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Nitric oxide synthase: non-canonical expression patterns
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Science can move ahead by questioning established or canonical views and, so it may be
with the enzymes, nitric oxide synthases (NOS). Nitric oxide (NO) is generated by NOS iso-
forms that are often described by their tissue-specific expression patterns. NOS1 (nNOS)
is abundant in neural tissue, NOS2 is upregulated in activated macrophages and known as
inducible NOS (iNOS), and NOS3 (eNOS) is abundant in endothelium where it regulates vas-
cular tone. These isoforms are described as constitutive or inducible, but in this perspective
we guestion the broad application of these labels. Are there instances where “constitu-
tive” NOS (NOS1 and NOS3) are inducibly expressed; conversely, are there instances
where NOS2 is constitutively expressed? NOS1 and NOS3 inducibility may be linked to
post-translational regulation, making their actual patterns activity much more difficult to
detect. Constitutive NOS2 expression has been observed in several tissues, especially the
human pulmonary epithelium where it may regulate airway tone. These data suggest that
expression of the three NOS enzymes may include non-established patterns. Such infor
mation should be useful in designing strategies to modulate these important enzymes in

different disease states.
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INTRODUCTION

Nitric oxide synthases (NOS) are enzymes that catalyze the con-
version of L-arginine to L-citrulline and nitric oxide (NO), a free
radical involved in homeostatic and immunological functions.
There are three NOS isoforms and each isoform is associated with
a set of characteristics and expression pattern. These expression
patterns have been used to define the isoform’s nomenclature.
NOSI is often called nNOS because of its expression in neu-
rons and the brain. NOS2 is referred to as iNOS, because its
expression can be induced by cellular activation. NOS3 is often
referred to as eNOS because of its association with the endothe-
lium. The purpose of this Perspective is to examine the concept
of inducible and constitutive NOS expression, and suggest that
although the current paradigm is supported in many instances,
the constitutive versus inducible dichotomy has been applied too
broadly and may restrict our understanding of these enzymes’
functions in health and disease. A complete examination of poten-
tial NO-mediated physiological functions and NOS-expressing
cells throughout an organism’s tissues is beyond the scope of this
work. Our focus will be on immunologically relevant cells (e.g.,
lymphocytes, macrophages, and the epithelium), but we will also
include some non-typical NOS-expressing cells (osteoclasts and
cancer). Moreover, to avoid any confusion associated with the
tissue-origin nomenclature, we will identify each NOS isoform
by its numeric descriptor (e.g., NOS1, NOS2, NOS3).

BASIC NOS BIOCHEMISTRY

All three NOS enzymes are catalytically active when dimerized
and require two substrates, L-arginine, molecular oxygen, in com-
bination with several co-factors including nicotinamide-adenine-
dinucleotide phosphate (NADPH), flavin adenine dinucleotide

(FAD), flavin mononucleotide (FMN), and (6R)5,6,7,8-
tetrahydro-L-biopterin (BH4) to generate NO (1). Two NOS
isoforms, NOS1 and NOS3, are commonly associated with con-
stitutive expression. NOS1 and NOS3 activity is calcium depen-
dent and requires interaction between the NOS enzyme and
calmodulin-bound calcium to facilitate the catalysis of L-arginine
and production of NO. In addition to the required co-factors
and enzyme substrates, NOS1 and NOS3 are regulated through
a variety of post-translational mechanisms including phospho-
rylation, myristoylation, and palmitoylation, and modification of
subcellular localization (2, 3). NOS1 and NOS3 are commonly
associated with the “low” levels of NO production that mediate
intracellular signaling processes (NOS1) and vascular homeosta-
sis (NOS3). In addition to NO production, NOS3 can function
in an “uncoupled” manner and produce ROS when the avail-
able stores of BH4 are removed or oxidized, L-arginine depleted,
or the NOS3 inhibitor asymmetric dimethyl-L-arginine overex-
pressed (1, 4). NOS1 and NOS3 are most commonly found in
non-immunological cells (e.g., neurons, muscle, endothelium),
and, because their NO output is relatively low, these isoforms
are considered to be less immunologically important than their
inducible, immunologically relevant counterpart, NOS2.
Inducible expression of NOS has long been associated with
immunological functions. Immune cells use NO, often in conjunc-
tion with reactive oxygen intermediates (ROI), to kill pathogens
and cancer cells (5, 6). NO acts non-specifically on a variety of tar-
gets and can kill targets at micromolar concentrations (7). This
lack of specificity can cause collateral damage to normal cells
and tissues and consequently, NO production is tightly regulated.
NOS2 is minimally expressed or is not abundant intracellularly
in macrophages unless immune-related stimulation and gene
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transcription occurs (hence its label as the “inducible” NOS iso-
form). Once transcribed, NOS2 has a high-affinity binding site for
calmodulin and can function in a calcium-independent manner
suggesting that any time it is expressed it is likely to be active.
While the factors inducing and regulating NOS2 have been exten-
sively studied in rodent models, NOS2 has been more difficult to
study in primates. There has been controversy regarding its impor-
tance in human immune responses (8), or even whether NOS2 is
expressed in human macrophages (9-11). There are several rea-
sons why NOS2 expression has been difficult to identify in primate
macrophages, including the different signals required for induc-
tion, inappropriate culture conditions, or intrinsic differences in
NOS expression, but it is increasingly clear that NOS2 is expressed
by human macrophages and has implications for human disease
(12). A variety of immune cells other than macrophages [ranging
from memory T cells (13, 14) to chondrocytes (15)] also express
NOS2 in response to stimulation, suggesting that NOS2 expression
is more flexible and extensive than previously reported.

IS NOS EXPRESSION “TRUE TO FORM?”

While NOS1, NOS2, and NOS3 have been associated with par-
ticular cell types and expression patterns, questions remain about
whether these associations have been applied too strictly. Although
the concept of constitutive (NOSI, NOS3) vs. inducible (NOS2)
expression appears to be convenient, is it biologically plausible that
NOS1 or NOS3 expression can be inducible under some circum-
stances, and conversely, can NOS2 be constitutively expressed in
other circumstances? This issue has important clinical and ther-
apeutic implications that need to be considered when designing
new immunomodulatory therapies that rely on NOS expression to
fight cancer or infectious diseases, or exploring current therapies
for unanticipated effects. The answers are complicated by incon-
sistent data from experiments using different cell lines, animal
models or clinical samples, and experimental techniques, but there
are likely to be some generally applicable concepts and examples

that we can use as guidelines. The remainder of this review will be
focused on identifying the evidence for inducible NOS1 and NOS3,
and constitutive NOS2 expression (summarized in Table 1).

INDUCIBLE EXPRESSION OF “CONSTITUTIVE” NOS
ISOFORMS

There are a few instances of NOSI expression that are clearly
associated with upregulation in response to external stimuli. Clas-
sically, homeostatic NOS1 expression has been associated with
neuronal signaling, although inflammatory stimuli can increase
neuronal NOS1 expression, potentially leading to NO-mediated
damage (30, 31). The relative contribution of NOS1 to pathol-
ogy in this context is often confounded by co-induction of
NOS2 expression. NOS1 splice variants are expressed in skele-
tal, cardiac, and smooth muscle cells and can generate NO that
increases blood vessel dilatation and improved blood flow to
nearby muscle tissue (32). The paucity of data on NOS1 expres-
sion in monocyte-derived macrophages has suggested, perhaps
incorrectly, that NOSI has little expression or importance for
tissue macrophages. That said, NOS1 expression has been iden-
tified in human bronchoalveolar lavage cells (16), lung cancer
(33), and alveolar and epithelioid macrophages from humans
with tuberculosis (17). Although these observations do not
necessarily indicate that NOSI is upregulated in these cells,
they demonstrate non-canonical NOS1 expression, and sug-
gest that NOS1 may be immunologically important in unan-
ticipated ways. Significantly, recent data indicate that NOSI
activity may be regulated post-transcriptionally, with impor-
tant consequences for macrophage activation and function. In
unprimed murine bone marrow-derived macrophages, immune
complexes can stimulate calcium-dependent NOS1 and NOS3
activity that leads to increased phagocytosis by these cells (18)
indicating the upregulated activity of the “constitutive” NOS iso-
forms that may have unappreciated roles in immunity. There
may be other systems and cell types where post-transcriptional

Table 1 | Examples of non-canonical NOS expression in non-cancerous cells and tissues.

Isoform Cell type and reference Species Pathology Expression pattern

NOS1 Bronchial epithelial cells (16) Human No Ca?t flux-dependent induction
NOS1 Alveolar macrophages (17) Human Tuberculosis Induced-immune stimulation?
NOS1 Epithelioid macrophages (17) human Tuberculosis Induced-immune stimulation?
NOS1 BMD? macrophage (18) mouse N/AP Ca2* flux-dependent induction
NOS2 Colonic epithelium (19, 20) Human No Constitutive expression

NOS2 Lung epithelium (21-23) Human, macaque No Constitutive expression

NOS2 Brain, spinal tissue (24, 25) Rat No Constitutive expression

NOS3 Alveolar macrophages (17, 26) Human, macaque Tuberculosis Induced-immune stimulation?
NOS3 Epithelioid macrophages (17) Human, macaque Tuberculosis Induced-immune stimulation?
NOS3 RAW264.7 macrophages® (27) Mouse N/A Ca?* flux-dependent induction
NOS3 BMD? macrophages (28) Mouse N/A LPS-stimulated activity

NOS3 Osteoclasts (29) human No CaZ* flux-dependent induction

2BMD, macrophages differentiated from bone marrow-derived monocytes.
5N/A, not applicable.
°RAWZ264.7 macrophages are a murine macrophage-like cell line.
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regulation of NOS1 expression through Ca?*-dependent or other
modulatory mechanisms can confer inducible-like characteris-
tics to this “constitutively” expressed isoform. However, iden-
tifying these mechanisms will require a deeper understanding
of cellular dynamics and responses in vivo, and this cannot be
obtained using immunohistochemistry or studying isolated cells
or cell lines.

There is considerable evidence indicating NOS3 expression is
inducible under the right conditions. Forstermann et al. found
that expression of NOS3 could be modulated by a range of stim-
uli, and that there appeared to be a species-specific difference
in NOS3 regulation (34). More recently, reports have identified
that NOS3 expression can be induced in human and macaque
macrophages (17, 26), but the significance of the presence and
inducibility of this isoform in macrophages remains to be eluci-
dated. The macrophage-like murine cell line RAW264.7 is known
for its ability to produce significant quantities of NO via an iNOS-
dependent mechanism following interferon gamma and LPS stim-
ulation, but it also constitutively expresses calcium-sensitive NOS3
and produces low levels of NO in a calcium-dependent man-
ner (27), reminiscent of NOS1-mediated NO production (18).
The quantity of NO produced at steady state was approximately
20-fold less than that produced by NOS2 following stimulation,
suggesting that its function was not directly bactericidal. A later
study using murine bone marrow-derived macrophages identi-
fied NOS3-generated NO as an important factor in capacitat-
ing macrophage activation by enabling increased NK-«B activity,
NOS2 expression, and NO production (28). Interestingly, mice
lacking NOS3 produced less NOS2 protein and, subsequently,
less NO following immune stimulation than control mice (28).
In addition, it was observed that NOS2 induction led to dimin-
ished NOS3 expression, suggesting that there was an inverse feed-
back loop regulating NOS2- and NOS3-mediated NO production.
NOS3 expression has also been observed in macrophages from
non-human primates (26) and humans (17, 26) in the context of
Mycobacterium tuberculosis infection, suggesting that NOS3 may
be important in primate pulmonary immune responses. As previ-
ously mentioned, dysregulated NOS3 can produce ROS instead of
NO and it cannot be ruled out that macrophage NOS3 does not
generate non-traditional products instead of NO in these situa-
tions, particularly in an environments rich in L-arginine-utilizing
enzymes (e.g., lung and tuberculous granuloma (26, 35)). There
is also evidence that NOS3 may be important in bone remod-
eling and can be regulated by controlling access to Ca®t- and
NOS2-mediated NO production (29). Unstimulated osteoclasts
(macrophage-like cells responsible for bone remodeling) con-
stitutively express both NOS2 and NOS3, with bone resorption
associated with Ca?T-dependent NOS3-mediated NO produc-
tion and inhibition of osteoclast function mediated by NOS2
(36). As with NOSI, it may be difficult to identify upregulated
NOS3-mediated NO production in instances where this increase
is attributable to post-translational events. There is also some
evidence that NOS1 and NOS3 activity can be upregulated post-
translationally by stimuli-specific release of Ca**. This type of
activation has important consequences in the regulation of many
physiological processes, ranging from macrophage activation to
bone homeostasis.

CONSTITUTIVE EXPRESSION OF THE “INDUCIBLE” NOS2
ISOFORM

Nitric oxide synthase 2 has become the paradigm of an inducible
immunoresponsive gene, particularly in rodent systems. The high-
affinity calmodulin-binding domain of NOS2 enables it to func-
tion in conditions where Ca®* is unavailable, suggesting that
dimerized NOS?2 is always active and capable of generating NO
when the appropriate co-factors are present (1, 37). The ease at
which NOS2 expression is induced varies across and there are sig-
nificant differences in species-specific expression patterns (9, 38,
39) and even differences between individuals in genetically diverse
populations (40). In mice, which are often viewed as the paradigm
for inducible NOS2 expression, some strains have macrophages
that readily express NOS2 when stimulated, whereas other strains
have more restrained NOS2 expression (41). NOS2 expression
in primate systems appears to have different requirements for
its induction that can result in NO concentrations that differ
by several orders of magnitude (39). That said, although NOS2
expression is generally inducible, in some circumstances, NOS2
can be constitutively expressed. Some of the best-described exam-
ples of constitutive NOS2 expression occur in the human colonic
epithelium (19, 20) and pseudostratified columnar epithelia in the
human (21-23) and non-human primate lung (Figure 1). In the
lung, constitutive NOS2 expression by these cells is robust and
likely to be responsible for the majority of exhaled NO in human
breath (22). NOS2 expression from these cells is thought to help
regulate ciliary beat (16) and airway tone or reactivity (22). Rat
epithelium can also express NOS1 (21), suggesting that there are
likely to be species-specific differences in epithelial NOS expres-
sion. It should also be noted that neither the lung nor the colonic
epithelia are sterile environments, and there remains the possi-
bility that NOS2 expression occurs in response to stimulation by
the normal microbiota associated with these tissues. Neural tissue
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FIGURE 1 | NOS2 is strongly expressed by ciliated pseudostratified
columnar epithelial cells in the cynomolgus macaque lung.
Formalin-fixed paraffin-embedded lung tissue sections were stained for
(A) NOS2 (green) or (B) NOS3 (green) in combination with CD163 (red), a
hemoglobin scavenger receptor expressed on macrophages and epithelial
cells, and imaged by widefield epifluorescence microscopy. Intense NOS2
expression can be observed in the basal cells underlying the ciliated cells,
with less intense staining in the ciliated cells. NOS3 staining is associated
with cells in the lamina propria but not ciliated epithelial cells. This staining
is characteristic of ciliated epithelia of both uninfected and Mycobacterium
tuberculosis-infected macaques (pictured). DAPI-stained nuclei are
indicated in blue.
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is much less likely to be associated with bacteria, and there is
evidence that NOS2 in rodents is constitutively expressed at low
levels in brain and spinal tissue (24, 25). This can be upregulated
above basal levels by inflammatory stimuli where it may be associ-
ated with disease in models of pathological conditions including
Alzheimer’s disease and arthritis-associated arthralgia (30, 31).

In addition to constitutive expression in normal tissues, con-
stitutive NOS2 expression has been identified in tumors, includ-
ing melanoma (42), prostate cancer (43), colorectal cancer (44),
breast cancer (45), bladder cancer (46), head and neck cancer
(47), and esophageal adenocarcinoma (48). In these pathologies,
NOS?2 is often associated with poor prognosis, potentially related
to increased angiogenesis, metastatic ability, aggressive growth,
resistance to apoptosis, and chemotherapy (49, 50). The mech-
anistic basis for why tumor progression is sometimes associated
with NOS2 expression is not fully understood, but could include
additional mutation by NOS-mediated DNA strand breakage,
and immunosuppression of T-cell responses through both NO-
dependent and NO-independent mechanisms (49). Research in
this area is not without controversy and there is evidence that
NOS2-generated NO has protective effects in cancer, possibly
reflecting differences in a tumor’s inflammatory state, the type
of infiltrating immune cells, tumor location, tumor type, and the
stage of disease, as well as differences in whether there are high
or low levels of NO in the tumor microenvironment (49, 50).
Although poorly understood at present, a better understanding
of how NOS2 expression influences the tumor environment may
lead to the development of novel interventional strategies and
improved clinical treatment (50, 51).

CONCLUDING STATEMENT

A better understanding of the properties and expression patterns
of the different NOS isoforms has shed light on the diverse range
of physiological roles that these enzymes fulfill. We now know that
there are instances where functions of these enzymes diverge from
the dichotomous constitutive or inducible expression patterns they
are often associated with. We should take this opportunity to study
the full range of possible NOS function. Recognizing the possibil-
ity that NOS enzymes may act in non-canonical ways can only
increase our understanding of how tissues respond to disease and
give us new opportunities for developing innovative therapeutic
strategies.
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