{frontiers in
IMMUNOLOGY

PERSPECTIVE ARTICLE
published: 29 September 2014
doi: 10.3389/fimmu.2014.00472

A short history of the B-cell-associated surface molecule

CD40

Edward A. Clark *

Department of Immunology, University of Washington, Seattle, WA, USA

Edited by:
Kendall A. Smith, Weill Medical
College of Cornell University, USA

Reviewed by:

Bruce David Mazer, Montreal
Children’s Hospital, Canada
Kendall A. Smith, Weill Medical
College of Cornell University, USA
Michael R. Gold, The University of
British Columbia, Canada

cancers.

*Correspondence:

Edward A. Clark, 750 Republican
Street, Room E343, Seattle, WA, USA
e-mail: eaclark@uw.edu

During the late 1970s, a number of immunology labs started using
the new hybridoma technology to establish monoclonal antibod-
ies (mAbs) and define receptors expressed at different stages of
hematopoietic cell differentiation. A central premise of this field
was based on the seminal studies of Ted Boyse, Lloyd Old, and
their colleagues (1, 2). They used antisera to define what they
termed “differentiation antigens” (Ags), which unlike histocom-
patibility (H) antigens, were a “source of antigenic variation within
the species that between different cell types in a single individ-
ual” and thus were “recognizable only with antiserum prepared
in a foreign species” (1). The groundwork was laid for trying to
make mouse mAbs to differentiation Ags that could be used to
define stages of lymphocyte differentiation and distinct functional
cell subsets, an approach I used to make an mADb to what is now
called CDA40 (3).

As a postdoc in London with Av Mitchison, I had made mAbs,
including some to the mouse T-cell marker, Thy-1. Upon arriving
in Seattle, I decided to make mAbs to human B-cell differentiation
Ags. To identify markers conserved in evolution, we immunized
mice with a baboon B-cell line and screened for mAbs that reacted
with human B-cell lines but not other lymphoid or non-lymphoid
lines. One mAD that reacted just with B lymphoblasts but not T-
cell blasts called BB1 (4), Peter Linsley later used BB1 to define
CD80 (B7/BB1) as a ligand for CD28 (5).

We also immunized mice with human B cells and selected mAbs
that bound to human B cells and not T cells. In 1982, we submit-
ted a set of our mAbs to an international workshop established to
classify mAbs binding to human leukocyte differentiation Ags. A
major impetus for this first workshop came from scientists who
had organized workshops to define and standardize HLA antigens
and HLA typing. As had been the case for HLA nomenclature,
a neutral nomenclature was needed for human differentiation
antigens, particular since markers like CD4 were called different
names-T4, OKT4, Leu3, etc., depending on the company that was
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the discovery of CD40, a receptor that on B cells mediates “T cell help” and on dendritic
cells helps to program CD8T cell responses. | discuss some things that we got right during
the path of discovery and some things we missed. Immunotherapies that block or stim-
ulate the CD40 pathway hold great promise for treatment of autoimmune diseases and
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hawking the mAb for sale. The HLA serologists proposed a serolog-
ical approach to define so-called “clusters of differentiation” (CD)
to identify and name human differentiation markers. I had started
out working in a HLA serology lab with Paul Terasaki at UCLA.
But I was influenced by a group of scientists with strong biochem-
ical backgrounds, particularly by Jeff Ledbetter and also later by
Tucker LeBien and Bob Knowles, who felt that it was very impor-
tant to use a combination of biochemistry and serology to define
the new CD molecules. So, we decided to use the molecular weight
of any new molecule when naming it. One B-cell-restricted 35-kDa
molecule we called Bp35 (later designated CD20), while another
76-kDa molecule expressed on activated lymphocytes we called
p76 (later designated CD54/ICAM1). Using this approach, by late
1982, we were able to conclude that “there are now over 12 different
human B-cell-associated antigens distinct from immunoglobulin”
(6). What could all their functions be?

At the time of our discovery of CD40 (3), immunologists were
just beginning to understand how B cells are activated to divide
and differentiate. One widely held model was that, after an initial
activation signal, e.g., by a low dose of Ag or other means of B-
cell receptor (BCR) crosslinking, B cells were activated and then
expressed receptors for growth and differentiation factors such
as “B-cell growth factor” (BCGF) and “B-cell differentiation fac-
tor” (BCDF) derived from T cells, the precursors of IL-4, IL-6,
and IL-21, so that in the presence of these factors, B cells would
divide and differentiate (7, 8). A receptor for the “T-cell growth
factor,” IL-2, had been described (9), but not a BCGF receptor
B-cell equivalent.

Boyse and his colleagues (10) and Subbarao and Mosier (11)
had used mAbs to define a B-cell-restricted surface molecule in
mice, Lyb-2 (later designated CD72), which when ligated with
an mAb-induced B cells to proliferate but blocked their differ-
entiation. Following this lead, we decided to test if any of our
mADbs could activate human B cells. Geraldine Shu, a research
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scientist in the lab found that one of our Bp35 (CD20) mAb,
1F5, induced B cells to proliferate as measured by *H-thymidine
uptake, while another Bp35 mAb did not (12). We proposed that
Bp35 might function as a receptor for a “second signal” distinct
from the BCR, perhaps for a macrophage factor (13). In an impor-
tant follow-up study, Golay and Beverley found that 1F5 anti-Bp35
(CD20) could induce resting GO B cells to enter the G1 phase of
the cell cycle (14). Similar to our results (12), they found that a
BCGF could synergize with 1F5, but alone the BCGF could not
activate resting B cells. Several groups had shown that two dis-
tinct kinds of signals were required for fibroblastic cells in GO
to transit through the cell cycle — a “competence” signal such as
PDGEF to induce cells in GO to enter G1 and a “progression” sig-
nal such as EGF to drive cells through S phase (15, 16). Thus,
we postulated that after B cells are stimulated via a Bp35 “com-
petence” signal, they become responsive to a BCGF “progression”
signal.

During 1985, we defined another set of anti-B-cell mAbs after
immunizing mice with human tonsillar B cells. We enriched for B
cells by depleting rosetting T cells out with sheep red cells, since
magnetic beads, let alone magnetic bead kits, were not yet available.
We screened the mAbs for their ability to induce B cells to prolif-
erate and found that one of them, G28-5, dramatically increased
B-cell proliferation, but only when anti-mu sera or 1F5 anti-Bp35
(CD20) was present. Importantly, G28-5 behaved like a “progres-
sion” signal in that it could augment B-cell proliferation even when
added 48 h after the initial activation signal. Biochemical analyses
using radioactive '2°I-labeled tonsillar cells showed that G28-5
detected a 50-kDa protein on B cells, which we called Bp50. We
immediately thought that we most likely had discovered a receptor
for either “a soluble growth factor or for a signal mediated through
cell-cell contact” that induces a “progression” signal in B cells and
that the factor might be made by T cells (3).

The G28-5 mAb ended up have a number of uses: Ivan Sta-
menkovic in Brian Seed’s lab used G28-5 and expression cloning
to isolate a cDNA encoding human CD40 (17). CD40 turned out
to be related to the nerve growth factor receptor (NGFR), and
after other similar receptors were identified, the receptor group
was called the TNF receptor superfamily. It could just as easily
been called the NGFR family after the first member cloned. We
used the human CD40 cDNA sequence to isolate the mouse CD40
cDNA (18), and transfectants expressing CD40 were then used to
characterize a number of useful anti-mouse CD40 mAbs.

CD40 mAbs were also used to characterize a signaling pathway
that is both distinct from the BCR pathway and acts synergistically
with BCR signaling; these studies help to stimulate investigation
and understanding of TRAF protein-regulated signaling pathways
(19). CDA40 ligation was shown to activate CD18/CD11a-mediated
adhesion to increase IL-6 expression, and together with IL-4 to
induce isotype class switching to IgE, all before the ligand for CD40
was discovered (20-22). Liu et al. (23) made the important finding
that G28-5 prevented B cells from dying, laying the groundwork
for a role for CD40 in germinal center (GC) formation and studies
of how lymphocytes are protected from cell death. Thus, many
features and functions of the CD40 signaling pathway in B cells
were made prior to the discovery of CD40L (24-26) and linking
CD40 to “T-cell help.”

WHAT DID WE GET RIGHT?

The hypothesis that B cells, like fibroblasts (15, 16), need two
signals — a “competence” signal and a “progression” signal — to
proliferate seems to hold true. In general, lymphocytes need at
least two signals to divide and differentiate. The focus on the func-
tion of a receptor expressed on B cells, rather than using new
mAbs to CD markers to subdivide lymphocytes into ever increas-
ing species and subspecies — the cellular immunologist’s perpetual
distraction — clearly led to new insights. Focusing on a receptor’s
function is all the more relevant in the current world of immuno-
logical research, where each month brings new data underscoring
the plasticity of lymphocytes, their ability to adapt and change in
a range of environments (27, 28).

Looking back, I am amazed at how much others and we were
able to discover simply by using a mAb to a particular receptor
expressed on B cells. The CD40 mAb, not the cDNA, paved the
way to understanding what CD40 is and does. In our first paper
on CD40 (3), we concluded that “this work in turn may help in
devising strategies in vivo for the control of human diseases such
as B-cell malignancies, immune-deficiencies, and certain autoim-
mune diseases.” Almost 30 years later, CD40 holds tremendous
potential as a target for immunotherapeutics and vaccines.

Another important thing we got right was to send our CD40
mAb and other mAbs to whomever wanted them, usually as mil-
ligrams of purified protein without any strings attached, unless
very large quantities were requested. We began this practice in the
early 1980s and the number of requests steadily rose until by 1991
we were shipping out over 100 shipments of mAbs per year. We
sent G28-5 to more than 100 labs, once to 11 labs on one day in
1993. This was at a time when there were few companies from
which one could buy mAbs and none were selling anti-CD40; we
felt it was our responsibility to get all the mAbs that we could out to
those who could use them. I had learned the practice of open giv-
ing of reagents and ideas in science from Av Mitchison and Martin
Raff in London. However, eventually we were tired of spending so
much time and effort distributing mAbs. The companies that have
taken over this task have done scientists a service, but of course
instead of receiving milligrams of free mAb, we buy micrograms
of conjugated mAbs at $350 or more a pop. I feel better when I
am given something by a neighbor grown in her garden, instead
of buying it at the store. The practice of science simply feels more
personal when labs exchange gifts with each other without strings
attached.

WHAT DID WE MISS OR NOT GET RIGHT?

While in Osaka in 1987 on sabbatical in Tadamitsu Kishimoto’s
lab, two students, Seiji Inui and Tsuneyasu Kaisho, and I used
the new CD40 cDNA to express wildtype (WT) human CD40
and CD40 mutants in a mouse cell line M12. We found that
residue T234 in the CD40 tail is essential for CD40 signaling
regulating cell survival (29). M 12 cells expressing WT CD40 (M12-
CD40) responded to anti-CD40 with growth inhibition while cells
expressing CD40 without its cytoplasmic tail (M12-tailless) did
not. I decided that this pair would be ideal for identifying the
ligand for CD40 (CD40L). But none of the various BCGF and
BCDF that we tested inhibited the growth of M12-CD40 but not
of the M12-tailless cells. Cosman and his colleagues at Immunex in
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Seattle had set up a system where groups of cDNAs from a cDNA
library were transiently transfected in Cos cells and supernatants
screened for activity. We began collaborating with Immunex and
tested a large number of supernatants from transfected cells for
their ability to inhibit M12—CD40 cells but not M 12-tailless cells.
We were very excited when within a few months we identified a
candidate supernatant that had the properties we were looking for.
However, when the cDNA encoding the protein was sequenced, it
turned out to encode for mouse IL-4. This was quite surprising
not only because a mouse cDNA was picked up in a screen from
a human cDNA library. How could it be that mouse IL-4 (and
not human IL-4 we subsequently discovered) of all factors sig-
naled cells expressing WT CD40 but not cells missing the CD40
tail? For more than a year, we tested everything we could get our
hands on using the M12 screening assay including supernatants
from stromal cells for possible “CD40L activity,” all to no avail.
I became disheartened, and we stopped working on the project.
The Immunex team to their credit persevered and using another
approach was able to discover CD40L (24). Although I had helped
to initiate the search for CD40L, by focusing on the screen on M 12
cell lines, I missed the chance to be actively involved in discover-
ing it. The discoveries of CD40L, the CD40L defects in patients
with hyper-IgM syndrome and subsequent studies with CD40-
and CD40L-deficient mice established the key role of CD40 in
T-cell-dependent B-cell responses (24-26, 30).

In our early publications, we focused on the role of CD40 on
B cells, even though others and we early on had found that CD40
is expressed on epithelial cells and carcinomas (31). Ling et al.
(32) in the third CD workshop in 1986 unequivocally showed that
CD40 was expressed on interdigitating cells in T-cell zones, and
Hart reported in 1988 that CD40 is expressed on human tonsil-
lar dendritic cells (DCs) (33). In spite of knowing that CD40 was
expressed on DCs, we did not test whether G28-5 could stimulate
DC:s for many years. We were simply too B-cell-centric! Only when
Rainheim and Kipps (34) reported that CD40 ligation upregulates
the expression of CD80 on B cells did we finally get around to
testing if that was the case for DCs (35). By then, a number of
groups were investigating the function of CD40 on DCs (36, 37);
important discoveries followed, not the least of which was the dis-
covery that CD40 signaling plays a vital role in programing CD8
T-cell responses (38). So, we missed a chance to define some key
CD40 functions in DCs.

Nevertheless, we began to appreciate the active communication
between T and B cells more fully and the links between the CD40L—
CD40 signaling and CD80—CD28 signaling (39). CD4 T cells then
and even today are sometimes referred to as “conductors”, as the
cells that “orchestrate” immune responses, a view bolstered not
only by paternalistic thinking immunologists but also by the fact
that the dreaded HIV-1 virus targets CD4 T cells. I thought of the
program orchestrated by T cells and B cells as being based more on
a constructive and mutual conversation (39) between the some-
times underappreciated “female” B cells and respectful “male” T
cells, rather a program conducted by dominant CD4 T cells. Some
days, it felt like the field of immunology was full of chauvinists
who thought that “male” CD4 T cells were running the show and
thus the only cells worth studying. Even today they are still 10
times or more NIH grants funded on CD8 T-cell memory than on

B-cell memory, even though both cytotoxic T cells and antibodies
play key roles in sustained protective immunity.

An effective outcome requires quality communication between
the parties involved. We proposed that T and B cells communi-
cate via “reciprocal dialogs” between equally important cells and
involving the CD40L-CD40 and CD80-CD28 “phrases” or path-
ways that reinforce each other (39). I drew the diagram made
to illustrate this point purposely as a yin-yang symbol with Ag-
MHC class II peptide/TCR in the middle. Today, B cells are better
appreciated in part due to the powerful efficacy of B-cell deple-
tion therapies. An immunotherapy that combines blockade of
both the CD40L-CD40 and CD80/86—CD28 pathways, a big part
of the conversation, still holds tremendous promise for inducing
Ag-specific tolerance.

Ironically, one of the biggest errors that we made was focus-
ing on the G28-5 mAb at the expense of another mAb established
in the same fusion, G28-8 (anti-Bgp95). This mAb turned out
to bind to a novel member of the Toll-like receptor (TLR) fam-
ily, CD180/RP105 (40), actually the first mammalian TLR to be
cloned and compared to Drosophila toll (41). We were not able to
isolate the CD180 ¢cDNA by expression cloning since CD180, like
its very close relative, TLR4, can only be expressed on the cell sur-
face as a heterodimer (CD180/MD1). Anti-CD180 mAbs coupled
to Ags efficiently induce a potent B-cell adjuvant signal and 1gG
Abs (42), and the combination of viral envelope Ag attached to
anti-CD180, can induce protective immunity (unpublished data).
Ironically, the at-times forgotten G28-8 mAb may turn out to be
as interesting or more interesting than its G28-5 sister.

FUTURE CLINICAL PROSPECTS

A number of anti-CD40 Abs and CD40L blocking agents (anti-
CD154 or CD40-Ig) are in clinical development for treatment of
autoimmune diseases, transplant rejection, and cancers (43). For
the treatment of autoimmune diseases and transplant rejection,
the goal is to bring forward therapeutics that can block the CD40L~
CD40 pathway as part of a “costimulation blockade” strategy,
for example, to induce transplantation tolerance (44). Recently,
an anti-CD40L engineered so it does not have Fc effector func-
tions like binding to Fc receptors on platelets was shown to block
the development in mice of a systemic lupus erythematosus-like
disease (45).

CD40 is a particularly attractive oncology target. It is expressed
on both lymphoid malignancies and on a range of carcinomas.
Thus, anti-CD40 mAbs may help mediate cancer cell killing by
effector cells. Furthermore, as seen with the M12 cell line (20, 29),
CD40 ligation of some tumor cells can lead to cell death (43, 46).
Humanized anti-CD40 mAbs are currently being tested in clini-
cal trials for the treatment of non-Hodgkin’s lymphomas (NHLs)
and other cancers (43). The signaling pathway induced by anti-
CDA40, as we reported with normal B cells (3) is distinct from and
synergistic with anti-CD20 mAbs like rituximab, and can pro-
mote increased lymphoma cell death (47-49). Thus, CD40-based
immunotherapies may find use in conjunction with CD20-based
therapies (43) for NHLs as well as with other agents (50).

Furthermore, anti-CD40 mAbs hold great promise for use as
part of vaccines against cancers and infectious diseases [e.g., Ref.
(51-53)]. In particular, CD40 ligation can promote the activation

www.frontiersin.org

September 2014 | Volume 5 | Article 472 | 3


http://www.frontiersin.org
http://www.frontiersin.org/B_Cell_Biology/archive

Clark

History of CD40

of cytotoxic CD8 T cells (38), essential for effective therapeutic
vaccines. Local administration and slow release of anti-CD40 may
mitigate the potential adverse side effects associated with agents
that strongly modulate the immune system (51, 52). Thus, it is
very likely that one or more new CD40-based therapies will be in
use in the coming decade.
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