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Eosinophils derive from the bone marrow and circulate at low levels in the blood in healthy
individuals. These granulated cells preferentially leave the circulation and marginate to
tissues, where they are implicated in the regulation of innate and adaptive immunity.
In diseases such as allergic inflammation, eosinophil numbers escalate markedly in the
blood and tissues where inflammatory foci are located. Eosinophils possess a range
of immunomodulatory factors that are released upon cell activation, including over 35
cytokines, growth factors, and chemokines. Unlike T and B cells, eosinophils can rapidly
release cytokines within minutes in response to stimulation. While some cytokines are
stored as pre-formed mediators in crystalloid granules and secretory vesicles, eosinophils
are also capable of undergoing de novo synthesis and secretion of these immunologi-
cal factors. Some of the molecular mechanisms that coordinate the final steps of cytokine
secretion are hypothesized to involve binding of membrane fusion complexes comprised of
soluble N -ethylmaleimide sensitive factor attachment protein receptors (SNAREs). These
intracellular receptors regulate the release of granules and vesicles containing a range
of secreted proteins, among which are cytokines and chemokines. Emerging evidence
from both human and animal model-based research has suggested an active participation
of eosinophils in several physiological/pathological processes such as immunomodulation
and tissue remodeling. The observed eosinophil effector functions in health and disease
implicate eosinophil cytokine secretion as a fundamental immunoregulatory process. The
focus of this review is to describe the cytokines, growth factors, and chemokines that are
elaborated by eosinophils, and to illustrate some of the intracellular events leading to the
release of eosinophil-derived cytokines.
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INTRODUCTION
Eosinophils are granulocytic white blood cells that are rare in
healthy individuals, but become elevated in both blood and tissue
compartments in helminthic parasite infection as well as aller-
gic inflammation, particularly in late-onset persistent eosinophilic
asthma (1). Typically, the number of eosinophils generated from
the bone marrow in healthy individuals are low, resulting in
relatively few cells circulating systemically. Eosinophils that are
produced in the healthy bone marrow predominantly home to
the gut mucosa, where they may be involved in maintenance
of homeostasis with gut microbiota (2). The numbers of blood
and tissue eosinophils are markedly altered in a range of spe-
cific inflammatory and allergic responses, where eosinophils may
be found in high densities in mucosal tissues. The recruitment
of eosinophils is thought to be orchestrated by a complex series
of events involving antigen-presenting cells (APCs), mast cells,
T cells, B cells, along with their released cytokines as immune
signals.

Along with responding to immune signals, eosinophils them-
selves are a source of over 35 cytokines, chemokines, and growth
factors (3, 4). These have profound effects on the progression of
immune and inflammatory responses (Figure 1). The purpose of

this review is to evaluate the role that eosinophil-derived cytokines,
chemokines, and growth factors, and how these may contribute to
the propagation of immune responses.

CYTOKINES, CHEMOKINES, AND GROWTH FACTORS IN
ALLERGIC INFLAMMATION AND ASTHMA
The role of eosinophils in immunity remains enigmatic. These
granulated white blood cells are found, to varying degrees of sim-
ilarity, in a wide range of invertebrates as well as vertebrates,
including crustaceans, insects, mammals, fish, and birds (5, 6).
Their expression in this wide variety of species suggests an impor-
tant and evolutionarily conserved role in immunity. But what this
role is, precisely, is still under intense scrutiny. While eosinophils
have traditionally been implicated in maintenance of immunity
against helminthic parasites, recent studies in transgenic mice that
lack eosinophils suggest a more complex role for these cells than
previously appreciated. In some cases, the absence of eosinophils
actually inhibited parasitic growth (6), in contrast to the prevail-
ing notion that eosinophils may be protective against helminthic
parasites. More recent studies indicate that eosinophils may have
a greater role in protection against viral infections, particularly
respiratory viruses (7). Thus, the understanding of the role of
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FIGURE 1 | Cytokines, chemokines, and growth factors secreted by
eosinophils. Shown is the immunofluorescent staining pattern obtained for
CCL5/RANTES in a human peripheral blood eosinophil by confocal
microscopy. Original magnification×100.

eosinophils in immunity remains a fascinating and evolving area
of research.

From a clinical perspective, eosinophils are widely known for
their tendency to increase markedly during allergic inflammation
in tissues that normally harbor very few eosinophils, such as the
lungs and upper airways. A key feature of allergic inflammation
and asthma is the acute or chronic inflammatory cell infiltration
at sites of allergen exposure in atopic subjects. Eosinophils co-
migrate with inflammatory cells and are thought to contribute to
bronchoconstriction, mucus secretion, edema, and tissue injury
in the airways. The inflammatory processes that underlie allergic
responses are orchestrated by an elaborate network of cytokines
and chemokines that regulate IgE responses, bone marrow progen-
itor cell differentiation, and adhesion molecule expression. Infil-
tration of inflammatory cells can further exacerbate inflammation
in target tissues by further secretion of cytokines, chemokines, and

growth factors from tissue-migrated cells. The allergic response
is often manifested as a biphasic reaction in asthma, consisting
of an early phase response that involves APC-mediated activa-
tion of T cells to a Th2 phenotype and mast cell degranulation,
followed by the late-phase response in which a secondary infil-
tration of inflammatory cells occurs in affected sites. The role
of eosinophils in the biphasic allergic response is thought to
be mainly associated with the late-phase response. Eosinophils
recruited to inflammatory sites frequently undergo degranula-
tion, releasing a range of cationic cytotoxic molecules, including
major basic protein (MBP) and eosinophil peroxidase (EPX), as
well as producing numerous cytokines, chemokines, and growth
factors.

Several regulatory cytokines have been defined as belonging
to two classes of CD4+ T cells, which are involved in the initi-
ation and maintenance of the allergic response. The first group
of cytokines are those produced by T helper 1 (Th1) cells, which
include interferon-γ (IFNγ), interleukin-2 (IL-2), and IL-12. The
second group of cytokines are generated by Th2 cells, such as
IL-4, IL-5, IL-9, and IL-13. More recent studies have suggested
that Th17 and Treg cells are also important in the modulation of
allergic responses by their production of immunosuppressive or
regulatory cytokines including IL-10 and IL-17 (8). More recent
studies have suggested an important role for IL-25 and IL-33 in
the initiation of allergic responses, as these cytokines show a sig-
nificant association with asthma in large cohort genome-wide
association studies (9). In particular, IL-33 is important in the
rapid induction of airway smooth muscle contraction by stim-
ulating expansion of IL-13-producing type 2 innate lymphoid
cells (10).

A substantial body of evidence from human and animal studies
supports the hypothesis that allergic inflammation is an inappro-
priate response that arises from polarization of T cells toward a
Th2 response, since greater expression of Th2 cytokines is seen
in allergen-challenged individuals, along with a downregulation
of Th1 cytokines. Enhanced expression of Th2 cytokines leads
to the promotion of IgE switching of B cells, prevention of Th1
cytokine expression, increased tissue eosinophilia and eosinophil
degranulation, and enhanced eosinophil survival. Prolongation of
eosinophil survival, associated with delayed apoptosis, is thought
to increase the amount of time that eosinophils actively release
toxic mediators into tissues.

Against this background of Th2 responses in allergic inflamma-
tion, the cytokine network associated with allergy and asthma in
humans is complex and not always associated with specific asthma
phenotypes. Several studies suggest that although IL-4 triggers the
polarization of T cells to a Th2 phenotype, it is not necessary for the
manifestation of asthma (1). Moreover, the Th1 cytokine, IFNγ,
may play a role in exacerbation of existing allergic inflammation
as it is a potent activator of eosinophils in vitro (11–16). IFNγ

has been found at elevated levels in the sera of patients with adult
acute severe asthma (17, 18), and IFNγ+ cells become upregu-
lated in correlation with eosinophil infiltration in allergic subjects
(19, 20). Th1 and Th17 cytokines are associated with activation
of innate immune cells in the recently characterized phenotype
of non-Th2 asthma, which is a late-onset form of asthma that
is seen in women, obese patients, smoking-associated asthma,
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and paucigranulocytic patients (1). Recent findings indicate that
thymic stromal lymphopoietin (TSLP) may be a key target in
airway hyperresponsiveness in allergic asthmatics (21). These
observations suggest that Th2 cytokine responses alone are insuf-
ficient to promote asthmatic responses in the airways of human
subjects.

However, the majority of asthma cases, although certainly
not all, fit into the Th2 cytokine profile with varying degrees
of eosinophilia (1). While the proportion of asthmatics exhibit-
ing high numbers of eosinophils is not known, several studies of
patients with mild to severe asthma suggest that it may be around
50% (1). Thus, eosinophils may be an important contributor to
inflammatory responses at least half of asthma cases.

In summary, the substantial cytokine network underlying aller-
gic inflammation is complex, with a Th2 cytokine profile and
eosinophilia associating with some, but not all, asthma phe-
notypes. The way that eosinophil-derived cytokines contribute
to immune defense or allergic diseases is not fully understood,
although interestingly, recent discoveries have elucidated several
novel functions for these cytokines in immunity and metabolism.

EOSINOPHILS AND THEIR DEGRANULATION RESPONSES
Eosinophils contain unique secretory granules known as crystal-
loid granules. These are so-called because of their characteristic
crystalline cores, which appear electron-dense upon imaging by
transmission electron microscopy. The crystalline core consists of
highly concentrated, crystallized MBP, a cationic protein, which
has cytotoxic effects on tissues upon its release (22). In addition
to the MBP-rich crystalline core, crystalloid granules contain a
matrix that is enriched in at least three other cationic proteins,
which are EPX, eosinophil cationic protein (ECP), and eosinophil-
derived neurotoxin (EDN). The liquid phase of the matrix also
contains many other enzymes and proteins, including cytokines,
chemokines, and growth factors (Figure 2).

The contents of the crystalloid granule in eosinophils are
released to the outside of the cell by at least four distinct mech-
anisms. These are (1) classical exocytosis (23); (2) compound
exocytosis (24); (3) piecemeal degranulation (25), which is a
form of exocytosis involving the fusion of small, rapidly mobi-
lized secretory vesicles with the cell membrane; and (4) necrotic
disintegration of the cell or “cytolysis,” where whole, intact gran-
ules are released upon cell membrane rupture (26, 27). Piecemeal
degranulation and cytolysis are most commonly observed in tis-
sues obtained from patients with allergic inflammation (28, 29).
Tissue damage associated with eosinophilic asthma and allergic
inflammation is thought to be related to excessive release and tis-
sue deposition of eosinophil granule proteins, particularly MBP,
EPX, and ECP (22).

Several physiological agonists induce the release of eosinophil
granule proteins by exocytosis, including platelet-activating fac-
tor [PAF; (30, 31)], opsonized surfaces (32), complement
factors [C5a, (33)], immunoglobulin complexes (34), and
cytokines and chemokines including granulocyte/macrophage
colony-stimulating factor (GM-CSF), IFNγ, IL-3, IL-5, and
CCL11/eotaxin (16, 35–37). Many of these factors are present
in allergic inflammation and would be expected to contribute to
activation of eosinophil degranulation responses.

FIGURE 2 | Intragranular sites of storage for eosinophil-derived
cytokines. The eosinophil crystalloid granule consists of two internal
compartments: the core, enriched in MBP, and the matrix, which contains
EPX, ECP, and EDN, among other granule components. Small secretory
vesicles also transport cytokines, including CCL5/RANTES, IL-4, and TGFα.
SNARE molecules are shown in the lipid bilayer membranes of granules
and secretory vesicles.

HUMAN EOSINOPHILS AS A SOURCE OF CYTOKINES,
CHEMOKINES, AND GROWTH FACTORS IN BLOOD AND
TISSUES
Over 35 cytokines, chemokines, and growth factors have been
characterized in eosinophils (Table 1). In the majority of cases,
messenger RNA and protein for each product has been iden-
tified. Evidence for the synthesis and expression of nearly all
eosinophil-derived cytokines, chemokines, and growth factors has
been obtained from peripheral blood eosinophils purified from
non-atopic as well as atopic subjects. A number of these have been
found as stored, pre-formed mediators in crystalloid granules,
giving eosinophils the ability to release these potent immunoreg-
ulatory factors rapidly (<1 h) into the surrounding milieu in
response to activation.

In confirmation of observations with peripheral blood
eosinophils, tissue eosinophils have also been characterized for
their ability to synthesize and secrete cytokines, chemokines, and
growth factors. Studies of tissue eosinophils from nasal polyps,
bronchial biopsies, bronchoalveolar lavage (BAL) fluid, sputum
samples, celiac mucosal biopsies, and skin biopsies from atopic
individuals have shown that these cells are also capable of elabo-
rating these immunomodulatory factors. For example, a signifi-
cant percentage of eosinophils from subjects with allergic rhinitis
express GM-CSF (41), IL-4 (50), IL-5 (108), CCL3/macrophage
inflammatory protein-1α (MIP-1α) (71), CCL5/regulated on
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Table 1 | Eosinophil-derived cytokines, chemokines, and growth factors.

Mediator detected in

human eosinophils

Molecule

detected

Mean quantity of

protein stored

(per 106 cells)

Release factors Intracellular localization

of stored protein

Reference

A. Cytokines

A proliferation-inducing

ligand (APRIL)

mRNA

Protein

– – – (38)

Granulocyte/macrophage

colony-stimulating

factor (GM-CSF)

mRNA

Protein

15 pg Ionomycin

LPS

Crystalloid granules

(core)

(39–42, 44)

Interleukin-1α mRNA

Protein

– PMA – (45, 46)

Interleukin-1β mRNA

Protein

– [Constitutively released] – (47)

Interleukin-2 mRNA

Protein

6 pg Serum-coated particles

PHA

Crystalloid granules

(core)

(48, 49)

Interleukin-3 mRNA

Protein

– Ionomycin

IFNγ

– (36, 40)

Interleukin-4 mRNA

Protein

108 pg Immune complexes

Serum-coated particles

Cytokines

Crystalloid granules

(core)

(50–53)

Interleukin-5 mRNA

Protein

– Immune complexes Crystalloid granules

(core/matrix?)

(42, 54–57)

Interleukin-6 mRNA

Protein

356 pg Cytokines Crystalloid granules

(matrix)

(4, 15, 58, 59)

Interleukin-10 mRNA

Protein

455 pg Cytokines Crystalloid granules (4, 53, 60)

Interleukin-11 mRNA

Protein

– – – (61)

Interleukin-12 mRNA

Protein

186 pg Cytokines Crystalloid granules (4, 62)

Interleukin-13 mRNA

Protein

4,596 pg Cytokines Crystalloid granules (63, 64)

Interleukin-16 mRNA

Protein

– [Constitutively released] – (65)

Interleukin-17 Protein – – – (66)

Interleukin-25 mRNA

Protein

– [Constitutively released] – (67, 68)

Interferon-γ (IFNγ) mRNA 997 pg Cytokines Crystalloid granules,

small secretory vesicles

(4, 69)

(Continued)
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Table 1 | Continued

Mediator detected in

human eosinophils

Molecule

detected

Mean quantity of

protein stored

(per 106 cells)

Release factors Intracellular localization

of stored protein

Reference

Tumor necrosis factor-α

(TNF)

mRNA

Protein

909 pg Immune complexes

TNF

LPS

Cytokines

Crystalloid granules (4, 43, 53, 70,

71, 72, 73)

B. Chemokines

CCL3/macrophage

inflammatory protein-1α

(MIP-1α)

mRNA

Protein

– – – (71, 74)

CCL5/regulated on

activation, normal T cell

expressed and secreted

(RANTES)

mRNA

Protein

7,000 pg Serum-coated particles

IFNγ

Crystalloid granules,

small secretory vesicles

(16, 75)

CCL11/eotaxin mRNA

Protein

16–22 pg C5a, immune complexes Crystalloid granules (76–78)

CCL13/monocyte

chemoattractant

protein-4 (MCP-4)

mRNA

Protein

13 pg Immune complexes Crystalloid granules (78)

CCL17/thymus

activation regulated

chemokine (TARC)

mRNA

Protein

– TNF+ IFNγ or IL-4 – (79, 80)

CCL22/macrophage-

derived chemokine

(MDC)

mRNA

Protein

– TNF+ IFNγ or IL-4 – (79, 80)

CCL23/myeloid

progenitor inhibitory

factor 1 (MPIF-1)

mRNA

Protein

– Cytokines – (81)

CXCL1/Groα mRNA

Protein

95 pg Cytokines Crystalloid granules (82)

CXCL5/epithelial-

derived

neutrophil-activating

peptide 78 (ENA-78)

mRNA

Protein

1,500 pg Cytokines – (83)

CXCL8/interleukin-8 mRNA

Protein

– C5a

fMLP

GM-CSF – RANTES or PAF

Immune complexes

TNFα

LPS

– (43, 53, 84–87)

CXCL9/monokine

induced by gamma

interferon (MIG)

mRNA

Protein

– TNF+ IFNγ or IL-4 – (79, 88)

(Continued)
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Table 1 | Continued

Mediator detected in

human eosinophils

Molecule

detected

Mean quantity of

protein stored

(per 106 cells)

Release factors Intracellular localization

of stored protein

Reference

CXCL10/interferon γ

induced protein 10

(IP-10)

mRNA

Protein

– TNF+ IFNγ or IL-4 – (79, 88)

CXCL11/interferon-

inducible T cell alpha

chemoattractant (I-TAC)

mRNA

Protein

– IFNγ – (88)

C. Growth factors

Heparin-binding

epidermal growth

factor-like binding

protein (HB-EGF-LBP)

mRNA – – – (89)

Nerve growth factor

(NGF)

mRNA

Protein

10 pg – – (90)

Platelet-derived growth

factor, B chain (PDGF-B)

mRNA – – – (91)

Stem cell factor (SCF) mRNA

Protein

9 pg Chymase Crystalloid granules (92)

Transforming growth

factor-α (TGFα)

mRNA

Protein

– Cytokines – (93–96)

Transforming growth

factor-β (TGF-β)

mRNA

Protein

– Cytokines – (95–103)

Vascular endothelial

growth factor (VEGF)

mRNA

Protein

– Cytokines Crystalloid granules (104–107)

activation, normal T cell expressed and secreted (RANTES) (109,
110), and transforming growth factor-β1 (TGFβ1) (98). As many
as 44% of eosinophils present in nasal polyp tissues have been
shown to be positive for IL-4 (50). Moreover, the majority of
tissue-infiltrating eosinophils (84%) were found to be IL-4+ dur-
ing allergen-induced cutaneous late-phase reactions at 6 h (50).
In another study, around 20% of tissue eosinophils were posi-
tive for IL-4 and IL-5 mRNA in skin biopsies of allergic indi-
viduals 24 h following challenge, which increased to 50–60%
for protein expression of IL-4 and IL-5 (111). Eosinophils have
also been shown to express IL-4 and IL-5 mRNA and protein
in bronchial biopsies of atopic asthmatics as well as normal
non-atopic subjects (112).

Other cytokines and chemokines have been shown to increase
in tissue eosinophils during allergic inflammation. Eosinophils
have been shown to exhibit greater expression of TGFβ1 than those
of normal control subjects in bronchial biopsy tissue sections (101,
102). Nasal mucosal biopsies from seasonal rhinitis patients were
found to contain elevated CCL5/RANTES+ eosinophils, mak-
ing up around 15% of the total CCL5/RANTES+ population

of cells (109). Eosinophils found in late-phase cutaneous reac-
tions following allergen challenge in atopic subjects also express
increased CCL5/RANTES mRNA and protein (75).

Endobronchial or segmental challenge with allergen consis-
tently results in elevated eosinophil numbers in BAL fluid samples.
Eosinophils accumulating in the airways following allergen chal-
lenge have been shown to express GM-CSF and IL-5 (42), as
well as CXCL8/IL-8 (87), and CCL11/eotaxin (76). BAL-derived
eosinophils that were recruited to the airways upon allergen
challenge secrete significantly increased levels of CXCL8/IL-8
compared with those of normal controls during in vitro incu-
bation (87). Supporting these observations is the study showing
that sputum eosinophils also express GM-CSF as determined by
immunocytochemistry (113).

The discovery of expression of cytokines by tissue eosinophils is
not restricted to those found in the skin and airways. Eosinophils
in the gut mucosa have also been found to express cytokines.
In patients with active celiac disease, eosinophils from the gut
mucosa were shown to be positive for IL-5 mRNA, and fol-
lowing treatment with a gluten-free diet, the numbers of IL-5+
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eosinophils declined (54). However, IL-5+ eosinophils have not
been detected in all gastrointestinal disorders, as intestinal mucosal
eosinophils in Crohn’s disease do not appear to be positive for
IL-5 (56).

Other diseases also exhibit cytokine expression by eosinophils.
IL-5+ eosinophils have been detected in blood and tissue sam-
ples of individuals with eosinophilic cystitis, hypereosinophilic
syndrome, and eosinophilic heart disease (55, 56).

Taken together, these and other ex vivo studies in humans
have demonstrated that eosinophils derived from both the periph-
eral blood and tissue sources are capable of synthesizing, and in
some cases releasing, cytokines, chemokines, and growth factors
in eosinophilic diseases.

STORAGE AND SECRETION OF EOSINOPHIL-DERIVED
CYTOKINES, CHEMOKINES, AND GROWTH FACTORS
As many as 10 cytokines, chemokines, and growth factors have
been identified as pre-formed mediators that are stored within the
crystalloid granules of eosinophils. Those found within granules
are CCL5/RANTES (16), CCL11/eotaxin (77), GM-CSF (44), IL-2
(48), IL-4 (51, 52), IL-5 (56, 57), IL-6 (15), IL-13 (4, 63), transform-
ing growth factor-α (TGFα) (114), and tumor necrosis factor-α
(TNF) (70). The most abundant cytokine in eosinophils appears
to be IL-13, followed by IFNγ and TNF (4). The techniques used to
determine intracellular sites of cytokine storage include immuno-
cytochemistry, subcellular fractionation, immunogold labeling,
and immunofluorescence using confocal microscopy analysis.

Most cytokines that have been identified in eosinophil crystal-
loid granules appear to be stored within the matrix compartment
surrounding the crystalline core, although a few may colocal-
ized with the MBP-containing core. These are GM-CSF (44), IL-2
(48), and IL-4 (51). Some cytokines have not had their precise
intragranular location determined, such as IL-5. These fascinat-
ing observations indicate that eosinophils are capable of storing
pre-formed cytokines that may be released rapidly in response to
inflammatory events.

Eosinophils appear to use a specialized tubulovesicular system
to transport some of these cytokines and chemokines from the
crystalloid granule to the cell membrane. This membrane trans-
port mechanism, also known as piecemeal degranulation, allows
the shuttling of granule contents to the cell surface through rapidly
mobilizable secretory vesicles that bud from the surface of the crys-
talloid granule (115–118). This mechanism of cytokine transport
was first identified with CCL5/RANTES, in which at least two
intracellular compartments store pre-formed cytokine. The first is
the crystalloid granule, and the second is a pool of small secretory
vesicles that sediment at a higher buoyant density than granules
when analyzed by subcellular fractionation (16).

Other studies have demonstrated that these small secretory
vesicles are important in cytokine trafficking, particularly for
TGFα (114) and more recently, IL-4 (119–122). The membrane
trafficking mechanisms associated with piecemeal degranula-
tion of cytokines and chemokines are described in more detail
elsewhere in this issue (123).

Small secretory vesicles increase in numbers as well as in
their content of cytokines and chemokines upon stimulation
of eosinophils by immunoregulatory cytokines. For example,

stimulation of peripheral blood eosinophils in vitro by IFNγ

induces intracellular mobilization of IL-6 and CCL5/RANTES
prior to their release (15, 16). IFNγ specifically induces the redis-
tribution of CCL5/RANTES within eosinophils from crystalloid
granules to small secretory vesicles within 10 min of stimulation
(16). Intriguingly, the pool of CCL5/RANTES-containing small
secretory vesicles was mobilized to the cell periphery within min-
utes of stimulation, leaving MBP+ crystalloid granules behind
in the cytoplasmic regions of cells, while crystalloid granule-
associated CCL5/RANTES followed afterward. These findings
suggest that granule proteins and cytokines/chemokines are selec-
tively and differentially released in line with specific types of
inflammatory responses in eosinophils.

Supernatants retrieved from IFNγ-stimulated eosinophils con-
tained increased CCL5/RANTES and other crystalloid granule
products (EPX), confirming the occurrence of degranulation (16).
Following 16 h of stimulation by IFNγ, eosinophils were able
to replenish their stores of CCL5/RANTES in their crystalloid
granules. These findings have implications for sustained release
of eosinophil-derived cytokines and chemokines in immune
responses. An interesting possibility is that the eosinophil may
have the potential to generate fine-tuned responses to immuno-
logical stimuli, with the release of cytokines/chemokines occurring
separately from granule proteins.

CCL5/RANTES+ small secretory vesicles were subsequently
found to colocalize with the soluble N -ethylmaleimide sensitive
factor attachment protein receptor (SNARE), VAMP-2 (vesicle-
associated membrane protein-2) (124). SNARE proteins are uni-
versal fusion proteins that regulate the attachment (docking) of
lipid bilayer-surrounded granules or vesicles to target membranes
such as the inner leaflet of the plasma membrane (125). The
fusion of CCL5/RANTES+ vesicles upon docking with the inner
leaflet of the plasma membrane is hypothesized to be depen-
dent on binding to cognate target membrane-bound SNAREs,
SNAP-23 and syntaxin-4 (117, 118, 126). Eosinophils depend
on VAMP-7 for the release of granule proteins in response to
intracellular secretagogues, GTPγS, and Ca2+ (127). However, we
were unable to demonstrate whether CCL5/RANTES release was
dependent on VAMP-7 as well, since negligible CCL5/RANTES
was detected in supernatants of permeabilized eosinophils stim-
ulated with these secretagogues. This suggests that the perme-
abilization process (using streptolysin-O) and/or the secreta-
gogues used (GTPγS and Ca2+) may not be optimal for induc-
ing piecemeal degranulation, leading to cytokine secretion, in
eosinophils.

Our recent findings indicate that eosinophil secretion may be
evoked by the addition of PAF, a potent secretagogue for both
human and mouse eosinophils (31). Degranulation was assessed
by an EPX ELISA that was optimized in-house (128). Previously,
mouse eosinophils were considered to be poor degranulators
(129–132). Using these novel parameters for the assessment of
mouse eosinophil degranulation, we determined that the guano-
sine triphosphatases (GTPases) Rac2 and Rab27a contribute to
the secretion of EPX from eosinophils (133, 134). Rac2 regulates
the assembly of the actin cytoskeleton network, which is essen-
tial for granule movement through the cytoplasm, while Rab27a
acts through a family of Sec/Munc proteins that regulate SNARE

www.frontiersin.org November 2014 | Volume 5 | Article 570 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Davoine and Lacy Eosinophil cytokines

binding (135, 136). The role of GTPases in regulating cytokine
secretion from eosinophils has not yet been defined.

Taken together, our studies suggest that cytokine trafficking
and release in eosinophils may be mediated by VAMP-2 binding
through its cognate SNAREs, SNAP-23, and syntaxin-4. Addi-
tional studies are required to understand how VAMP-2-mediated
cytokine secretion may be regulated by GTPases.

POTENTIAL IMMUNOLOGICAL ROLES FOR
EOSINOPHIL-DERIVED CYTOKINES, CHEMOKINES, AND
GROWTH FACTORS
The ability of eosinophils to synthesize and secrete a large number
of cytokines, chemokines, and growth factors suggest that these
cells have the potential to regulate numerous immune responses,
including allergic inflammation. The diversity of immunomodu-
lators produced by eosinophils suggests that they may be able to
orchestrate inflammatory processes in an exacerbating or modu-
latory manner. Many of the factors elaborated by eosinophils are
likely to regulate immune responses, particularly CCL3/MIP-1α,
CCL5/RANTES, CCL11/eotaxin, CXCL8/IL-8, GM-CSF, IL-1α,
IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, TNF, and various
growth factors. Other eosinophil-derived cytokines, chemokines,
and growth factors, shown in Table 1, are likely involved in
other types of reactions that apply to unique situations, such as
atopic dermatitis, which may involve IL-12 released from tissue
eosinophils following an initial phase of a Th2 response during
cutaneous allergen challenge.

Eosinophil-derived chemokines may support the recruitment
and maintenance of tissue eosinophils and lymphocyte infiltra-
tion during allergic inflammation. Eosinophils generate numerous
chemokines including CCL3/MIP-1α and CCL5/RANTES (16, 71,
74, 75), both of which are major regulators of local inflammatory
responses and chemoattractants for circulating leukocytes (137,
138). CCL5/RANTES exerts direct effects on eosinophils by ele-
vating intracellular Ca2+, triggering degranulation, and promot-
ing superoxide release concurrently with enhanced chemotaxis
(139–141).

CCL11/eotaxin is an important eosinophil-specific chemokine
that is involved in chemotaxis of eosinophils into tissues, and is a
highly potent agonist for inducing an influx of eosinophils dur-
ing allergic responses (142). Gene knockout of CCL11/eotaxin
markedly diminishes the tissue presence of eosinophils, which
subsequently decreases allergic inflammation in the gut, skin,
and airways (143). Like CCL5/RANTES, CCL11/eotaxin activates
intracellular Ca2+ mobilization, degranulation, and respiratory
burst in eosinophils, suggesting that it may act in an autocrine
manner (144–146). Eosinophils express CCL11/eotaxin consti-
tutively, apparently in association with their granules (77). This
suggests a potential role for eosinophil-derived CCL11/eotaxin to
function in a paracrine/autocrine manner for further recruitment
of eosinophils at sites of inflammation.

Eosinophils release the neutrophil chemokine CXCL8/IL-8
(84), suggesting a role for eosinophils in recruitment of neu-
trophils at sites of inflammation. This chemokine is highly chemo-
tactic and stimulatory for neutrophils and T cells (147), and
eosinophils also have chemotactic responses to CXCL8/IL-8 fol-
lowing incubation with GM-CSF or IL-3 (148). However, IL-4

and IL-5 production in allergic inflammation may downregulate
CXCL8/IL-8 expression, since these cytokines inhibit CXCL8/IL-8
release from monocytes (149). The overall role of CXCL8/IL-8
derived from eosinophils in inflammatory conditions is yet to be
determined.

Eosinophils have been shown to synthesize and release abun-
dant GM-CSF, which promotes degranulation and mediator
release from these cells (37, 40, 44, 148). The activation of
eosinophils by ionomycin, a calcium ionophore, induces GM-
CSF release, which prolongs their own survival in vitro (40).
Thus, GM-CSF is likely a critical eosinophil-derived cytokine
that is important in maintaining the viability and effector func-
tion of eosinophils at inflammatory foci in allergic and immune
responses.

The production of IL-1α from human eosinophils has been
associated with cytokine induction of human leukocyte antigen
DR (HLA-DR) expression (45). This suggests that the eosinophil
has the capacity to function as an APC, as demonstrated in mouse
models of allergic inflammation (150–153). Eosinophils have also
been demonstrated to function as APCs during Strongyloides ster-
coralis infection (154). Secretion of IL-1α from eosinophils may
be an important factor in allergen presentation to T cells in sub-
jects with established eosinophilia during Th2-deviated immune
responses to specific allergens.

A role in allergic inflammation is also implicated for eosinophil-
derived IL-2, an essential growth factor for T cells that is likely to
be critical for the initiation of the allergic phenotype following an
early phase involving IL-4 stimulation (155). IL-2 also induces
eosinophil chemotaxis via its receptor (CD25) expressed on a
proportion of them (156).

IL-3 is a pluripotent growth factor required for the genera-
tion of a wide range of myelocytic cells and granulocytes, and is
an important autocrine factor produced and used by eosinophils
when stimulated (148, 157). Thus, tissue eosinophils that are
actively secreting IL-3 are likely to prolong their own survival by
autocrine signaling.

The role of IL-4 in allergic inflammation has been extensively
studied and is among the most clearly defined of all known
cytokines, with biologics development targeting the function of
this cytokine (158). This cytokine is firstly important in the main-
tenance of Th2 responses (159, 160), and secondly, it is a critical
factor in initiating the switch of B cells to IgE isotype produc-
tion (161). IL-4 also has many other stimulatory roles in allergic
inflammation, by inducing chemotaxis in eosinophils and enhanc-
ing the capacity of eosinophils to release granule proteins (35,
162). Eosinophil-derived IL-4 may be important in promotion of
inflammation by increasing local IgE production, as well as upreg-
ulating vascular cell adhesion molecule (VCAM) expression on
endothelial cells, which would increase leukocyte adhesion and
transmigration into affected tissues (163). This would, in turn,
increase eosinophil-specific migration into tissues by expression
of very late antigen 4 (VLA-4) ligand (164).

Similarly to IL-4, IL-5 is also extensively investigated and well-
defined for its role in allergic inflammation. While IL-5 is not
necessary for skewing immune responses toward a Th2 pheno-
type, it is important in the downstream events that are typical
of Th2 responses to allergens. IL-5 is essential for the terminal
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differentiation of eosinophils from CD34+ progenitors present
in the bone marrow (165, 166). It also has numerous effects
on eosinophils including prolongation of survival, induction of
chemotaxis, priming, and degranulation so that their responses
to agonists are enhanced (35, 167, 168). Finally, IL-5 prolongs the
survival of eosinophils in vitro (169). These observations suggest
that eosinophil-derived IL-5 is involved in exacerbations of the
local allergic response following its release.

An additional cytokine derived from eosinophils that is likely to
contribute to allergic responses is IL-6. This pleiotropic cytokine,
generated during acute phase reactions, is important in regulat-
ing T and B cell function, as well as priming of granulocytes. IL-6
is an essential cofactor with IL-4 in isotype switching of B cells
toward IgE production (170). In asthmatics, IL-6 is elevated in the
serum and BAL in both baseline conditions and following aller-
gen challenge along with IL-4 and IL-5 (171, 172). Whether IL-6
expressed from eosinophils is important in allergic inflammation
is not known.

Eosinophils may also augment Th2 responses by secretion of
IL-9, a potent T cell, and mast cell growth factor (173, 174). The
expression of IL-9 mRNA and protein products were demon-
strated in eosinophils along with mRNA encoding the IL-9 recep-
tor α subunit, suggesting an autocrine role for this cytokine in
eosinophils.

Eosinophils have the capacity to express and release the
immunosuppressive cytokine IL-10 (53). A role for eosinophil-
derived IL-10 is likely to enhance allergic inflammation, since this
cytokine acts in concert with IL-4 to mediate the growth, differen-
tiation, and isotype switching of activated B cells (175). However,
IL-10 is classically known for its immunosuppressive role in immu-
nity by decreasing cytokine secretion from inflammatory cells
and preventing allergic inflammation (176, 177). A recent study
showed that eosinophil-derived IL-10 has a novel immunoreg-
ulatory role for eosinophils in helminth infection (60). IL-10
generated from eosinophils induced the proliferation of myeloid
dendritic cells and CD4+ T lymphocytes, which inhibited expres-
sion of inducible nitric oxide synthase (iNOS), and protected
intracellular Trichinella spiralis larvae. This striking observation
suggests a protective role for eosinophils for intracellular T. spi-
ralis larvae against NO-mediated killing, and further, that IL-10
derived from eosinophils drives this protective response. Further,
it appears that T. spiralis exploits eosinophils to maintain its long-
term survival in muscle tissue. These findings indicate a significant
functional diversity of eosinophils that has not previously been
appreciated until the advent of transgenic eosinophil-deficient
mouse strains.

Among the more important cytokines released by eosinophils is
IL-13, which is also stored in crystalloid granules as a pre-formed
mediator (4, 63). IL-13 has many roles in the establishment of
airway disease in asthma as well as pulmonary fibrosis, and also
activates matrix metalloproteases in the airways (178). The acti-
vation of matrix metalloproteases by IL-13 is thought to protect
against excessive allergic inflammation. IL-13 is also able to induce
isotype switching of B cells to produce IgE (179), and has an
important role in allergic inflammation (180). The expulsion of
helminthic parasites from the gut of mice is also dependent on
IL-13 (181). Eosinophils express IL-13 in inflammatory diseases

(64), and this may have a role in the development of allergic
inflammation, as discussed below.

Growth factors have an important role in inflammatory condi-
tions, and those derived from eosinophils are likely to promote an
inflammatory phenotype. Among these are heparin-binding epi-
dermal growth factor (HB-EGF), which is a potent smooth muscle
cell mitogen, and may contribute to pulmonary hypertension (89).
Nerve growth factor (NGF) is elevated in subjects with allergic
asthma, allergic rhinitis, and allergic urticarial–angioedema, with
the largest increases observed in asthma (182). Eosinophils express
NGF mRNA and protein, and this may contribute to the elevated
levels seen in allergic inflammation (90). The most likely source
of elevated serum NGF in allergy is from IgE-stimulated mast
cells in tissues, since mast cells synthesize and secrete NGF (183).
NGF stimulates T cells, B cell proliferation and differentiation, and
eosinophil differentiation from peripheral progenitors (184), and
is thus implicated in the pathogenesis of allergic inflammation.

Eosinophils also express the mast cell cytokine stem cell factor
(SCF) (92). SCF may be associated with a positive feedback loop
in tissue mast cells to maintain or exacerbate allergic inflamma-
tion, as well as inducing the growth and differentiation of mast
cell progenitors residing in tissues (185).

Other growth factors produced by eosinophils include TGFα

and TGFβ, which may modulate wound-healing and tissue remod-
eling (93, 102). TGFβ is specifically recognized for its role in
chronic inflammation and fibrosis, and eosinophil-derived TGFβ

may exert a role in tissue repair by inducing fibroblast growth
and differentiation into myofibroblasts (186). Thus, TGFβ released
from eosinophils may have a role in extracellular matrix protein
deposition, particularly collagen, which contributes to structural
abnormalities observed in severe allergic inflammation, including
stromal fibrosis and basement membrane thickening.

Purified peripheral blood eosinophils from atopic individu-
als have been demonstrated to spontaneously release the pro-
inflammatory cytokine TNF upon culture, and normal eosinophils
stimulated with immobilized immunoglobulins or TNF express
mRNA for this cytokine (53). TNF is a highly potent activa-
tor of monocytes, T cells, neutrophils, and endothelial cells, and
enhances eosinophil adhesion and cytotoxicity (187, 188). This
particular cytokine has numerous roles in inflammatory condi-
tions, as well as helminthic infection and neoplasia associated with
eosinophilic infiltration.

The Th1 cytokines, IL-12 and IFNγ, are also expressed in
eosinophils. These are typically associated with inflammatory con-
ditions that are distinct from the Th2 profile in allergic inflamma-
tion, and usually downregulate allergic inflammation following
their release (189). However, Th2 cytokines can paradoxically
promote Th1 responses in immune cells. IL-12 produced from
eosinophils treated with IL-4 has been demonstrated to promote
IFNγ mRNA expression in human Th1 cells (62). Allergen patch
test reactions in atopic patients have shown that a Th1-like T
cell activation occurs following the initial phase of increased local
expression of Th2 cytokines associated with eosinophil infiltration
after allergen challenge (190). Eosinophil-derived IL-12 was pro-
posed to induce a switch from Th2 to Th1 responses commonly
seen in late-phase allergic skin reactions (191). Eosinophils also
express IFNγ in normal and atopic individuals (4, 69). Stimulation

www.frontiersin.org November 2014 | Volume 5 | Article 570 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Davoine and Lacy Eosinophil cytokines

of eosinophils by IFNγ has been postulated to enhance allergic
inflammation during viral infections, suggesting an autocrine role
for this cytokine (192).

Taken together, these findings show that eosinophils have
the capacity to generate numerous immunoregulatory cytokines,
chemokines, and growth factors. However, while the discovery
that eosinophils can synthesize and secrete these immunomodu-
latory factors is important, it is essential to determine whether
eosinophil-derived cytokines, chemokines, and growth factors
have bioactive roles in immunity. In this way, we may learn more
about the specific immunological function of eosinophils in the
regulation of inflammatory processes.

DO EOSINOPHIL-DERIVED CYTOKINES, CHEMOKINES, AND
GROWTH FACTORS HAVE BIOACTIVE ROLES IN THE IMMUNE
SYSTEM?
Although the studies described above have presented evidence for
the expression and release of a plethora of cytokines, chemokines,
and growth factors from eosinophils, around a third of these
have been shown to have a direct bioactive role. These include a
proliferation-inducing ligand (APRIL), CCL5/RANTES, GM-CSF,
IL-1β, IL-4, IL-10, IL-12, IL-13, IL-16, TNF, and TGFβ, which have
been shown to have direct bioactive effects on other cells or in
mouse models.

Recent studies indicate that eosinophils express APRIL, along
with IL-6, which promoted the survival of plasma cells in the
bone marrow in mice (38). This important finding suggests
that eosinophils may have a role in enhancing and maintaining
immunoglobulin production from plasma cells, which was shown
to be true in a later study where eosinophils increased IgA+ plasma
cell numbers and the secretion of IgA in the gut mucosa (193).
These studies suggest that eosinophils are essential for maintaining
the integrity of the gut mucosal immunity, which is in agreement
with their usual tissue homing under homeostatic conditions.

Other studies have shown that eosinophil-derived CCL5/
RANTES and IL-16 have direct effects on lymphocytes in culture
by inducing chemotactic activities (62). Thus, human eosinophils
have the ability to alter the function of CD4+ lymphocytes
and memory T cells (194, 195). Finally, eosinophil-derived
CCL5/RANTES has been shown to exert bioactive effects in
eosinophil chemotactic assays as determined by the inhibitory
effects of antibody to CCL5/RANTES, suggesting a role for
this chemokine in autocrine signaling to enhance eosinophil
migration.

The prolongation of eosinophil survival by GM-CSF is sensi-
tive to inhibition by cyclosporin A, suggesting that this drug may
modulate allergic inflammation by preventing autocrine cytokine
signaling in eosinophils (40). Thus, eosinophil-derived GM-CSF
is likely to have biological effects on survival of tissue eosinophils
as well as newly recruited cells.

A recent study has demonstrated a role for eosinophil-derived
IL-1β in inducing synthesis and secretion of IL-17 in acti-
vated CD4+ T cells (47). As Th17 cells are implicated in the
pathogenesis of allergic airway inflammation (196), this may
be a key mechanism by which eosinophils promote Th17 cell
differentiation.

Perhaps the most well studied cytokine elaborated by
eosinophils is IL-4. Eosinophils are among the most abundant

IL-4-expressing non-T, non-B cell populations in the lung and
spleen of mice infected with the helminthic parasite Nippostrongy-
lus brasiliensis (197). In the IL-4 reporter 4get mice, eosinophils
were the most prevalent IL-4-producing cells infiltrating the lungs
of mice infected with N. brasiliensis, with an up to 1000-fold
increase (198). IL-4 expression in eosinophils is constitutive and
programmed at an early stage of ontogeny (199). Moreover, instil-
lation of IL-4 led to expansion of IL-4-producing eosinophils
in vivo, suggesting that IL-4 is a potent factor in promoting the
differentiation of bone marrow progenitor cells into Th2 cytokine-
producing eosinophils, using mice expressing IL-4 with GFP (4get)
(200). The production of IL-4 by eosinophils also occurs in other
infections; when mice are infected with the fungal Cryptococcus
neoformans, the majority of cells expressing IL-4 in the airways are
eosinophils (201).

Adjuvant stimulation of B cell responses has been linked to IL-
4 production from eosinophils in the spleen, based on findings
in ∆dbl-GATA eosinophil-deficient mice that were administered
with alum (153). When alum was injected intraperitoneally into
eosinophil-deficient animals, early B cell priming and IgM pro-
duction was attenuated. This suggests a pivotal and previously
unrecognized role for eosinophils in modulating the adaptive
immune response to vaccines.

Interestingly, recent findings have indicated that eosinophil-
derived IL-4 is also essential for the biogenesis of beige fat, a type of
brown adipose tissue that is found in abundance in newborns that
promotes non-shivering thermogenesis (202). Eosinophil-derived
IL-4 was demonstrated to switch monocytes to the alternatively
activated macrophage phenotype (203, 204), leading to the con-
version of beige fat precursor cells to beige adipocytes (205). In
a separate study, the satiety hormone leptin was found to be a
potent secretagogue for eosinophils, and induced the expression
and secretion of IL-1β, IL-6, and CXCL8/IL-8, as well as other
chemokines, from eosinophils (206). This observation suggests
that eosinophils may have an important role in improving the
metabolic phenotype, by promoting insulin responsiveness and
decreasing the incidence of obesity.

Eosinophil-derived IL-4 may be important in liver regenera-
tion by promoting hepatocyte proliferation (207). In this study,
liver injury induced by partial hepatectomy or carbon tetrachlo-
ride (CCl4) in 4get mice resulted in the rapid recruitment of
eosinophils, which secreted IL-4 and induced the proliferation of
hepatocytes and liver growth.

The secretion of IL-4 from eosinophils in local tissues dur-
ing allergic reactions may serve as a major initial source of IL-4
required for switching tissue-infiltrating naïve T cells to the Th2
phenotype. Several mouse models of Th2 inflammation support
this notion. Mice infected intraperitoneally with eggs from the
trematode Schistosoma mansoni, which generates a strong Th2
phenotype, exhibited early IL-4 increases derived from degran-
ulating peritoneal eosinophils. Eosinophil-derived IL-4 induced
priming of naïve T cells and activation of mast cell IL-5 release
(154). The significance of IL-4 generation from eosinophils in
human studies is yet to be discovered.

Stimulation of eosinophils with the Th2 cytokine IL-4 can
also promote the development of Th1 responses. As described in
Section “Potential Immunological Roles for Eosinophil-Derived
Cytokines, Chemokines, and Growth Factors” above, IL-4-treated
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eosinophils release the Th1 cytokine IL-12, which in turn induced
the expression of IFNγ from Th1 cells during the culture of T
cells with eosinophil-conditioned media (62). The finding that
eosinophils may release Th1 cytokines suggests a more nuanced
control of cytokine responses in allergic inflammation that these
cells may possess. In summary, IL-4 production from eosinophils
may be important in a variety of immune and metabolic responses
that are only just beginning to be understood. These observations
will continue to shape our understanding of the biological role of
eosinophils in immunity.

A fascinating recent study using a computational model
demonstrated that eosinophil-derived IL-13 is required for aller-
gic airway responses (208). This was determined by the use of
IL-13−/− eosinophils that were adoptively transferred by intra-
venous injection into ∆dbl-GATA mice, which exhibited low air-
way hyperresponsiveness. IL-13 is important in inducing many
of the characteristics of allergic airway disease, including airway
hyperresponsiveness, goblet cell hyperplasia, and mucus secretion
(180). In the computational model, it was found that eosinophil-
derived IL-13 could not sustain an allergic asthma response in the
absence of T cell (or other cell type)-derived IL-13, but that IL-
13 production by eosinophils was integral to the development of
allergic asthma (208).

Co-culture of human eosinophils and their conditioned media
with the colon carcinoma cell line Colo-205 led to the produc-
tion of TNF, which was involved in tumor cell killing along with
granzyme A (73). This suggests a novel function for eosinophil-
derived TNF in regulating tumor cell growth, and that tumor cells
may be directly recognized by eosinophils.

Eosinophil-derived TGFβ has been shown to regulate fibrob-
last proliferation and differentiation (209). This is indicative
of a potential role for eosinophils in wound-healing. Indeed,
eosinophils were found to express both TGFβ and IL-13 following
intradermal allergen challenge, which resulted in increased repair
and remodeling events in human atopic skin (210).

OTHER PHYSIOLOGICAL OR PATHOLOGICAL ROLES FOR
EOSINOPHIL-DERIVED CYTOKINES
Although earlier studies in mice suggested that eosinophil-derived
IL-4 was required for mounting a Th2 response during immune
reactions to intraperitoneally injected Schistosoma mansoni eggs
(211), more recent studies have shown that ablation of eosinophils
from mice had negligible outcomes, or even inhibitory effects, on
helminth larval or egg expulsion in ∆dbl-GATA or PHIL mice
(212). These experimental findings imply that eosinophil-derived
cytokines, chemokines, and growth factors have no specific role in
the regulation of parasitic worm diseases, in contrast to the classi-
cally held notion that eosinophils are important in parasitic worm
expulsion.

In other studies, certain types of lymphoid and solid tumors
have been associated with the infiltration of eosinophils into
cancerous tissues (213), particularly specific lymphomas and
Hodgkin’s disease. Although tumor-related eosinophilia was con-
sidered to be an epiphenomenon arising from the spontaneous
elaboration of IL-5 from tumor cells, or overproduction of T
cells during chemotherapy with IL-2 (214), there is evidence

of eosinophil activation as a result of IL-2 anticancer therapy
(215, 216). In some cases, tissue eosinophilia is considered to
be a positive prognosis for head and neck cancers (217) and
advanced bladder cancer (218). Specifically, in oral squamous can-
cer, eosinophils are a positive prognosis for early stages of disease
(Stages II and III), but an unfavorable prognosis for advanced
cases (Stages III–IV) (219, 220). The involvement of eosinophil-
derived cytokines, chemokines, and growth factors in neoplasias
associated with eosinophilic infiltration is partially understood.
In oral squamous cell carcinoma with tumor-associated tissue
eosinophilia (TATE), the source of CCL11/eotaxin is apparently
eosinophils (221). The cultured oral squamous cell carcinoma
cell line SCC9 secretes chemotactic prostaglandin D2, which
promotes eosinophil transmigration, thus providing a signal to
recruit eosinophils into tumor masses (222). Eosinophils that
infiltrate into tumors/lymphomas also express IL-6, TGFβ, and
CCL24/eotaxin-2 (223).

However, while numerous studies have highlighted a role for
eosinophil recruitment and activation in many types of cancers,
and that eosinophils express receptors and mediators shared with
cytotoxic T cells (224), there are few that implicate eosinophil-
derived cytokines, chemokines, and growth factors in the reg-
ulation of cancer growth. Interestingly, as described above, a
recent study showed that human eosinophils possessed tumo-
ricidal activity toward a colon cancerous cell lines in culture
by releasing TNF (73). The tumor-killing effects of eosinophil-
derived TNF were the first description of a cytokine, chemokine,
or growth factor elaborated by eosinophils implicating a role for
these immunomodulators in cancer.

Injection of IL-17E increases the efficiency of chemotherapy
and results in eosinophilia (225). Eosinophil-derived IL-17 may
be implicated in antitumor activity, since IL-17E (IL-25) exerts
antitumor activity against many types of cancerous cell lines, at
least in xenograft models using human cancer cells in mice (226).
Eosinophils express IL-17 as determined by immunocytochem-
istry and Western blot analysis (66). Thus, the production of
IL-17 from eosinophils may be important in protection of the
host against cancers.

Moreover, since eosinophils produce numerous growth factors
such as vascular endothelial growth factor (VEGF), as well as a
number of other factors that promote angiogenesis, it is possible
that eosinophilic inflammation is implicated in tumor neovas-
cularization (227). Hypothetically, eosinophil-derived cytokines,
chemokines, and growth factors may be involved in enhancing T
cell-mediated tumor killing, particularly at the level of the local tis-
sue environment where large numbers of infiltrating eosinophils
accumulate and are actively degranulating onto tumor cells.

Taken together, these findings suggest that eosinophils may
serve as important components of natural immunity, and their
cytokines, chemokines, and growth factors may contribute to aug-
ment inflammatory responses in allergy and other conditions.
Further studies are awaited to understand the involvement of
eosinophil-derived immunomodulatory factors in the regulation
of allergic inflammation and other inflammatory conditions, as
well as the extent to which the release of these factors may be
manipulated for therapeutic benefit.
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