signaling mechanism of interleukin-17. Biochem Bio-
phys Res Commun (1999) 262(1):14-9. doi:10.1006/bbrc.1999.1156

Ghilardi N, Ziegler S, Wiestner A, Stoffel R, Heim MH, Skoda RC. Defective
STAT signaling by the leptin receptor in diabetic mice. Proc Natl Acad Sci U S A
(1996) 93(13):6231-5. doi:10.1073/pnas.93.13.6231

Deng J, Liu Y, Yang M, Wang S, Zhang M, Wang X, et al. Leptin exacerbates
collagen-induced arthritis via enhancement of Th17 cell response. Arthritis
Rheum (2012) 64(11):3564-73. doi:10.1002/art.34637

Kudo M, Melton AC, Chen C, Engler MB, Huang KE, Ren X, etal. IL-17A
produced by [alpha][beta] T cells drives airway hyper-responsiveness in mice
and enhances mouse and human airway smooth muscle contraction. Nat Med
(2012) 18(4):547-54. doi:10.1038/nm.2684

Salome CM, King GG, Berend N. Physiology of obesity and effects on lung
function. J Appl Physiol (2010) 108(1):206-11. doi:10.1152/japplphysiol.00694.
2009

46. Chapman DG, Berend N, King GG, Salome CM. Increased airway closure is a
determinant of airway hyperresponsiveness. Eur Respir ] (2008) 32(6):1563-9.
doi:10.1183/09031936.00114007

47. Hakala K, Mustajoki P, Aittomaki ], Sovijarvi AR. Effect of weight loss and body
position on pulmonary function and gas exchange abnormalities in morbid
obesity. Int ] Obes Relat Metab Disord (1995) 19(5):343—6.

48. Hedenstierna G, Santesson J, Norlander O. Airway closure and distribution of
inspired gas in the extremely obese, breathing spontaneously and during anaes-
thesia with intermittent positive pressure ventilation. Acta Anaesthesiol Scand
(1976) 20(4):334—42. doi:10.1111/j.1399-6576.1976.tb05036.x

49. Xu H, Barnes GT, Yang Q. Chronic inflammation in fat plays a crucial role
in the development of obesity-related insulin resistance. J Clin Invest (2003)
112:1821-30. doi:10.1172/JCI19451

50. Wang CQ, Akalu YT, Suarez-Farinas M, Gonzalez ], Mitsui H, Lowes MA, et al.
IL-17 and TNF synergistically modulate cytokine expression while suppress-
ing melanogenesis: potential relevance to psoriasis. J Invest Dermatol (2013)
133(12):2741-52. doi:10.1038/jid.2013.237

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 16 June 2014; accepted: 30 August 2014; published online: 15 September 2014.
Citation: Mathews JA, Wurmbrand AP, Ribeiro L, Neto FL and Shore SA (2014)
Induction of IL-17A precedes development of airway hyperresponsiveness during diet-
induced obesity and correlates with complement factor D. Front. Immunol. 5:440. doi:
10.3389/fimmu.2014.00440

This article was submitted to Inflammation, a section of the journal Frontiers in
Immunology.

Copyright © 2014 Mathews, Wurmbrand, Ribeiro, Neto and Shore. This is an open-
access article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

www.frontiersin.org

September 2014 | Volume 5 | Article 440 | 9


http://dx.doi.org/10.1371/journal.pone.0074821
http://dx.doi.org/10.1038/ijo.2008.216
http://dx.doi.org/10.1038/ijo.2008.216
http://dx.doi.org/10.1161/ATVBAHA.111.229997
http://dx.doi.org/10.1002/hep.26746
http://dx.doi.org/10.3858/emm.2012.44.7.047
http://dx.doi.org/10.3858/emm.2012.44.7.047
http://dx.doi.org/10.1006/bbrc.1999.1156
http://dx.doi.org/10.1073/pnas.93.13.6231
http://dx.doi.org/10.1002/art.34637
http://dx.doi.org/10.1038/nm.2684
http://dx.doi.org/10.1152/japplphysiol.00694.2009
http://dx.doi.org/10.1152/japplphysiol.00694.2009
http://dx.doi.org/10.1183/09031936.00114007
http://dx.doi.org/10.1111/j.1399-6576.1976.tb05036.x
http://dx.doi.org/10.1172/JCI19451
http://dx.doi.org/10.1038/jid.2013.237
http://dx.doi.org/10.3389/fimmu.2014.00440
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org
http://www.frontiersin.org/Inflammation/archive

	Induction of IL-17A precedes development of airway hyperresponsiveness during diet-induced obesity and correlates with complement factor D
	Introduction
	Materials and methods
	Animals
	Protocol
	Measurement of pulmonary mechanics and airway responsiveness
	Bronchoalveolar lavage
	Real time qPCR
	Flow cytometry
	Serum cytokines
	Statistics

	Results
	Body mass
	Pulmonary mechanics and airway responsiveness
	IL-17A is elevated in lungs of HFD versus chow fed mice
	Possible role of adipsin
	Systemic inflammation

	Discussion
	Acknowledgments
	References


