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CD1d-restricted natural killer T (NKT) cells lie at the interface between the innate and
adaptive immune systems and are important mediators of immune responses and tumor
immunosurveillance.These NKT cells uniquely recognize lipid antigens, and their rapid yet
specific reactions influence both innate and adaptive immunity. In tumor immunity, two NKT
subsets (type I and type II) have contrasting roles in which they not only cross-regulate one
another, but also impact innate immune cell populations, including natural killer, dendritic,
and myeloid lineage cells, as well as adaptive populations, especially CD8+ and CD4+ T
cells. The extent to which NKT cells promote or suppress surrounding cells affects the
host’s ability to prevent neoplasia and is consequently of great interest for therapeutic
development. Data have shown the potential for therapeutic use of NKT cell agonists and
synergy with immune response modifiers in both pre-clinical studies and preliminary clin-
ical studies. However, there is room to improve treatment efficacy by further elucidating
the biological mechanisms underlying NKT cell networks. Here, we discuss the progress
made in understanding NKT cell networks, their consequent role in the regulation of tumor
immunity, and the potential to exploit that knowledge in a clinical setting.
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INTRODUCTION
Effective tumor immunosurveillance is mediated by players from
both the innate and adaptive immune systems. Innate immune
cells (including macrophages, neutrophils, dendritic cells (DCs),
and natural killer cells) rapidly respond to an immunological
threat such as cancer. However, it is important that information
from this front-line defense be transmitted to the adaptive immune
system. Adaptive immune cells, including T and B lymphocytes,
mediate tumor immunity in a more precise and lasting manner
via antigen-specific and effector memory responses. A few key
players in immunosurveillance lie at the interface of innate and
adaptive immunity and facilitate this transition, one of which
is natural killer T (NKT) cells. In an innate fashion, NKT cells
have the ability to react quickly, producing a broad range of
cytokines within minutes to hours of antigenic stimulation and
also activate antigen-presenting DCs. This rapid effect can trig-
ger powerful innate and acquired immune responses both directly
and indirectly. Thereby, NKT cells bridge two major defense sys-
tems to modulate immunity and are important in influencing host
immune responses to cancer and other diseases. Here, we review
the current understanding of NKT cells regarding their role in
enhancing or suppressing tumor immunity, as well as ongoing
strategies using NKT cells for cancer immunotherapy and discuss
future approaches that might optimize NKT cell-based anti-tumor
responses.

NATURAL KILLER T CELLS
Natural Killer T cells are a heterogeneous lymphoid population
that exhibits characteristics from both the innate and adaptive
arms of the immune system. Similar to innately functioning NK
cells, these lymphocytes react quickly to stimuli and produce

an array of cytokines and chemokines to modulate the immune
response (1, 2). NKT cells respond in an antigen-specific manner
through a true T cell receptor (TCR). However, unlike TCRs from
conventional T cells that recognize one epitope (or a few at most),
a single TCR from NKT cells can react with numerous antigens,
both self and foreign. Thus, even though the absolute frequency
of NKT cells is low (e.g., ~1% in mouse spleen), their number is
high in the context of T cells specific for one antigen, high enough
to initiate a significant immune response (3–5). Additionally, they
differ from conventional T cells that recognize peptide antigen
presented by class I or II major histocompatibility complex mol-
ecules (MHCI or II) on antigen-presenting cells (APCs). Instead,
NKT cells interact with lipid antigens presented by an MHC-like
molecule known as CD1d. In fact, because many NKT cells do not
express NK cell markers, the defining characteristic of NKT cells
is now CD1d restriction, and NK-like markers are primarily used
to characterize subsets (6).

Natural killer T cells may have both immune enhancing and
immunosuppressive roles. Upon antigenic stimulation, NKT cells
are able to produce a range of cytokines including interferon-
gamma (IFN-γ), interleukins (IL)-2, -4, -10, -13, -17, -21, and 22,
granulocyte-macrophage colony-stimulating factor (GM-CSF),
and tumor necrosis factor-alpha (TNF-α) (7–9). The cytokine
profile produced differs slightly among subsets, but interestingly,
NKT cells can simultaneously secrete Th1/pro-inflammatory (e.g.,
IFN-γ, TNF-α) and Th2/anti-inflammatory (IL-4, IL-10, IL-13)
cytokines. The cytokines secreted activate other immune cells
such as NK cells, T cells, and B cells, potentiating a cascade
of cytokine and chemokine production and galvanizing addi-
tional cytolytic populations to mediate tumor surveillance (2).
Because, NKT cell activation contributes to DC maturation (10),
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and in turn enhances both priming and boosting of CD8+ T
cells, co-administering peptide, or protein antigen with NKT cell
agonists has an adjuvant effect. This activity can be channeled
toward improving vaccines for cancer, infectious diseases, and
other therapeutic settings (10–12).

The NKT cell population is composed of several phenotypically
and functionally different subpopulations, and can be character-
ized further according to tissue location, surface markers, specific
TCR usage, and effector functions (Figure 1). Surface markers
CD4 and CD8 broadly divide NKT cells, where a majority is CD4+

(approximately 90% in mice) and the remainder is CD4−CD8−

double negative (DN). In human beings, additional minute pop-
ulations of CD8αα and CD8αβ NKT cells exist (13). Activated
human DN NKT cells predominantly produce cytokines that insti-
gate a Th1 response, while CD4+ NKT cells generate both Th1 and
Th2 cytokines (1, 14, 15). NKT cells can also be subdivided into
NK1.1+ or negative, with different functional consequences (16).
Aside from CD4 and CD8 expression, functional differences in the
nature and magnitude of the NKT cell response can arise from
developmental differentiation and tissue location. For instance,
NKT cells from human peripheral blood generate cytokines simi-
lar to those isolated from spleens but differ significantly from NKT
cells in the thymus or cord blood (17). Peripheral blood NKT cells
are also distinct from liver NKT cells in terms of surface marker
expression (18). Because, human NKT cells from peripheral blood

are commonly used as a surrogate for systemic NKT cell analysis,
this discrepancy suggests that current protocols analyzing NKT
cell number and functionality may be misleading. NKT cell fre-
quency and expression of cell surface proteins has been shown to
differ between various sites in the small and large intestine as well
(19). Functional differences of NKT cells from different tissues
have also been demonstrated in the context of tumor (20). These
comparative analyses provide insight that NKT cell tissue location
should be considered when extrapolating information from exper-
imental or clinical data, and underscores that a clearer description
of tissue-specific characteristics of NKT cells is needed.

Heterogeneity of TCR rearrangements has allowed NKT cells
to be separated into two categories, type I and type II (as described
below). In the context of tumor immunity, these subsets have been
shown to differentially impact innate and adaptive immune cell
populations. Type I NKT cells are usually associated with the pro-
motion of tumor immunity whereas type II NKT cells seem to
suppress it (21–27).

TYPE I NKT CELLS
Type I NKT cells express a semi-invariant TCRα chain (Vα14-Jα18
TCR in mice, Vα24-Jα18 in human beings) paired with a limited
repertoire of Vβ chains (primarily Vβ8, 7 and 2 in mice, Vβ11 in
human beings) and are consequently referred to as invariant or
iNKT cells. In type I NKT cells, it appears that a combination of

FIGURE 1 | NKT cell subsets. The natural killer T (NKT) cell population
encompasses several phenotypically and functionally different
subpopulations. Tissue location and surface markers (CD4, CD8, and NK1.1)
are defining characteristics that broadly divide NKT cells and contribute to
functionality. Differences in TCR rearrangements allow separation into two
major subsets, type I and type II. Type I NKT cells express a semi-invariant
TCRα chain, while type II NKT cells display a more diverse repertoire. It has
been proposed that these NKT cell subsets recognize distinct lipid antigens.

The prototypic antigen able to activate all type I NKT cells is α-GalCer. Type II
NKT cells recognize a greater variety of antigens, one being sulfatide. Though
these two subsets have been reported to recognize some common antigens,
e.g., β-GlcCer, the biochemical structure is slightly different between the
antigen recognized by type I versus type II NKT cells. Lastly, type I NKT cells
are functionally heterogeneous. NKT1, NKT2, NKT17, NKTreg, NKTFH, and
NKT10 subsets have been described. Overall, an in vivo NKT cell response
likely depends on which subsets are activated.

Frontiers in Immunology | Tumor Immunity October 2014 | Volume 5 | Article 543 | 2

http://www.frontiersin.org/Tumor_Immunity
http://www.frontiersin.org/Tumor_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Robertson et al. NKT-cell regulation of tumor immunity

activation variables dictates NKT cell function: the affinity of the
antigen presented to the NKT TCR; the presence of costimulatory
molecules; and the tissue environment in which the interaction
takes place (7, 28). The prototypic antigen for type I NKT cells is α-
galactosylceramide (α-GalCer or KRN7000), a synthetic form of a
glycolipid isolated from a marine sponge (29, 30). Type I NKT cells
also recognize microbial glycolipids and self-antigens, e.g., Sphin-
gomonas and Ehrlichia lipids, lyso-phosphatidylcholine (lyso-PC),
and isoglobotrihexosylceramide (iGb3) (31–35). α-GalCer is a
potent activator of all type I NKT cells, causing them to produce
copious amounts of IFN-γ, which helps activate both CD8+ T
cells and APCs (36). NKT cells specifically stimulate DCs through
the CD1d-TCR complex and CD40–CD40L interaction, which
induces DC maturation and IL-12 secretion (37, 38). IL-12 stim-
ulates both NK, NKT, and other T cells to produce more IFN-γ,
and the two cytokines together significantly impact the activation
of downstream effector populations such as NK cells, CD8+ T
cells, and γδ T cells (39). NKT cell activation also causes DCs to
upregulate costimulatory receptors (e.g., CD70, CD80, and CD86).
CD70 expression by DCs is essential for cross-priming CD8+ T
cells to promote adaptive immunity (40–42). IL-2 produced by
activated NKT cells induces the proliferation of memory CD4+

T helper 1 (Th1) and Th2 cells (43). Additionally, because differ-
entiation of CD4+ T cells into T helper cell subsets depends on
the cytokine milieu, cytokines from NKT cells may facilitate polar-
ization into Th1, Th2, and/or Th17 subsets. Having these innate
and acquired immune reactions occur simultaneously is integral
for a potent immunological response, especially for eradication of
tumor masses, which frequently contain both MHC-negative cells
(targeted by NK cells) and MHC-positive cells (targeted by CD8+

T cells) (44).
Of recent interest are unique cytokine producing subsets of

type I NKT cells, particularly those making IL-17. A study ana-
lyzing subsets according to tissue origin and CD4 and NK1.1
marker expression found significant diversity of cytokine pro-
duction by distinct subsets, especially CD4−NK1.1− NKT cells
that produce high levels of IL-17 (16, 45). IL-17 has potent
pro-inflammatory functions including the induction of IL-6 and
TNF-α, as well as the recruitment and enhancement of neu-
trophils. Analogous to CD4+ Th17, primary producers of IL-17,
this NKT cell lineage constitutively expresses the RORγ-t tran-
scription factor, as well as IL-23R (46). However, the NKT17
population was isolated from naïve animals without priming,
and was able to secrete IL-17 as soon as 2–3 h following anti-
gen stimulation, whereas naïve CD4+ T cells must undergo a
differentiation period of a few days before antigen can polarize
the cell into Th17 phenotype and elicit such a response. Other
reports have further described this NKT cell subset by IL-17R
expression and lack of NK1.1 expression, or added that mature
differentiation of CD44+CD4−NK1.1− cells manifests in stage
2 of thymic development (46, 47). Additional type I NKT cells
have been characterized by their transcription factor expression
and effector functions in a manner comparable to other CD4+ T
helper subsets [Th1, Th2, Tregs, T follicular helper cells (TFH)]
(48–50). Lee et al. report that NKT1, NKT2, and NKT17 cells
are programed intrathymically to elicit a particular cytokine pro-
file (49). Others showed that Foxp3+ type I NKT cells behave

similarly to Tregs and suppress conventional CD4+ T cell prolif-
eration in a contact-dependent and antigen-independent man-
ner (48). A subset of IL-10-producing NKT cells was recently
reported by Sag et al. (51). This demonstrates diverse lineages
of molecularly distinct type I NKT cell subsets that differ func-
tionally in their production of particular cytokines. Our incom-
plete knowledge of the heterogeneity within type I NKT cells
has likely hindered progress in harnessing the true potential of
NKT cells; NKT cell responses in vivo likely depend on which
subsets are activated. A better understanding of NKT cell subcat-
egories could inform more selective and focused mechanisms for
immunological intervention.

TYPE II NKT CELLS
In contrast, CD1d-restricted NKT cells not expressing the semi-
invariant TCR are known as type II. This subset recognizes gly-
colipid antigens distinct from those recognized by type I NKT
cells and is less well characterized. For those reactive to sulfatide,
a myelin-derived glycolipid found abundantly in the nervous sys-
tem, the type II NKT TCR repertoire shows preferential use of
alpha gene segments from Vα1 and Vα3, paired with Vβ8.1/Vβ8.3
(52). Because, type II NKT cells do not utilize the Vα14-Jα18 gene
segment, they can be studied by comparing wild type (WT) mice
that have both type I and II NKT cells, to Jα18 knockout (KO)
mice that lack type I NKT cells but retain type II, and to CD1d
KO mice, which are deficient in all NKT cells. Type II NKT cells
have also been studied with TCR transgenic mice expressing the
24αβ-TCR from the CD4+ type II NKT cell hybridoma VIII24
that expresses a Vα3.2 and Vβ9 rearrangement and is not reactive
to sulfatide (53). Additionally, because NKT cells constitutively
express IL-4 mRNA transcripts, the use of IL-4 GFP enhanced
transcript (4get) mice has introduced another type II NKT subset
(54, 55). Liver NKT cells from 4get Jα18-deficient mice were sorted
to obtain TCRβ+GFP+ α-GalCer/CD1d tetramer-negative cells.
This population produced IFN-γ when CD1d-expressing bone
marrow-derived DCs presented several types of lipids, including
β-d-glucopyranosyl ceramide (β-GlcCer), β-GalCer, and Lyso-PE.
The pool of β-GlcCer reactive type II NKT cells did not respond to
sulfatide and favored TCR gene segments from Vα8 and Vβ8.1/8.2
(55). It is apparent that there are many distinct populations within
the type II NKT cell division; however, even with the recent
methodological advances that have enhanced our ability to study
this non-invariant subset, much less is known about type II than
type I NKT cells.

NKT CELL ENHANCEMENT OF TUMOR IMMUNITY
In tumor immunosurveillance, NKT cells can directly kill malig-
nant cells, or combat cancer indirectly via activation of additional
immune cells (Figure 2). Type I NKT cells employ various mech-
anisms of cytolytic activity. For instance, both mouse and human
NKT cells can directly lyse tumor cells by a perforin-dependent
mechanism (56), and intracellular granzyme B expression may
also potentiate cell killing (57). Tumor cells expressing CD1d may
be especially susceptible to direct NKT cell lysis, as shown in vitro
(58–60). This pattern is consistent with in vivo observations (61,
62) and there is evidence that high CD1d expression levels correlate
with lower metastasis rates (60).
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FIGURE 2 | Enhancement of tumor immunity. Upon antigenic
stimulation, type I NKT cells produce copious amounts of IFN-γ, which
helps activate both CD8+ T cells and DCs. NKT cells specifically induce
DC maturation by engaging the CD1d-TCR complex and CD40–CD40L
interaction. DCs then upregulate costimulatory receptors essential for
the cross-priming of CD8+ T cells to promote adaptive immunity.
Additionally, IL-12 production by DCs stimulates NK, NKT, and other T
cells to produce more IFN-γ and the two cytokines together significantly
impact the activation of downstream effector populations. Both type I
and type II NKT cells have been shown to enhance proliferation of

memory CD4+ T cells, which can help CD8+ T cells as well. NK and type I
NKT cells are able to directly lyse tumor cells utilizing various
mechanisms which include perforin, granzyme, and FasL. Type I NKT cell
stimulation can also enhance tumor immunity by hindering
immunosuppressive populations. Type I NKT cells regulate effects of
type II and expansion of MDSCs. Tumor-induced inflammatory proteins
like serum amyloid A 1 (SAA-1) have been shown to increase neutrophilic
CD1d-dependent stimulation of type I NKT cells, which then mitigates
the detrimental activity of suppressive neutrophils by hindering
production of IL-10 and enhancing IL-12.

While type I NKT cells are undoubtedly capable of mediating
tumor lysis directly, several studies in both human beings and mice
demonstrate NKT cell-mediated anti-tumor effects that are inde-
pendent of lytic capacity and largely dependent on activating other
innate and adaptive immune cells (20, 51, 63, 64). This recruitment
of anti-tumor cytolytic cell populations primarily involves initi-
ating Th1 cytokine cascades. As mentioned above, α-GalCer was
the first NKT cell ligand identified and is a potent activator of
type I NKT cells. It showed clinical potential when application
of its synthetic form (KRN7000) increased survival in mice bear-
ing the B16 melanoma (29, 58). The copious amount of IFN-γ
released upon α-GalCer stimulation appears necessary for tumor
protection (12, 65). In lung and liver metastasis models, produc-
tion of IFN-γ by NKT cells and NK cells was absolutely required
to obtain anti-metastatic activity of α-GalCer, and IL-12 and IL-
18 were necessary to achieve optimal serum IFN-γ induction and
tumor immunity (63). Type I NKT cells can also mediate tumor
immunosurveillance in the absence of exogenous antigen. In a
model of MCA-induced fibrosarcoma, Jα18 KO mice lacking type
I NKT cells had a greater susceptibility to the disease. Adoptive
transfer of liver DN type I NKT cells from WT into Jα18 KO mice
restored the NKT cell population and rescued tumor immunity.
However, CD1d KO mice were not protected upon NKT cell trans-
fer, demonstrating that the protection was CD1d-dependent (20,
22). Additionally, only the DN liver subset conferred protection in

this model; the CD4+ subset of liver NKT cells were not protective,
and when type I NKT cells from the thymus were adoptively trans-
ferred, only slight protection was observed. Notably, the thymic
NKT cells produced more IL-4 than those from liver or spleen.
Thus, even in the absence of exogenous antigenic stimulation, it is
becoming clearer that different subsets of NKT cells play distinct
roles in immunosurveillance (66).

While surface marker expression and anatomical origin may
influence NKT cell function, different antigens can also impact
the immunological capacity of NKT cells. Examining both the
cytokine profile and tumor protection capacity within a panel of
type I NKT agonists, there was a strong correlation between the
Th1 profile (in terms of IFN-γ:IL-4 ratio or IFN-γ production)
and magnitude of protection in the mice from tumor growth in
CT26 lung metastasis model (67). Least effective in the panel was
OCH, which induced some IFN-γ but was the most Th2 skewed
(IL-4 and IL-13) cytokine response in this set. OCH still sup-
pressed tumor growth, but less than antigens eliciting greater Th1
skewing. Because, IFN-γ production appears to be the best cor-
relate for tumor protection, and because, simultaneous NKT cell
production of both Th1 and Th2 type cytokines may lessen the
beneficial Th1 profile effects, multiple groups have tried enhanc-
ing α-GalCer to heighten IFN-γ production (68–72). A syn-
thetic C-glycoside analog, α-C-galactosylceramide (α-C-GalCer),
stimulated prolonged production of IFN-γ and IL-12 in vivo,
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and decreased production of the Th2 cytokine IL-4 compared
with α-GalCer (69), as confirmed in our hands as well (O’Konek
unpublished). This enhanced protection against B16 melanoma
pulmonary metastases (69). An induced fit antigen with enhanced
binding to CD1d, naphthylurea (NU)-α-GalCer, heightened Th1
biased cytokine skewing, and conferred better tumor protection
than α-GalCer (72). In the same study, a type I NKT cell agonist
that stimulated a weak Th2 biased cytokine production (xylo-α-
GalCer) had no protective effect. Analog 7DW8-5, which possesses
a fluorinated benzene ring, improved NKT cell stimulation, and
exhibited an adjuvant effect superior to that of α-GalCer on HIV
and malaria vaccines (73). Analogs containing phenyl group(s) on
the lipid tail of α-GalCer also seem to steer NKT cells toward
a Th1-skewed response (70), and exhibited more potent anti-
cancer activities than α-GalCer in mice by inducing neither NKT
cell anergy nor expansion of myeloid-derived suppressor cells
(MDSCs) (70, 74). Overall, superior Th1-biasing antigens have
shown enhanced tumor protection and may warrant translation
to the clinic (72).

Aside from augmenting protective cell responses in both arms
of the immune system, NKT cells can enhance tumor immunity by
altering the effects of immunosuppressive cells. For instance, in a
study on influenza A virus infection, the absence of type I NKT cells
resulted in the expansion of MDSCs, which suppressed CD8+ T
cell immune responses (75). Adoptively transferred liver NKT cells
restored the WT phenotype, and the result was shown to be CD1d-
dependent. Although the protection did not require stimulation
of transferred type I NKT cells by an exogenous antigen, acti-
vating NKT cells with α-GalCer reversed MDSC-mediated sup-
pression in a CD40–CD40L manner. Because some MDSCs (e.g.,
those activated by tumor-derived IL-1β) impair NK cell devel-
opment and function (76), having NKT cells present to prevent
MDSC expansion may enhance NK cell activity as well. NKT cells
can also counter tumor-driven immunosuppressive neutrophils
(77). Tumor-induced inflammation causing secretion of serum
amyloid A1 (SAA-1) induced differentiation of suppressive IL-10-
producing neutrophils. However, SAA-1 also increased interaction
between neutrophils and type I NKT cells. The suppressive neu-
trophils expressed both CD40 and CD1d and the presence of
SAA-1 triggered a neutrophilic CD1d-dependent activation of
type I NKT cells comparable to stimulation with α-GalCer-pulsed
neutrophils. Type I NKT cells not only mitigated the detrimen-
tal effect of neutrophils by hindering production of IL-10, and
enhancing IL-12, but also restored proliferation of antigen-specific
CD8+ T cells. Because this effect was proportional to the numbers
of type I NKT cells added in vitro, it would be interesting to see
if greater quantities of NKT cells in vivo would shift the equi-
librium in immune reaction to SAA-1 further, decreasing IL-10
mediated suppression, and restoring tumor immunity. This bal-
ance and crosstalk underscores the importance of type I NKT cells
in the regulation of tumor immunity and introduces an opportu-
nity to exploit NKT agonists in tumor settings where inflammatory
proteins like SAA-1 are released.

NKT CELLS IN SUPPRESSION OF TUMOR IMMUNITY
In contrast to their immune enhancing role in cancer, NKT cells,
especially type II, have displayed immunosuppressive activity in

tumor immunology (Figure 3). A series of studies using multiple
tumor models demonstrated that type II NKT cells were suffi-
cient for down-regulation of tumor immunosurveillance, within
the context of type I and type II NKT cells (26, 27, 61, 78).
CD4+ type II NKT cells produced more of IL-13 and IL-4 than
type I cells, and the NKT cell-dependent IL-13 was necessary for
tumor recurrence in a growth-regression-recurrence pattern 15-
12RM fibrosarcoma tumor model (24). The immunosuppressive
effect seemed mediated by the sulfatide-reactive subset of type
II NKT cells, as sulfatide treatment enhanced tumor growth in a
CD1d-dependent manner (27). IL-13 initiated signaling through
the IL-4R-STAT6 pathway, which together with TNF-α led to an
increase in production of transforming growth factor beta (TGF-
β) by a CD11b+Gr1+ population, sometimes called MDSCs (25,
79). TGF-β is a pleiotropic cytokine with three isoforms and TGF-
β1 has been shown to down-regulate cytotoxic T cell lymphocyte
(CTL) activity and in turn repress tumor immunosurveillance in
several mouse tumor models. Blocking TGF-β or depleting Gr-1+

cells in vivo prevented tumor recurrence (25). Type II NKT cells
were also shown to suppress immunity against CD1d-transfected B
cell lymphoma; amounts of IL-13, TGF-β, and MDSCs correlated
with immune suppression (61).

Myeloid-derived suppressor cells accumulate in the bone mar-
row and lymphoid organs of cancer patients and can counteract T
cell responses. Because type II NKT cells appear to enhance MDSC
activity, manipulating the NKT-MDSC immune axis has thera-
peutic implications. However, what works in one tumor model
does not always translate to others. We investigated the anti-tumor
effects of neutralizing TGF-β in conjunction with a peptide vaccine
(80). In a pre-clinical study using a TC1 tumor in C57BL/6 mice, a
pan-inhibitor of all three TGF-β isoforms had no impact as a single
agent, suggesting that the mechanism of immunosuppression was
different from that in 15-12RM. However, TGF-β neutralization
significantly and synergistically improved cancer vaccine efficacy
by reducing growth of primary tumors, and increasing tumor
antigen-specific CTLs (80). Similar synergy between a vaccine and
a TGF-β antagonist has been reported in multiple tumor models
with multiple vaccine platforms (81–83). Currently, because the
third isoform (TGF-β3) is hypothesized to have beneficial phys-
iological effects in cancer (84), we are investigating the role of
different TGF-β isoforms in the tumor setting and in conjunc-
tion with a cancer vaccine that contains a tumor antigen and a
type I NKT agonist. It may not be necessary to block all three
isoforms of TGF-β to promote tumor immunity or enhance can-
cer vaccine efficacy (Terabe et al., manuscript in preparation). This
could be utilized in a push-pull approach (85) to maximize vaccine
efficacy. TGF-β1 production by MDSCs not only directly sup-
presses other immune cells (e.g., CD8+ T cells) but also feeds into
an autocrine loop to enhance development of additional tumor-
associated MDSCs (86). MDSCs have also been shown to induce
expansion of immunosuppressive, tumor-specific Tregs (87). Con-
sequently, whether or not the MDSC activation is mediated by
IL-13 from type II NKT cells, neutralizing TGF-β could inter-
rupt autocrine and paracrine TGF-β loops driving suppression
of tumor immunity (86, 88). Simultaneously, a type I NKT cell
agonist could aid in the maturation of DCs, the suppression of
MDSCs, and the enhancement of NK and CD8+ T cells to restore
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FIGURE 3 | Suppression of tumor immunity. Activated type I NKT
cells have been shown to support immunosuppressive Tregs through
IL-2 production, and are then suppressed by Tregs in a
cell-contact-dependent manner. Treg cells can then suppress CD8+ and
CD4+ T cells and NK cells (not shown). Sulfatide-reactive type II NKT
cells suppress CD8+ T cells and inhibit proliferation of naïve, but not
memory, CD4+ T cells. Type II NKT cells also suppress Type I, and while
the exact mechanism in cancer settings remains unknown, the
mechanism in a con-A-induced hepatitis model is believed to involve
pDCs. Type II NKT cell production of IL-13 functions with TNF-α from

other cells to increase production of TGF-β by a CD11b+Gr1+ population
known as myeloid-derived suppressor cells (MDSCs). MDSCs not only
directly support tumor growth with TGF-β production but also suppress
other immune cells (e.g., CD8+ T and NK cells), feed into an autocrine
loop to enhance development of additional tumor-associated MDSCs,
and aid in expansion of Tregs. When tumor-induced inflammatory
proteins like SAA-1 stimulate suppressive IL-10 producing neutrophils,
and type I NKT cells are not activated to alter that reaction, increased
levels of IL-10 can induce Treg cells and potentiate further tumor
growth.

the anti-tumor immune response, essentially killing several birds
with one stone.

There are additional mechanisms of NKT cell-mediated tumor
suppression as well. In a K7M2 mouse osteosarcoma model, it
was found that 88% of NKT cell-deficient mice allowed for the
rejection of osteosarcoma primary tumors, compared to a 24%
rejection rate in WT mice containing both type I and type II
NKT cells (89). Tumor rejection was shown to be CD8+ T cell-
dependent, and CD1d KO mice that rejected the tumor had signif-
icantly higher numbers of tumor infiltrating lymphocytes. While
previously TGF-β and IL-13 mediated such suppression, TGF-β
and IL-13 were not the drivers of immunosuppression in this
model, and even though the exact mechanism was not revealed,
this study highlighted that alternative pathways exist for CD1d-
dependent NKT cell-mediated immunosuppression. For instance,
we recently found that sulfatide-reactive type II NKT cells inhibit
proliferation of naïve, CD4+ T cells (90), whereas they may not
suppress memory CD4+ T cells (43). Because CD4+ T cells aid
CD8+ T cells, it is possible that in situations where NKT cells
interrupt CD8+ T cell-immunity and tumor rejection, NKT cell
suppression of naïve CD4+ T cells may contribute (90).

Although in the majority of tumor settings the immunosup-
pressive role of NKT cells has been ascribed to type II NKT cells,
while type I are associated with an improved anti-tumor immune
response, there are exceptions (91–93). Paradoxically, activated

type I NKT cells have been shown to support immunosuppressive
Tregs through IL-2 production, though the NKT cells are subse-
quently suppressed by Tregs in a cell-contact-dependent manner
(94). Two studies of note have reported that type I NKT cells
directly suppress tumor immunity in hematological malignancies.
In a model of Burkett’s-like B cell lymphoma, Jα18 KO mice defi-
cient in type I NKT cells had significantly fewer splenic tumors
than WT or CD1d KO mice. While stimulation of type I NKT cells
with α-GalCer did not increase tumor burden, it decreased tumor-
specific CD8+ T cells (91). Given a T cell lymphoma cell line
transfected with CD1d, NKT deficient mice had augmented CTL
activity and greater survival rates than WT mice (92). Accordingly,
the authors suggested that tumor expression of CD1d might shift
the NKT cell response toward a Th2 skewed anti-inflammatory
reaction, which produces more IL-13, TGF-β, and inhibition of
CTL and NK cell activity.

CROSS REGULATION
Type I and type II NKT subsets have been shown to not only
differentially impact cell populations but also cross-regulate one
another. This immunoregulatory axis was realized when Jα18 KO
mice, which lacked type I NKT cells showed higher susceptibil-
ity to tumor growth than WT mice in a CT26 tumor pulmonary
metastasis model, whereas CD1d KO mice deficient in both types
showed strong resistance against the tumor. This led us to believe
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that type I NKT cells may be acting to reduce the suppressive
effect of type II NKT cells (27). Sulfatide activation of type II NKT
cells in vivo enhanced tumorigenesis, and abolished or reduced the
beneficial clinical effects of α-GalCer when the two were admin-
istered together. Thus, it appeared that type II NKT cells may
also suppress type I NKT cell activation (26, 27). The latter effect
likely results from decreased pro-inflammatory cytokine secretion
by type I cells. In vitro, α-GalCer-induced IFN-γ, IL-2, and IL-4
production was inhibited upon addition of the type II antigen
sulfatide (27, 95). Whereas this effect may not always be entirely
due to type II mediated suppression, but occur partially or in
some cases because sulfatide competes with α-GalCer in binding
CD1d (95), this competitive binding mechanism was excluded in
the settings described by Ambrosino et al. (27) In a model of con-
canavalin A-induced hepatitis, it was demonstrated that activation
of sulfatide-reactive type II NKT cells and plasmacytoid DCs in
the liver contributed to the anergy, or hyporesponsiveness of type
I NKT cells (96). It is unclear if this mechanism is the same in
the tumor setting. Nonetheless, the discovery that protective type
I and suppressive type II NKT cells cross-regulate one another
defines an NKT regulatory axis, provides a better understand-
ing of the tumor immunity equilibrium, and opens a window of
opportunity to exploit that knowledge in a clinical setting.

CLINICAL APPLICATIONS
In addition to the positive results of harnessing NKT cell potential
in pre-clinical studies, clinical observations suggested diminished
NKT cell function in cancer. For example, reports have found
patients battling multiple myeloma and solid tumors to have sig-
nificantly fewer NKT cells than healthy donors (74, 97). Several
studies showed that the number of type I NKT cells in tumors
or in peripheral blood correlated with lower rates of lymph node
metastases, highly significant rates of overall and disease-free sur-
vival and served as an independent predictor for patient prognosis
(98–100). Taken together with pre-clinical studies in mice, data

imply that stimulation of type I NKT cells might be a useful
strategy for cancer therapy in human beings. However, no clin-
ical response was observed in the original clinical trial using
α-GalCer/KRN7000 to treat solid tumors (97). The less-than-
expected efficacy in human trials was believed to have multiple
contributing factors. Potential problems include insufficient drug
delivery, too low NKT cell numbers at the time of treatment, induc-
tion of NKT cell anergy, existence of natural anti-α-gal-antibodies,
or other confounding factors like cross regulation of beneficial
NKT cell activity (Table 1).

ADEQUATE STIMULATION
Because pre-clinical data showed APCs preloaded with antigen
better augmented NKT cell-based anti-tumor responses than free
α-GalCer,α-GalCer-pulsed APCs were administered intravenously
to patients (101), reviewed in Ref. (102). These α-GalCer-pulsed
APCs are delivered to the lung parenchyma, where they activate
type I NKT cells and initiate both direct and indirect anti-tumor
effects. Multiple phase I and II clinical studies using monotherapy
of α-GalCer-pulsed APCs on non-small cell lung cancer (NSCLC)
and head and neck squamous cell carcinoma (HNSCC) reported
objective anti-tumor responses, albeit at low frequency. The com-
bination of this therapy with infusion of pre-activated type I NKT
cells in HNSCC resulted in objective responses in about 40% of
patients, and a majority of those treated displayed enhanced num-
bers of IFN-γ-expressing type I NKT cells in peripheral blood
(103). Alternative routes of administration for α-GalCer-pulsed
APCs are under investigation (104, 105), and it will be interesting
to see whether these NKT cell-specific immune responses can be
optimized for other cancer types as well.

The immense variability in NKT cell number from patient to
patient may also contribute to variability in clinical response. One
potential solution to overcome this issue is NKT cell adoptive
transfer therapy. A recent study by Fujii et al. (106) establishing
induced pluripotent stem (iPS) cells that can generate unlimited

Table 1 | Clinical dilemmas, possible mechanisms, and potential solutions.

Clinical dilemma Potential mechanism Potential solution

Low NKT cell number Innate predisposition NKT cell adoptive transfer therapy

Result of tumor iPS NKT cell adoptive transfer therapy

Suboptimal response to type I NKT

cell antigen

Inadequate drug delivery or route α-GalCer-pulsed APCs

Tumor cells loaded with α-GalCer (tumor/gal)

Nanovectors with α-GalCer

Combination of Th1 and Th2 cytokine release Antigen enhancement (e.g.,α-C-GalCer, NU-α-GalCer)

Clarification of which NKT cell subset is being stimulated

(i.e., NKT1, NKT2, NKT17, etc.)

α-GalCer-induced anergy PD-1/PD-L1 expression PD-1/PD-L1 blockade

Cbl-b expression Cbl-b silencing

Innate quality of α-GalCer antigen Use of alternative antigen e.g., β-ManCer

Unknown α-GalCer-pulsed APCs

Intradermal administration of NKT cell agonist

Nanoparticle delivery

Anti-α-Gal antibody neutralization of

α-linked NKT cell antigens

Natural anti-α-Gal-antibodies Antigen without α-Gal sugar moiety, e.g., β-ManCer
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numbers of NKT cells with adjuvant activity may realize this type
of therapy.

ANERGY
Anergy may also hinder the beneficial and/or lasting effects of NKT
cell-mediated treatment (107). NKT cell anergy refers to a toler-
ance mechanism following repeated antigen stimulation in which
the lymphocyte remains in a hyporesponsive state for an extended
period of time (108). New protocols, which prevent anergy induc-
tion are being employed, such as intradermal administration or
nanoparticle delivery of the NKT cell agonist (105, 109). The exact
mechanism of NKT cell long-term functional anergy induction is
under investigation by numerous groups (107, 110–114). Marked
increase in programed death-1 marker (PD-1) expression after α-
GalCer stimulation prompted multiple studies on the role of PD-1
in type I NKT cell anergy, as PD-1 is an exhaustion marker and
negative regulator of T cell antigen receptor signaling. However,
whether PD-1 blockade can prevent or reverse anergy remains
controversial (110, 111, 115). Also, it was demonstrated that the
PD-1/PD-L1 pathway was essential for CD4+ type II NKT cells
to suppress CD4+ T cells (116). With the observations that PD-
1 is upregulated by the exhausted CD8+ T cells (117), and has
been shown to be a mechanism for tumor evasion (118, 119),
targeting PD-1 is an attractive therapeutic approach. PD-1/PDL1
blockade may not only prevent or reverse type I NKT cell anergy
and decrease suppressive activity of type II NKT cells on CD4+

T cells but it may also augment tumor immunity by preserving
CD8+ T cells. Combining anti-PD-1 treatment with an NKT cell
agonist may also be beneficial, for that could stimulate NKT cell-
mediated DC maturation, NK cell activity, and cross-priming of
those “rescued” CD8+ T cells. This is particularly interesting when
considering that ongoing clinical trials using anti-PD-1 in treat-
ment for melanoma, NSCLC, and renal cell carcinoma show early
evidence for some efficacy, but could be improved (120).

Additionally, PD-1 and the E3 ubiquitin ligase, casitas B-
lineage lymphoma-b (Cbl-b) are both regulated by Egr2/3, which
is overexpressed during α-GalCer-induced anergy (74). Cbl-b is
increased when type I NKT cells become anergic and Cbl-b defi-
ciency permits rescue of IFN-γ but not IL-4 production in anergic
NKT cells (112). Therefore, blocking Cbl-b with small molecule or
peptide antagonists may prevent anergy induction by α-GalCer.

NATURAL ANTI-α-GAL-ANTIBODIES
Another potential roadblock to α-GalCer treatment involves the
fact that human and non-human primates cannot make α-linked
sugar moieties and have natural anti-α-gal-antibodies (121). These
antibodies may neutralize the α-linked component of the drug.
Although it was originally believed that an alpha-linked sugar
moiety was necessary for glycosphingolipids to activate type I
NKT cells, a recent study showed that a ceramide with a beta-
linked sugar moiety could induce a comparable protective effect
(67). The β-glycolipid analog β-mannosylceramide (β-ManCer)
acts through an independent mechanism from that of the α-linked
KRN7000 (nitric oxide synthase/TNF-α pathways, as opposed to
primarily IFN-γ). It not only protected mice against tumors, but
also synergized with α-GalCer, so lower doses of both drugs could
be used (67). Additionally, β-ManCer failed to induce long-term

NKT cell anergy (122). In contrast to α-GalCer, β-ManCer may
achieve protection with less cytokine production, decreasing toxi-
city, less likelihood of anergy, and without potential neutralization
by anti-α-gal-antibodies. Thus, this new class of type I NKT
cell agonists represented by β-ManCer may overcome several of
the problems that could be interfering with clinical efficacy of
α-GalCer and its close analogs.

DCs AND VACCINES
A recurring theme seems to suggest that a single agent α-GalCer
may not be sufficient for cancer treatment. However, the NKT cell-
mediated activation of NK, B, CD4+, and CD8+ T cells suggests
many opportunities to use NKT cell agonists as vaccine adjuvants.
As mentioned, type I NKT cells enable DCs to cross-prime CD8+

T cells. Coadministration of α-GalCer with peptide or protein
antigens enhances the priming and boosting of CD8+ T cells
(10–12). A recent approach with vaccines involving nanovectors,
CD1d-containing endosomes that serve as nanoparticle carriers of
α-GalCer, is an attractive method to stimulate NKT cells. The carri-
ers are taken up by APCs, and because they release α-GalCer more
slowly than current methods (soluble infusion or DC-pulsing);
they require lower drug amounts for similar biological effects
(123). The microspheres can be decorated with specific antibodies
to focus them on particular targets, and particles can be engi-
neered to enhance cross-priming of CD8+ T cells by targeting
CD8+DCs (123).

A separate approach to enhance cross-priming of CD8+ T cells
that differs from simply administering antigen alongside an NKT
cell agonist has been tried in cancer. In a pre-clinical study, tumor
cells were loaded with α-GalCer (named tumor/gal), irradiated,
and infused intravenously (124). Tumor/gal cells were lysed by
NKT and NK cells in an innate fashion but NKT cells also reacted
to the α-GalCer/CD1d complex on splenic DCs, which had taken
up debris from lysed tumors. This allowed DCs to mature and
tumor antigen was cross-presented to CD8+ T cells to induce a
tumor-specific CTL response, which protected mice from tumor
challenge. More research is needed to determine which types of
cancer cells to inject for tumor/Gal therapy. For instance, because
cancer stem cells or cancer-initiating cells may drive malignancy
and immune-escape, injecting glycolipid-coated, irradiated cancer
stem cells could enhance the therapeutic effect (124).

CHEMOTHERAPY
Combining an NKT cell agonist with certain types of chemother-
apy is another option for harnessing the potential of NKT cell-
mediated protection (59, 125). In multiple myeloma, a small
cohort of patients had an enhanced immune response when α-
GalCer-stimulated NKT cells were administered in conjunction
with lenolidomide (an approved treatment for multiple myeloma)
(125). The therapy caused an activation of type I NKT cells and
consequent induction of activated NK cells and eosinophils.

CONCLUSION
The role that NKT cells play in tumor immunity is becom-
ing increasingly clear, especially as we develop a more accurate
and holistic understanding of how NKT cell subsets differentially
impact the innate and adaptive immune cell populations. Initial
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attempts to harness the immune enhancing effects of type I NKT
cells in the context of cancer were met with limited success dur-
ing translation into the clinic. However, that clinical research has
encouraged further investigation and broader understanding of
NKT cell subsets in cancer. The immunological potential of type
I NKT cells in vivo is being optimized through antigen enhance-
ment, tactical delivery, and even ex vivo expansion. Insight on the
suppressive mechanisms of type II NKT cells has informed meth-
ods of intervention to restore tumor immunity (e.g., anti-TGF-β).
Finally, taking advantage of the adjuvant effect mediated by NKT
cells in vaccines and chemotherapy treatment has proven to aug-
ment tumor immunity in animal models. While there is optimism
that NKT cells could be an effective tool in enhancing the anti-
tumor immune response, an incomplete understanding of NKT
cell subsets has hampered the progress of translating the basic and
pre-clinical NKT cell studies into the clinic. The successful strides
noted in this review will be enhanced further with a greater under-
standing of what drives context-specific interactions between NKT
cells and other cell populations, as well as by further clarification
of the role of differentiated subsets within type I (NKT1, NKT2,
NKT17, NKTreg, NKTFH), as well as the heterogeneous subset of
non-invariant or type II NKT cells.
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