
REVIEW ARTICLE
published: 22 October 2014

doi: 10.3389/fimmu.2014.00523

Evidence that erythropoietin modulates
neuroinflammation through differential action on
neurons, astrocytes, and microglia
Wesley S. Bond 1,2 andTonia S. Rex 1,2*
1 Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
2 Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA

Edited by:
Pietro Ghezzi, Brighton and Sussex
Medical School, UK

Reviewed by:
Ilaria Cervellini, Brighton and Sussex
Medical School, UK
Paolo Bigini, Mario Negri Institute,
Italy

*Correspondence:
Tonia S. Rex, Department of
Ophthalmology and Visual Sciences,
Vanderbilt University, 11425 Langford
MRB-IV, 2213 Garland Avenue,
Nashville, TN 37232 USA
e-mail: tonia.rex@vanderbilt.edu

Neuroinflammation is a normal and healthy response to neuronal damage. However, exces-
sive or chronic neuroinflammation exacerbates neurodegeneration after trauma and in
progressive diseases such as Alzheimer’s, Parkinson’s, age-related macular degeneration,
and glaucoma. Therefore, molecules that modulate neuroinflammation are candidates as
neuroprotective agents. Erythropoietin (EPO) is a known neuroprotective agent that indi-
rectly attenuates neuroinflammation, in part, by inhibiting neuronal apoptosis. In this review,
we provide evidence that EPO also modulates neuroinflammation upstream of apoptosis
by acting directly on glia. Further, the signaling induced by EPO may differ depending on cell
type and context possibly as a result of activation of different receptors. While significant
progress has been made in our understanding of EPO signaling, this review also identifies
areas for future study in terms of the role of EPO in modulating neuroinflammation.
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INTRODUCTION
Inflammation is a physiologic response to injury and infection
and is necessary for tissue healing. A similar process occurs in
the central nervous system (CNS) in response to injury or disease
and is termed neuroinflammation. In acute neuroinflammation,
microglial cells become reactive, they phagocytose dying cells and
release pro-inflammatory cytokines and chemokines to limit the
area of injury [for review see Ref. (1)]. However, when neuroin-
flammation is severe or chronic, it can produce deleterious effects
involving pro-inflammatory signaling pathways, increased oxida-
tive stress, and death of nearby neurons. Neuroinflammation is a
common mechanism influencing the severity and progression of
neurodegenerative disease and injury and is, therefore, a potential
target for neuroprotective therapies [for review see Ref. (2)].

Erythropoietin (EPO) was originally identified as a cytokine
responsible for production of red blood cells by blocking apop-
tosis of progenitor cells [for reviews see Ref. (3–6)]. EPO is also
produced at low levels in CNS tissue, and the EPO receptor (EpoR)
homodimer is expressed on most CNS cell types, including neu-
rons, astrocytes, and microglia [for review see Ref. (7)]. In the last
20 years, EPO has proven to be effective in preventing neuronal
apoptosis in a wide-range of neurodegenerative conditions in the
brain, retina, and spinal cord including acute, chronic, inherited,
and induced degenerations. Briefly, EPO affects the regulators of
apoptosis Bax, Bad, and Bcl-2/Bcl-xL by inhibiting formation of
the Bax/Bcl complex and reducing activation of effector caspases.
Comprehensive reviews on the anti-apoptotic effect of EPO in the
CNS are available (4, 8, 9). EPO also blocks apoptosis in retinal
neurons (10–23), showing that EPO acts similarly in all CNS tis-
sue. Since the anti-apoptotic role of EPO is well-characterized it is
not the focus of this review except to note that it is well accepted

that EPO decreases neuroinflammation and its damaging effects
in part by blocking apoptosis [Ref. (22, 23); Figure 1]. This review
will discuss recent evidence that points to additional, apoptosis-
independent, actions of EPO in modulating neuroinflammation
including blocking reactive oxygen/nitrogen species (ROS/RNS)
and glial reactivity. Accruing evidence that the signal transduction
cascades activated by EPO may differ based on cell type will also
be presented.

EPO LIMITS NEUROINFLAMMATION AND CELL DEATH BY
DECREASING ROS/RNS LEVELS
Oxidative/nitrosative stress refers to the undesirable modifica-
tion of proteins, lipids, and DNA mainly thought to arise from
mitochondrial dysfunction [for review see Ref. (24)]. Peroxyni-
trite, a by-product of superoxide and nitric oxide, can cause DNA
damage and ultimately lead to necrosis, which in turn drives an
inflammatory response that includes microglial reactivity. Reac-
tive microglia are particularly effective at producing and releas-
ing ROS/RNS [for review see Ref. (25)]. Oxidative/nitrosative
stress and neuroinflammation have been implicated in a myriad
of disease processes and has been shown to contribute to neu-
ronal degeneration in Alzheimer’s, Parkinson’s, traumatic brain
injury [for review see Ref. (26)], and glaucoma [for review see
Ref. (27)].

Treatment with EPO decreases cellular damage caused by
ROS/RNS, including lipid peroxidation (28–30), protein carbony-
lation (30), and protein nitrosylation (31) and significant progress
has been made in elucidating how this is accomplished. EPO pre-
serves mitochondrial membrane integrity in a β-amyloid model
of Alzheimer’s disease (32). It also increases levels of antioxi-
dant enzymes by increasing levels and/or translocation of nuclear
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FIGURE 1 | Schematic of neuron–glia interactions in healthy and
diseased CNS tissue and how EPO may protect neurons by modulating
neuroinflammation. In the normal CNS, microglia and astrocytes serve
important support roles. In disease/trauma, the BBB breaks-down due to
endothelial cell death and astrocyte hypertrophy, immune cells infiltrate into
the CNS, microglia increase in number and become reactive, and neurons

undergo apoptosis. EPO directly blocks apoptosis of neurons and preserves
the BBB by blocking apoptosis of endothelial cells and decreasing astrocyte
hypertrophy, thus, decreasing infiltration of immune cells. In addition, EPO
may directly scavenge ROS/RNS to reduce local oxidative stress. EPO also
has a direct effect on microglia, affecting their proliferative capability and
possibly influencing their M1/M2 reactive state.

factor erythroid 2-related factor 2 (Nrf-2) to the nucleus where it
binds and activates the antioxidant response element (33–36). In
neurons, the increased nuclear translocation of Nrf-2 appears to
be mediated by PI-3K, ERK, and JNK, but not p38/MAPK (36).
Some of the antioxidant enzymes increased by EPO in terms of
both levels and activity include heme oxygenase (HO-1) (33, 36),
peroxiredoxin (37), glutathione peroxidase, NAD(P)H:quinone
oxidoreductase 1 (NQO1) (33–35), glutamate cysteine ligase, and
glutathione S-transferase (33, 35). EPO also causes increases in
the in vivo activity of the antioxidant proteins catalase (29), super-
oxide dismutase (30), and glutathione peroxidase (38). However,
EPO’s positive effect on levels and activity of these enzymes is not
consistently observed (39, 40). For example, EPO has no effect on
expression of induced nitric oxide synthase (iNOS) in cultured
activated microglia (41), even though it reduces total retinal lev-
els of iNOS in a glaucoma model (42). These data suggest that
EPO’s effect on antioxidant enzyme activity may contextual or
cell-specific.

Two alternative methods for reduction of oxidative/nitrosative
stress by EPO have been reported. First, there is emerging bio-
chemical evidence that EPO is capable of directly scavenging
ROS/RNS (43), including a study showing that EPO protects

paraquat-treated astrocytes in a superoxide dismutase knockout
mouse (44). Second, in some disease processes where iron accu-
mulation is thought to be a key mediator of oxidative damage
and degeneration, such as Parkinson’s disease [for review see Ref.
(45)], EPO may indirectly promote an antioxidant effect through
its increase in erythrocyte production and corresponding deple-
tion of systemic iron. This is supported by the long-observed
phenomenon of EPO treatment leading to systemic iron deple-
tion [for review see Ref. (46)]. Therefore, EPO appears to act in
a multi-pronged way to mitigate ROS/RNS levels thus prevent-
ing downstream damaging effects on cells that lead to apoptosis
(Figure 1).

EPO DECREASES RECRUITMENT AND INFILTRATION OF
IMMUNE CELLS
In neurodegenerative conditions, immune cells are recruited to
the area of injury by the release of chemokines from the damaged
neuronal tissue [for review see Ref. (47)]. Expression of two of
these chemokines, CXCL2 and CCL7, is decreased by treatment
with EPO in a stroke model (48). This suggests that EPO may
limit recruitment of immune cells, which would in turn decrease
release of pro-inflammatory cytokines into the CNS and migration
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of immune cells into the tissue. Migration of immune cells into the
CNS occurs as a result of blood–brain/retina barrier (BBB/BRB)
disruption after CNS trauma or in neurodegenerative diseases
due to microvascular endothelial cell death (49), tight junction
structural changes [for review see Ref. (50)], and astrocyte hyper-
trophy [Figure 1; for reviews see Ref. (51, 52)]. EPO preserves the
BBB/BRB in multiple models (21, 53, 54) by blocking apoptosis of
microvascular endothelial cells [for review see Ref. (9)] and astro-
cyte hypertrophy. Here, we will focus on the less well-characterized
role of EPO in blocking astrocyte hypertrophy.

Dysregulation of aquaporin-4 is implicated in astrocyte
swelling and disruption of the BBB/BRB in knockout models (55),
though this effect is not consistently observed (56, 57). Astrocytes
respond to EPO by activating JNK and p38-MAPK (53, 58), lead-
ing to modulation of aquaporin-4 levels (53, 58–60), decreased
glial swelling (58), and reduced BBB permeability (54, 59). EPO
also increases levels of tight junction proteins in these cells via
activation of the MAPK cascade (53). Upregulation of the stress-
induced intermediate filament protein, GFAP, is associated with
glial hypertrophy and is also decreased by treatment with EPO
(19, 60, 61). Interestingly, modulation of GFAP levels by EPO is
independent of the MAPK pathway (60). Others have reported
that EPO neither activates JAK2, Akt, ERK nor STAT in cultured
astrocytes (53, 62), suggesting that these signaling molecules also
might not be involved.

EPO DECREASES MICROGLIAL PROLIFERATION AND
REACTIVITY
Microglia are the key mediators of neuroinflammation. In the
injured/degenerative CNS, innate microglia proliferate and con-
vert into the M1 (pro-inflammatory) and M2 (alternative) reac-
tive states in a manner similar to systemic macrophages [for
review see Ref. (63)]. Reactive microglia can mediate both pro-
inflammatory and anti-inflammatory states depending on their
particular reactive state and the corresponding milieu of cytokines
and chemokines released. The role of these cells is complex
and current research suggests that while an overactive microglia
response is deleterious, blocking it entirely can also be detrimen-
tal [for review see Ref. (64)]. In this review, we will focus on the
damaging effects of chronically reactive microglia.

Erythropoietin may directly influence the reactive state of
the CNS microglia (Figure 1). One of the distinguishing fea-
tures of a reactive microglia is its ability to phagocytose dying
neurons. Apoptotic neurons increase levels of phosphatidylser-
ine on the outer leaflet of the plasma membrane. Recognition of
these residues is a key step in microglial phagocytosis. Reactive
microglia express higher levels of the phosphatidylserine recep-
tor [PSR; (65)]. EPO treatment decreases levels of the PSR on
the microglial plasma membrane in vitro (66). This suggests that
EPO treatment decreases the ability of microglial cells to phago-
cytose dying neurons. Active phagocytosis of apoptotic cells by
microglia suppresses production of pro-inflammatory cytokines
(65). Therefore, the decrease in PSR could suggest that EPO
induces a pro-inflammatory state in the CNS. However, treatment
with EPO leads to lower levels of pro-inflammatory cytokines in
in vivo studies of neurodegenerative conditions [Ref. (22, 67–69);
Figure 1]. The decrease in pro-inflammatory cytokines by EPO is

not due to a direct block in production based on in vitro exper-
iments (22, 41, 70). This suggests that the lower levels detected
in the in vivo studies is likely an indirectly consequence of EPO
limiting the number of reactive microglia present. In fact, fewer
proliferating cellular nuclear antigen-positive primary microglial
cells are detected after treatment with EPO (66). In summary, the
data suggest that EPO redirects microglia back to or maintains
microglia in a normal state and prevents microglial proliferation.

EPO INDUCES SIGNALING IN MICROGLIA AND
MACROPHAGES
Microglia share similar characteristics with systemic macrophages
and both can be found in the injured/degenerative CNS.
Macrophages can infiltrate into the CNS where they take on
a reactive microglial-like morphology. Like microglial cells,
macrophages secrete neuroinflammatory cytokines and phagocy-
tose dying cells. Therefore, they play an important role in chronic
neuroinflammation. We will compare and contrast signaling by
EPO in microglia and macrophages.

The EpoR is expressed on both macrophages and microglia
(71–74). The investigations performed, to date, on microglial cells
in culture have focused on the ability of EPO to block cell death
rather than an effect on altering the reactive state of these cells.
While the physiological relevance of microglial cell survival as
opposed to proliferation or reactivity is unclear, these studies at a
minimum demonstrate that EPO can activate signaling cascades in
microglia. EPO-mediated protection of EOC-2 microglia-derived
cells requires Wnt-1, PI-3K, and Akt, and also involves mTOR,
and p70S6K [Ref. (71–73); Figure 2]. As a result of activation
of the PI-3K/Akt pathway, the p65 subunit of NF-κB is translo-
cated to the nucleus (73). Surprisingly, there is a concomitant
increase in levels of Wnt-1 and de-activation of glycogen syn-
thase kinase 3 (GSK-3α/β) by phosphorylation, which results in
activation (phosphorylation) of β-catenin. Activated β-catenin
translocates to the nucleus where it can sequester NF-κB (75),
preventing it from activating gene expression (Figure 2). It is
unclear why EPO would seemingly activate two conflicting path-
ways. One possibility is that EPO modulates each pathway in
a context-dependent manner to modulate neuroinflammation,
either promoting a neuroinflammatory state (activation of NF-κB)
or decreasing it (sequestration of NF-κB by β-catenin). Additional
studies to assess signaling pathways induced by EPO in primary
microglia, particularly in the context of microglial proliferation
and polarization are warranted.

In contrast, the EPO studies on cultured macrophages assess
the activation state rather than survival of these cells. As in
microglial cells, treatment with EPO activates the Akt/mTOR/NF-
κB pathway. This pathway is implicated in shifting macrophage
activation state polarization from M1 to M2 (76). For example,
treatment of cultured macrophages with an EPO peptide caused
a dose-dependent increase in phagocytosis and a corresponding
decrease in TNF-α, suggesting that EPO shifts these cells from
a pro-inflammatory to a phagocytic state but does not return
them to a non-reactive state (77). Also, unlike in microglial cells,
EPO inhibits NF-κB p65 in macrophages, leading to lower levels
of TNF-α and NO (78). Further studies are needed to under-
stand how EPO decreases NF-κB activity in macrophages while
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FIGURE 2 | Schematic comparing signaling cascades activated by
EPO in microglia and macrophages. The role of EPO in macrophages
and microglia has primarily been evaluated in the context of
inflammatory state and cell survival, respectively. In macrophages,
EPO activates JAK/STAT and Akt signaling, inhibits GSK-3β activity,
modulates NF-κB p65, decreases levels of pro-inflammatory cytokines

and iNOS, and promotes phagocytosis and M2 activation state
polarization. In microglia, EPO promotes cell survival, inhibits GSK-3β

activity, and increases NF-κB p65 via PI-3K/Akt while simultaneously
activating the Wnt-1/β-catenin pathway that results in sequestration of
NF-κB in the nucleus. EPO also decreases PSR levels, suggesting
decreased phagocytosis.

increasing it in microglia. It is feasible that the same signal-
ing balance between the PI-3K/Akt and Wnt/β-catenin pathways
are present in both microglial cells and macrophages, but that
the balance is shifted to the Wnt/β-catenin pathway in acti-
vated macrophages, resulting in sequestration/inhibition of NF-
κB. However, while activation of β-catenin by Frizzled has been
demonstrated in macrophages (79), to date, no studies have inves-
tigated if EPO affects this pathway or if EPO has any effect on Wnt-
1. Given the phenotypic similarity between systemic macrophages
and resident microglia, as well as the identification of common
signaling pathways affected by EPO in both cell types, the poten-
tial role of EPO in modulating additional pathways in microglia
that have been identified in macrophages should be investigated.

EPO SIGNALING MAY BE CELL TYPE AND CONTEXT
DEPENDENT
The molecular pathways activated by EPO for neuroprotection are
an area of active investigation. Many studies have reported changes
in a myriad of signaling pathways in complex neuronal tissue in situ
after a variety of insults and treatment with EPO (10, 21, 80–87).

Since the EpoR is expressed in glia and endothelial cells in addi-
tion to neurons [for review see Ref. (7)], studies in primary cell
cultures are helpful to parse out the role of EPO in these different
cell types. These studies, when compared, suggest that EPO may
activate different signal transduction cascades depending on cell
type. For example, results from a combination of studies suggest
that the p38-MAPK pathway is activated by EPO in astrocytes, but
not in neurons. Whole tissue studies detected activation of p38-
MAPK by EPO and, as mentioned above, EPO preserves astrocyte
function at the BBB by activation of this pathway (53, 58). How-
ever, blocking activation of the p38-MAPK pathway in vivo had no
effect on neuronal survival (87). Taken together, these observations
suggest that functional effects of EPO via activation of p38-MAPK
occur primarily in non-neuronal cells, including astrocytes.

Disparate signaling pathways may be initiated by EPO as a result
of binding to different receptors. In hematopoietic cells, EPO acti-
vates the EpoR homodimer to induce downstream signaling and
block apoptosis (88–92). In non-hematopoietic tissue, EPO may
enact neuroprotection via an EpoR, interleukin beta common
receptor (βcR) heterodimer (93). This is supported by evidence
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that the EpoR can associate with the βcR (94), and that binding of
the EpoR to a dimerization-dependent, constitutively active βcR
mutant initiates downstream signaling cascades (95). However,
expression of the EpoR and the βcR does not appear to significantly
overlap in the brain, despite an increase in microglial βcR expres-
sion following injury (96). This could imply that while a few cells or
specific cell types may respond to EPO via an EpoR, βcR complex,
the majority of cells may not. In fact, EPO could potentially act on
an additional as of yet unidentified receptor. Neuronal survival was
recently achieved by EPO therapy in mice that lack neuronal EpoR
expression (97), thus suggesting that the EpoR is not necessary for
blocking neuronal apoptosis. Further, forms of EPO that neither
bind the EpoR nor initiate erythropoiesis are still neuroprotective
(15, 98–101). Understanding whether EPO acts through canonical
or non-canonical receptors, or independently of receptor interac-
tion (i.e., direct ROS/RNS scavenging) is essential for developing
new target-directed therapies and therefore should continue to be
an area of active investigation.

In addition to direct binding of EPO to different receptors,
activation of the EpoR can activate other surface receptors and
channels. Signal transduction pathways downstream of EPO are
significantly modulated by cross-talk with other surface recep-
tors and cytosolic proteins in erythroid progenitors [for review
see Ref. (5)]. We have already discussed the potential influ-
ence of cross-talk with the Wnt/β-catenin pathway in influencing
downstream effects of EPO in microglial cells. Another exam-
ple is the calcium channel, TRPC2 (102, 103), which facilitates
calmodulin-dependent enhancement of EpoR-associated JAK2
signaling in erythroid progenitor cells (104). TRPC2 channels are
also expressed in the CNS and expression may vary between cell
types, which could also contribute to cell type specific responses
to EPO (105, 106). This observation supports cell type specific
signal transduction events downstream of even canonical EpoR
signaling, dependent on cell type specific expression of these other
proteins. Altogether these data suggest that EPO may be able to
activate different receptors and that even signaling through the
canonical EpoR homodimer may differ depending on cell type.
Additional studies are needed to determine if these co-regulators
of EPO signaling vary in expression among different CNS cell types
and whether these factors play a role in differing responses to EPO.

CONCLUSION
Erythropoietin is a pleiotropic protein, it influences erythropoiesis,
BBB/BRB health, ROS/RNS levels, apoptosis, and glial reactivity
seemingly simultaneously. EPO blocks apoptosis in a wide-range
of cell types, including neurons, and it appears to be effective
in a wide-range of neurodegenerative conditions. By preventing
apoptosis, EPO indirectly decreases chronic neuroinflammation.
In this review, we show evidence that EPO also modulates neuroin-
flammation by decreasing levels of ROS/RNS, limiting microglial
infiltration by preserving the health of the microvascular endothe-
lial cells and astrocytes at the BBB/BRB, and by acting directly on
microglial cells to block proliferation and influence their reactive
state. We propose that EPO may activate different signal transduc-
tion cascades in a context-dependent, cell type specific manner
to enact its diverse functions. A caveat of this analysis is that
not all signaling molecules have been assessed in all cell types.

For example, Wnt-1 activation by EPO was reported in vascu-
lar endothelial cells (107) and in cultured microglia (71), but has
not been assessed in astrocyte or neuronal cultures. There has
been amazing progress in this field in the last 10 years, but there
is still much to be understood about this complex, pleiotropic
cytokine. Understanding the mechanism by which EPO modu-
lates neuroinflammation may lead to novel therapeutic strategies
for the treatment of neurodegenerative diseases and injuries.
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