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A large number of human RNA transcripts, which do not encode proteins are defined as
non-coding RNAs (ncRNAs).These ncRNAs are divided into two classes of different lengths;
short and long ncRNAs. MicroRNAs are a major class of short ncRNAs, ~22 nucleotides
in length that regulate gene expression at the post-transcriptional level. Long non-coding
RNAs (lncRNAs) are more than 200 nucleotides in length and play roles in various biological
pathways. In this review, we summarize the functions of lncRNAs which regulate immune
responses.

Keywords: long non-coding RNA (lncRNA), innate immune response, NEAT1, translational repression

INTRODUCTION
Whole transcriptome analyses of mammalian genomes, such as
studies documented in the ENCODE project, have characterized
RNA transcripts that have low-protein coding potential, known as
non-coding RNAs (ncRNAs) (1). In recent years, it has become
increasingly apparent that ncRNAs are involved in diverse biolog-
ical processes (2–5). Based on their length, ncRNAs are classified
into short ncRNAs and long non-coding RNAs (lncRNAs) (6).
MicroRNAs (miRNAs) are a major class of short ncRNAs, ~22
nucleotides (nt) in length that regulate post-transcriptional gene
silencing by controlling translation and RNA stability (7, 8). miR-
NAs are involved in the regulation of diverse biological processes,
such as proliferation, differentiation, apoptosis, development, and
immune responses (9–12). LncRNAs are longer than 200 nt and
play roles in diverse biological processes, such as proliferation, dif-
ferentiation, and development through various modes of action.
For instance, several lncRNAs, such as XIST, ANRIL, and HOTAIR,
recruit polycomb-repressive complex 2 to target loci for epigenetic
regulation (13–18). Recently, it was reported that several lncRNAs
regulate post-transcriptional gene regulation through binding to
specific RNA-binding proteins (16).

The innate and adaptive immune responses provide immu-
nity to pathogens. The innate immune response is the first line
of defense. Cells infected with a pathogen trigger the innate
immune response by synthesizing inflammatory mediators or
cytokines through the transcriptional and post-transcriptional
gene regulations. The innate immune response also activates adap-
tive immune responses resulting in facilitated elimination of the
pathogen. Therefore, the innate immune response is crucial to
the host for protection against pathogens, such as bacterium or
viruses. A primary challenge for the innate immune system is
the discrimination of pathogens by specific receptors. Toll-like
receptors (TLRs) are a major receptor type for the recognition
of pathogens (19). For example, TLR2 recognizes lipo-protein,

TLR3 recognizes double-strand RNAs produced by viruses, TLR4
recognizes lipopolysaccharide, and TLR5 recognizes flagella of
bacteria. Following ligand recognition by these receptors, spe-
cific signaling cascades are activated that results in the synthesis
of inflammatory mediators or cytokines. This involves transcrip-
tional or post-transcriptional gene regulation via transcription
factors, such as API and NF-κB, and miRNAs (19, 20). For instance,
miR-203 regulates inflammatory cytokines tumor necrosis fac-
tor (TNF)-α and interleukin (IL)-24 (21), while miR-26a, -34a,
-145, and let-7b regulate IFN-β (22). However, the regulation of
inflammatory mediators or cytokines by lncRNAs is still poorly
understood. Several hypotheses have recently emerged concerning
lncRNA involvement in infectious diseases (23) and some studies
found that several lncRNAs might be involved in the regulation
of immune responses. In this review, we focus on five lncRNAs,
which are clearly related with immune responses. Three of them
are involved in bacterial infection, because of stimulation of TLR2
or 4. Two of them are involved in viral infection.

lncRNAs INVOLVED IN BACTERIAL INFECTION
lincRNA-Cox2
Whole transcriptome analysis (RNA-seq) of mouse bone marrow-
derived macrophages (BMDMs) showed that stimulation by
the synthetic bacterial lipopeptide Pam3CSK4, a TLR2 ligand,
increased the expression of 62 lncRNAs (24). In these lncRNAs,
one of the most highly induced lncRNAs was lincRNA-Cox2 (ENS-
MUSG00000091113, Gm17311). Lipopolysaccharide, a TLR4 lig-
and, and R848, a synthetic antiviral compound that activates
Tlr7/8, also increased lincRNA-Cox2 levels via the Myd88-NF-κB
pathway. Conversely, polyinosinic-polycytidylic acid (poly I:C), a
synthetic double-stranded RNA that is recognized by TLR3, did
not affect lincRNA-Cox2 expression. LincRNA-Cox2 has three
variants and is about 2 kb in length. LincRNA-Cox2 variant 1 is
the most abundant transcript, but it is unclear, which one acts
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in immune response and these differences. LincRNA-Cox2 was
localized in both the nuclear and the cytosolic compartments of
macrophages.

In Pam3CSK4 treatment of BMDMs, silencing of lincRNA-
Cox2 induced up-regulation of Ccl5, but down-regulation of Il-6.
These results suggest that lincRNA-Cox2 mediates both activa-
tion and repression of immune responses. LincRNA-Cox2 bound
hnRNP-A/B and hnRNP-A2/B1 in both the nuclear and the
cytosolic compartments. These complexes regulated repression
of immune genes, including Ccl5, but Il-6. It is unclear how
lincRNA-Cox2 regulates Il-6 expression so far.

linc1992/THRIL
Custom lincRNA microarray analysis of THP1-derived macrophages
showed that Pam3CSK4 stimulation increased the levels of
127 lincRNAs and decreased the levels of 32 lincRNAs
(25). In these lincRNAs, Pam3CSK4 stimulation decreased
the expression of linc1992 (NR_110375) and knockdown of
linc1992 notably restrained TNFα secretion. Linc 1992 is
about 2 kb in length and widely expresses in human tis-
sues. The authors also found other lncRNAs that regulates
TNFα or IL6 secretion. Linc0206 (ENST00000450206, RP11-
432J24), Linc7190 (ENST00000437190, RP11-296O14), and
Linc7705(ENST00000417705, RP11-54O7) regulate TNFα and
IL6 secretion under Pam3CSK4 stimulation. Moreover, Linc3995
(ENST00000523995, RP11-37B2) regulate IL6 secretion under
Pam3CSK4 stimulation. However, it is unclear how these lncRNAs
regulate cytokine expression.

Knockdown of linc 1992 decreased significantly production of
TNFα mRNA. Thus, linc1992 regulates TNFα expression through
a negative feedback system.

By the analysis of pull-down assay and RIP assay, linc1992
bound hnRNP-L and linc 1992 and hnRNPL formed an RNP com-
plex in vivo. Moreover, ChIP assay revealed that hnRNPL bound to
the TNFα promoter region and knockdown of linc1992 reduced
binding of hnRNPL to the TNFα promoter region. Thus, this com-
plex may regulate the transcription of downstream genes, includ-
ing TNFα. Accordingly, Linc1992/THRIL (TNFα ανδ HnRNP-L
Related Immunoregulatory LincRNA) is named after this regula-
tion. Furthermore, Linc1992/THRIL regulated expression of IL-8,
CXCL10, CCL1, and CSF1, but it is unclear whether hnRNP-L is
involved in these expressions.

Moreover, linc1992/THRIL is associated with Kawasaki disease.
Kawasaki disease is the most common cause of multisystem vas-
culitis in childhood. TNF-α is a pleiotropic inflammatory cytokine
elevated during the acute phase of Kawasaki disease. In 17 patients
with Kawasaki disease, linc1992/THRIL expression was lower dur-
ing acute phase of disease when TNFα levels are elevated, so
linc1992/THRIL could be a new biomarker for immune activation.

lnc-IL7R
LncRNA microarray analysis showed that stimulation of THP-1
cells with lipopolysaccharide, a TLR4 ligand, induced the expres-
sion of 443 lncRNAs by more than twofold and decreased the
expression 718 lncRNAs more than twofold. Among these lncR-
NAs, lnc-IL7R (ENST00000303115), one of the most up-regulated
genes, is 1427 nt in length and overlaps the 3′-untranslated region

(3′-UTR) of the human interleukin-7 receptor α-subunit (IL7R)
(26). The majority of lnc-IL7R existed in the nucleus. The increase
in lnc-IL7R expression after lipopolysaccharide stimulation indi-
cates that lnc-IL7R is involved in the early immune response.
Pam3CSK4 also increased lnc-IL7R expression, but poly I:C did
not. In human peripheral blood mononuclear cells, stimulation
by lipopolysaccharide or Pam3CSK4 increased lnc-IL7R levels.
Lnc-IL7R negatively regulated E-selectin, VCAM-1, IL-8, and IL-6
expression following lipopolysaccharide stimulation. The mecha-
nism by which lncRNA-IL7R regulated E-selectin and VCAM-1
was dependent on the trimethylation of histone H3 at lysine
(H3K27me3). Lnc-1L7R knockdown also diminished IL-6 and
IL-8 mRNA levels in an as yet unknown way.

lncRNAs INVOLVED IN BACTERIAL INFECTION
NeST/Tmevpg1
NeST, also known as Tmevpg1 or IFNG-AS1 (GS1-410F4), is an
lncRNA located adjacent to the interferon (IFN)-γ-encoding gene
in the Tmevp3 locus that is a candidate gene in a susceptibility
locus for Theiler’s virus (27, 28) in mouse. NeST RNA is encoded
on the DNA strand opposite to that coding for IFN-γ, and the
most abundant splice variant has six exons, 914 bp on length, in
murine chromosome 10 and expressed in CD4+ T, CD8+ T, and
natural killer cells.

By analysis of RIP and ChIP assay, NeST RNA bound WDR5, a
subunit of the MLL/SET1 H3K4 methylase complex, and modified
the chromatin at the Ifng locus. NeST RNA induced secretion of
IFN-γ in CD8+ T cells. Transgenic mice, in which NeST is over-
expressed, are protected against Theiler’s virus. NeST expression
leaded to persistence of Theiler’s virus, but clearance of Salmonella
infection.

NEAT1
NEAT1 has two isoforms, 3.7 kb NEAT1v1 and 23 kb NEAT1v2
(29). NEAT1v2 is an essential factor in the structure of paraspeck-
les (30–33). Paraspeckles contain about 40 protein factors (34),
including NONO/p54nrb and SFPQ/PSF, which function as a
transcriptional inhibitor (35, 36).

NEAT1 was originally identified as an inducible lncRNA in mice
brains infected with Japanese encephalitis or rabies viruses (37).
HIV-I infection also induced NEAT1 in mice and NEAT1 mod-
ulates HIV-I replication by affecting the nucleus-to-cytoplasm
export of Rev-dependent, instability element-containing HIV-I
mRNAs (38). Moreover, it was found that poly I:C, a TLR3 lig-
and, herpes simplex virus 1 (HSV-1), and measles virus (MV)
infection all induce NEAT1v2 (39). Furthermore, in normal cells,
SFPQ, a paraspeckle protein, binds the IL-8 promoter to suppress
its expression. Poly I:C stimulation, HSV-1, and MV infections
caused the relocation of SFPQ from the IL-8 gene promoter to
NEAT1, resulting in the formation of excess paraspeckles, which
in turn leaded to the transcriptional activation of IL-8.

CONCLUSION
Several lines of evidence have recently emerged concerning
lncRNA involvement in the regulation of inflammatory mediator
or cytokine expression. Unlike miRNAs, lncRNAs regulate expres-
sion of inflammatory mediators or cytokines by working with
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FIGURE 1 | ncRNAs that regulate chromatin structure and transcription
factors. (A) NeST/Tmevpg1 activates transcription of genes by recruiting
the histone modifier WDR5, which methylates H3K4. Lnc-IL7R activates
transcription of genes by H3K27 trimethylation. (B) The complex of THRIL
and hnRNPL activates transcription of genes. The complex of lincRNA-Cox2
and hnRNPA/B or hnRNPA2/B1 represses transcription of genes. (C) NEAT1
activates transcription of genes by sequestration of transcriptional factor
SFPQ.

RBPs in a number of ways. Some complexes of lncRNAs and RBPs
bind to promoters of inflammatory mediator or cytokine genes to
regulate transcription or to modify the chromatin (Figures 1A,B).
NEAT1 regulates the location of the transcription inhibitor SFPQ
from promoter to paraspeckle (Figure 1C). These observations
suggest that lncRNAs are factors of the innate immune response.
However, there is only evidence that lncRNA induce under TLR
ligand stimulation so far and little evidence that lncRNA function
under the real bacterial infection, which induces more compli-
cated event in cells. Further studies of this regulation by lncRNAs
are likely to reveal novel drug targets for therapy of infectious and
inflammatory diseases.

Why should ncRNAs be involved in regulating the expres-
sion of inflammatory mediators or cytokines? In virus-infected
cells, translation is highly inhibited. For this reason, a translation-
independent acute response system is required for an effective early

immune response. Furthermore, involvement of ncRNA in such
a response is biologically meaningful, because non-coding RNAs
do not demand translational activity to express their functions.
We therefore speculate that many other lncRNAs may play a role
in situations where translation is highly repressed, such as viral
infection, heat shock, and hypoxia.
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