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Among γδT cells, the Vδ1 subset, resident in epithelial tissues, is implied in the defense
against viruses, fungi, and certain hematological malignancies, while the circulating Vδ2
subpopulation mainly respond to mycobacteria and solid tumors. Both subsets can be acti-
vated by stress-induced molecules (MIC-A, MIC-B, ULBPs) to produce pro-inflammatory
cytokines and lytic enzymes and destroy bacteria or damaged cells. γδT lymphocytes can
also recognize lipids, as those associated to M. tuberculosis, presented by the CD1 mol-
ecule, or phosphoantigens (P-Ag), either autologous, which accumulates in virus-infected
cells, or microbial produced by prokaryotes and parasites. In cancer cells, P-Ag accumulate
due to alterations in the mevalonate pathway; recently, butyrophilin 3A1 has been shown
to be the presenting molecule for P-Ag. Of interest, aminobisphosphonates indirectly acti-
vate Vδ2 T cells inducing the accumulation of P-Ag. Based on these data, γδT lymphocytes
are attractive effectors for cancer immunotherapy. However, the results obtained in clinical
trials so far have been disappointing: this review will focus on the possible reasons of this
failure as well as on suggestions for implementation of the therapeutic strategies.
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γδ T CELLS AND ANTIGEN RECOGNITION
Human γδ T lymphocytes comprise different subsets defined
by their T-cell receptor (TCR), the most prominent of which is
present in circulating blood, representing 3–5% of T lymphocytes,
and is composed of cells expressing the Vγ9Vδ2 TCR (Vδ2T cells).
The subset bearing the Vδ1 chain of the TCR is <1–2% of circu-
lating T cells and is mostly represented in the mucosal-associated
lymphoid tissue, known to play an important role in the first-line
defense against viral, bacterial, and fungal pathogens (1–5). γδT
cells recognize a wide variety of antigens, such as lipids, proteins,
and phosphoantigens (P-Ag), without the need of HLA-restricted
antigen presentation (6–9): circulating Vδ2 T lymphocytes are
involved in the response to mycobacteria, EBV, and some solid
tumors, while resident Vδ1 T cells contribute to the immunity
against Listeria monocytogenes, CMV, and certain hematological
malignancies (2–4, 10). Both γδT-cell subsets can interact with
stress-induced MIC-A, MIC-B, and ULBPs; the recognition is
mediated through the NKG2D receptor, also expressed by αβT
lymphocytes (3, 11–13). In γδT cells, NKG2D seems to work in
association with the TCR that also binds to these stress molecules:
upon its engagement, an activating signal is delivered in γδT lym-
phocytes that promptly exert their effector function, by prolifer-
ating, producing pro-inflammatory and antimicrobial cytokines,
such as interferon-gamma (IFN)-γ or tumor necrosis factor
(TNF)-α, or releasing lytic enzymes to destroy bacteria or infected
cells, as a response to damage signals (10–13). A similar mechanism
can be exploited by γδT lymphocytes to face transformed cells that
also overexpress NKG2D ligands (−L) due to the stress-inducing

transformation, like in solid tumors or in hematological malignan-
cies (14–19). Of note, these ligands can also be upregulated at the
cell surface by drugs, including all-trans-retinoic acid or sodium
valproate, commonly used in anti-leukemic therapeutic schemes,
thus improving γδ T cell-mediated anti-cancer capacity (20–23).
Another potent stimulus for γδT cells of the Vδ2 subset, acting
through the TCR, is represented by low molecular weight P-Ag
(4–8). Consistent with the stress-surveillance model, P-Ag may be
autologous, such as isopentenylpyrophosphate (IPP), which accu-
mulates in many virus-infected or transformed cells, or microbial,
such as hydroxymethyl but-2-enyl pyrophosphate (HMBPP), a
metabolic intermediate specific to many prokaryotes and para-
sites (4–8). Of clinical interest, aminobisphosphonates (N-BPs),
which are widely prescribed for osteoporosis and malignancy, indi-
rectly activate Vγ9Vδ2 cells by inhibiting farnesyl-pyrophosphate
synthase, which provokes IPP accumulation (24–28).

POSSIBLE ANTIGEN-PRESENTING MOLECULES FOR γδ T
CELLS
Thus, the types of Ag recognized by γδT lymphocytes may vary in
size, composition, and molecular structure, much more than those
recognized by αβT cells, and include soluble or cell surface pro-
teins, small peptides, phospholipids, prenyl-pyrophosphates, and
sulfatides. The mode of antigen recognition by γδT cells has been a
controversial issue for several years, as they apparently do not need
Ag presentation by specialized cells. The TCR that these lympho-
cytes are equipped with, display some peculiar features such as a
limited diversity compared to the αβTCR, and a type of interaction
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with the Ag that rather resembles that of the B-cell receptor. This
hypothesis is based on structural and functional findings: indeed,
CDR3 regions of the γδTCR resemble immunoglobulin (Ig) CDRs
in terms of length and variability, as the TCRδ and γ chain have
long or short CDR3, respectively, as is the case of Ig heavy and light
chains (29, 30). In contrast, length and conformation of TCRα and
β CDR3s are similar to each other, which may be a requirement for
the docking on the surface of MHC molecules and the recognition
of MHC-bound peptides. In some cases, however, small Ag may
be presented to γδT cells as well, in general in the case of soluble
small molecules unable to induce a TCR cross-linking (31). A still
unsolved question seems to be the Ag-presenting molecule recog-
nized by γδT cells. In mice, the non-classical or truncated MHC
molecules T10/T22, not constitutively expressed at the cell surface
but induced by stress signals, have been shown to bind to γδTCR,
that makes an angle using CDR3δ amino-acid side chains for the
interaction (32, 33).

Other structures described to be potentially responsible for Ag
presentation to γδT cells are the group1 CD1 molecules. CD1
comprises a family of non-polymorphic genes located outside the
MHC complex and encodes proteins structurally related to MHC
class-I molecules (34, 35). In humans, products of four of the five
CD1 genes, designated CD1a, CD1b, CD1c, and CD1d, have been
identified as type 1 integral membrane proteins associated with
β2-microglobulin and are expressed on antigen-presenting cells.
A direct evidence for CD1 proteins as antigen-presenting mole-
cules was provided by isolation of a human CD4−CD8− T-cell
line that proliferated in response to M. tuberculosis-derived anti-
gens: the purification of the CD1b-restricted antigens revealed a
subset of mycolic acids, a family of free fatty acids present in the
outer cell wall of mycobacteria and several other bacteria. Soon
after, some glycolipids, such as phosphatidylinositol-containing
lipoglycans and glycosylated mycolates, that are also associated
with the mycobacteria cell wall, were identified as CD1b-presented
antigen (36, 37). The CD1-restricted presentation of lipid and
glycolipid antigens to T cells was strengthened by the three-
dimensional structure of the mouse CD1d protein determined
by X-ray crystallography (35, 38), showing a putative antigen-
binding groove, which is remarkably different from that found in
MHC molecules. Subsequent characterization of mycobacteria-
derived antigens revealed a remarkable ability of human group 1
CD1 (CD1a, CD1b, CD1c) to mediate presentation of lipid and
glycolipid antigens to T cells, including γδT cells.

It has been unknown for many years whether and how prenyl-
pyrophosphates are presented to γδT cells. In the last two years,
a number of papers have been published identifying butyrophilin
(BTN)3A1 as the molecule that can directly bind P-Ag for pre-
sentation. BTNs are type 1 trans-membrane molecules containing
two Ig-like domains in their extracellular portion (39). Some BTNs
carry a B30.2 domain. In humans, the BTNs genes are clustered
on chromosome 6 in the MHC class-I region containing three
related genes: BTN3A1, BTN3A2, and BTN3A3 (40, 41). The for-
mer molecule seems the only one containing a B30.2 domain,
forming a basic pocket, which is essential for N-BPs-mediated acti-
vation of γδT cells, although the authors did not show evidence for
direct binding of P-Ag to BTN3A1 (40). More recently, such direct
binding has been demonstrated to occur to the V-like domain of

BTN3A1 and the complex has been crystallized (42). It is still not
clear how intracellularly generated P-Ag (e.g., those derived upon
N-BPs treatment) can be associated to BTN3A1: one possibility is
that P-Ag are secreted and then bind to the basic groove of BT3A1
or, alternatively, the B30.1 basic domain binds to P-Ag with low
affinity and induces a conformational change in the external por-
tion of the molecule that, in turn, is recognized by γδ T cells (39,
42, 43).

γδ T CELLS AND ANTI-CANCER SURVEILLANCE
Since their discovery in the late 1980s, γδT cells have been
extensively studied and different characteristics, including MHC-
unrestricted cytotoxic activity against malignant cells, have made
these cells a promising potential therapeutic tool (3, 4, 10, 15,
44–46). It is now clear that γδT lymphocytes are good media-
tors of a stress-related response: for example, they can recognize
directly stress-induced ligands, such as MIC-A, MIC-B, or ULBPs,
through the NKG2D receptor or be activated by P-Ag derived
by the isoprenoid pathway used by several microorganisms or
by the mevalonate pathway in infected or transformed cells (1–
4). However, NKG2D-L can be released, due to the action of the
disintegrin-and-metalloproteinases ADAM10/17 or the disulfide-
isomerase ERp5, overexpressed in solid and hematologic tumors
(47–52). In their soluble form (sNKG2D-L), these ligands hin-
der the recognition of membrane-bound MIC-A/B or ULBPs by
NKG2D receptor; in turn, sNKG2D-L are not able to trigger an
activating signal in effector lymphocytes that cannot exert their
anti-tumor activity (46–51). Moreover, serum levels of sNKG2D-
L have been related to the outcome and progression of several
neoplastic diseases (18, 23, 52–54).

γδT cells can also be indirectly activated by pro-inflammatory
cytokines or by toll-like receptors (TLR) that bind to viral or bac-
terial products (1–4). Another activation signal can be delivered
via CD16 through the interaction with the Fc of IgG: this binding
initiate the antibody-dependent cell cytotoxicity (ADCC) exerted
to destroy opsonized cells or microorganisms (2). Upon one of
the mentioned stimuli,γδT lymphocytes expand, acquire cytotoxic
function, and secrete an array of Th1 pro-inflammatory cytokines,
such as IFN-γ or TNF-α. Another important feature of T lympho-
cytes expected to interact with cancer cells is their capacity to
infiltrate tumors. Accordingly, tumor-infiltrating gamma delta T
lymphocytes were detected in a broad spectrum of malignancies
(2–4, 10).

For all these aspects of their function, γδ T cells have been con-
sidered attractive for anti-cancer therapies: of note, ADCC can be
exploited by the use of therapeutic monoclonal antibodies (mAbs)
(44, 45, 55). In addition, various selective agonists, including P-Ag,
for human γδT lymphocytes have been synthesized, allowing the
launch of several clinical trials for patients with follicular lym-
phoma, multiple myeloma (MM), and acute myeloid leukemia, as
well as non-hematological malignancies, such as renal cell (RCC),
breast, and prostate carcinomas.

EVALUATION OF γδ T CELL-BASED CLINICAL TRIALS
Given the demonstrated in vitro anti-cancer activity of γδT cells
and their in vivo potential as anti-tumor effectors, numerous clin-
ical trials have been performed in the last years to exploit the
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properties of these cells for cancer immunotherapy (44, 56–64).
Two methods have been applied so far: adoptive transfer of autol-
ogous γδT lymphocytes expanded in vitro and then reinfused to
patients and direct administration of drugs or substances able
to stimulate γδT cells in vivo (44, 56–58). The in vitro stimu-
lation and expansion of this cell population is achievable using
P-Ag, N-BPs, or immobilized anti-γδ TCR antibodies, and allows
the optimization and control of the effector cells obtained (7, 8,
24, 56). However, this method requires specialized laboratories
and expertise and is rather expensive. In turn, the administration
of N-BPs or synthetic P-Ag in combination with cytokines has
been used as a cheaper and straight-forward therapeutic alterna-
tive. The third generation of N-BPs as zoledronate is the most
commonly used for both in vitro activation and in vivo admin-
istration; the EC50 for γδ T cells is favorable (0.003 µM) and a
single dose of 4 mg leads to plasma levels (1–5 µM) shown to be
effective in activating γδT cells in vitro (56, 60). As an alterna-
tive, the synthetic phosphate-containing molecule bromohydrin
pyrophosphate (BrHPP) is used for either in vitro expansion or
in vivo stimulation of γδ T lymphocytes and also upregulates their
ability to mediate rituximab-induced ADCC (56, 61). Together
with zoledronate or BrHPP, interleukin-2 is used for in vitro expan-
sion of this T-cell population, and also added to the therapeutic
schemes in different cancers; however, IL-2 is toxic at high doses
(those that are commonly effective), leading to vascular leakage,
hyperpyrexia, severe hypotension whereas low, and well-tolerated
doses are much less effective in vivo (28, 56).

A preliminary pilot study by Wilhelm’s team examined toxi-
city, in vivo activation of γδT cells, and anti-lymphoma efficacy
of pamidronate/IL-2 in 19 patients with relapsed/refractory low-
grade non-Hodgkin lymphomas (NHL) or MM (44). The authors
demonstrated that pamidronate administered with low-dose IL-
2 is well tolerated and induces a specific γδT-cell expansion;
furthermore, the clinical response observed in the patients, i.e.,
stabilization or partial response, is linked to γδT-cell proliferation
in vivo. A second study was reported by Dieli’s group, showing
that zoledronate induced the in vivo development of Vγ9Vδ2 cells
producing IFN-γ and exerting strong anti-tumor responses (62).
Therefore, a pilot study on the effects of zoledronate and IL-2
was conducted in the United States by Malkovsky’s group in 12
patients with metastatic RCC (63). Adverse events typical of IL-
2 monotherapy were observed in all patients, without partial or
complete responses. In the following years, phase-I clinical trials
were performed in metastatic hormone-refractory prostate can-
cer and in several patients with solid tumors using BrHPP (56,
64). Given BrHPP’s safety profile, a multicentric phase-II study
using the drug was launched in relapsed follicular lymphoma
patients who had previously received previous lines of therapy,
using rituximab at least once (56, 61). The treatment induced
strong and specific amplification of TCRVγ9Vδ2 T lymphocytes
showing a Th1 and cytotoxic effector-memory cell profile (IFN-γ
and TNF-α production), expressing FcγRIIIa (CD16) and dis-
playing rituximab-mediated ADCC (56, 61). The combination of
BrHPP and rituximab in immunotargeted therapy produced very
encouraging results, particularly for follicular lymphoma patients
with unfavorable FcγRIIIa gene polymorphisms (F/F or V/F, 95%
of the patients). Thus, the initial evaluation of clinical trials leads

to the conclusion that γδT cell-based immunotherapy is more
effective in hematological rather than in solid tumors.

POSSIBLE IMPROVEMENT OF γδT CELL-BASED
IMMUNOTHERAPY
In the above cited review by Fisher and coworkers (56), 12 clinical
trials involving 157 patients have been analyzed for the evaluation
of the efficacy and/or failure of γδT cell-based immunotherapy,
and some conclusions can be drawn. First, patients with solid
tumors have been treated mostly with adoptive γδ T-cell trans-
fer, while patients with hematological cancers were mainly treated
with γδ T cell-expanding drugs. Second, as the trials reviewed
were either phase-I, phase-II, or feasibility studies, all patients had
already received previous treatments, as chemotherapy or other
types of immunotherapy (IL-2 alone). Moreover, in some trials
testing γδT cell-stimulating drugs, the combination with IL-2 led
to high toxicity with low therapeutic effects. In adoptive transfer
studies, different culture conditions and times as well as distinct
cell sources (leukapheresis vs. peripheral blood), represent addi-
tional variables that render difficult the overall evaluation of the
efficacy of these treatments. As the in vitro expansion of γδT lym-
phocytes is feasible and efficient, an accepted conclusion is that
leukapheresis in general is not needed to obtain a sufficient amount
of activated effectors to reinfuse. Some evidences emerge from
the comparison of clinical responses to γδT cell-immunotherapy
with standard-of-care second-line therapies in three selected can-
cer types, RCC, non-small cell lung carcinoma (NSCLC), and
prostate cancer. The proportion of objective responses among
patients treated with γδT cell-based immunotherapy is higher
than that achieved with recommended second-line therapy in
advanced prostate cancer (33.3% with γδT cells vs. 25.2% with
prednisolone+ docetaxel) and advanced RCC (4.8% with γδT
cells vs. 1.8 with everolimus), but not in advanced NSCLC (7.6%
with erlotinib, 12.2% with docetaxel, 0% with γδ T cells) (56, 65–
67). In general, the clinical response to γδT-cell immunotherapy
in solid tumors is disappointing. There are several possible expla-
nations for this and we will try to consider some of them. First,
there might be a considerable difference in γδT-cell expansion
capacity among patients, patients with hematologic malignancies
being more responsive that those with solid tumors (44, 56–64).
A considerable inter-individual variation in expansion capacity
has been observed among patients with MM, NHL, or chronic
lymphocytic leukemia (CLL) with an inverse correlation between
the frequency of circulating regulatory T cells and the ability of
γδT cells from cancer patients to proliferate in response to P-Ag
(44, 56–64). Another possible inhibiting factor is represented by
transforming growth factor (TGF)β that is known to decrease the
NKG2D expression on lymphocytes reducing their activation (52,
68, 69). Moreover, sNKG2D-L released by cancer and accessory
cells in the tumor microenvironment can impede the interaction
of effector lymphocytes with tumor target cells. (48–52) In addi-
tion, other inhibiting signals, such as that delivered by PD-1 or
via CTLA-4, can lead to a general inhibition of γδT-cell function
at the tumor site (70, 71). Thus, a possible strategy to overcome
inhibitory signals would be the use of mAbs blocking either CTLA-
4, such as ipilimumab, or PD-1 or neutralizing TGFβ (56, 69–
71). In addition, inhibiting the enzymes responsible for sNKG2D
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ligands, including ADAM10 and ADAM17 (71–76), with specific
compounds, would push the balance toward γδT-cell activation;
along this line, the combination of stimulating molecules, such as
bisphosphonates, and therapeutic tumor-targeting antibodies, as
the anti-CD20 rituximab or the anti-ERBB2 trastuzumab, should
improve the efficacy of γδT-cell anti-tumor effect (56, 58). A dif-
ferent immunoevasion mechanism exerted by tumor microenvi-
ronment may be represented by mesenchymal stromal cells (MSC)
that are known to down-regulate T-cell effector functions (77, 78).
We recently reported that LN-MSC derived from NHL patients
impair the anti-tumor activity of Vδ2T lymphocytes, selectively
inhibiting NKG2D-mediated lymphoma cell killing (79). Of note,
N-BPs can prevent this effect by reducing TGFβ and increasing
IL-15 production by LN-MSC, and drive the differentiation of
Vδ2 T lymphocytes into effector-memory cells producing Th1-
type cytokines (79). Moreover, N-BPs do not alter the efficiency
of Vδ2 T cells to exert rituximab-mediated ADCC. To be success-
ful, γδT cell-based cancer immunotherapy will require protocols
updated to limit most of the different immunoescape mechanisms
occurring at the tumor site.

PERSPECTIVES
Response rates to γδT cell-based immunotherapy, either as adop-
tive transfer or as stimulating drugs, are not satisfactory (10%
of objective responses); however, about 39% of patients achieved
disease stabilization, indicating a clinical benefit and suggesting
the possibility of improving the efficiency of such therapeutic
tool (56, 58, 80). Advantages of this type of anti-cancer therapy
would be the safety of drugs and substances known to stim-
ulate γδT cells, beside their efficiency in γδT-cell stimulation.

FIGURE 1 | Scheme of possible combinations of activating and
inhibiting stimuli aimed to potentiate γδT-cell anti-cancer response.
1. TLR agonists (imiquimod or resiquimod). 2. mAbs blocking PD-1,
PDL-1, and CTLA-4. 3. mAbs directed to the B30.2 basic domain of
BTN3A1. 4. N-BPs not only as γδ T-cell stimulating agents but as
immunomodulating drugs (decrease TGF-β and increase IL-15 production
by LN-MSC). 5. ADAMs specific and non-toxic inhibitors. 6. Humanized
mAbs directed against tumor antigens (rituximab, trastuzumab). TC,
tumor cell; EM, effector memory; MSC, mesenchymal stromal cells;
ADCC, antibody-dependent cellular cytotoxicity.

Drawbacks are mainly represented by immunoevasion. This can
be counteracted (Figure 1) by including in the therapeutic pro-
tocols non-specific stimulators as TLR agonists (imiquimod or
resiquimod) or the BCG vaccine (81). Recently approved clinical
trials include mAbs blocking PD-1, PDL-1, and CTLA-4 (58, 70,
71) aimed to inhibit negative signals. Cancer-specific TCR gene
transfer has been proposed in the last years to gain efficiency and
specificity in the anti-cancer response;αβTCR engineered γδT cells
have been shown to exert anti-tumor activity in vitro and may be
considered as an alternative strategy for adoptive T-cell transfer
(82, 83).

The recent identification of BTN3A1 as an essential molecule in
P-Ag presentation to γδT cells opens new possible ways of inter-
ventions: both stimulating and inhibiting mAbs directed to the
B30.2 basic domain of the molecule have been described (39–41,
84). These antibodies might be used differently to induce or regu-
late γδ T-cell response to P-Ag, representing an additional tool in
the design of immunotherapeutic protocols.

In addition, we propose the use of N-BPs not only as γδT-cell
stimulating agents but as immunomodulating drugs (79). Finally,
the development of ADAMs specific and non-toxic inhibitors
would contribute to the improvement of NKG2D-mediated recog-
nition of stress-induced molecules at the surface of tumor cells.
Thus, such combined therapeutic protocols, including stimu-
lating molecules, mAbs, and inhibitory substances acting on
enzymes, which favor tumor immunoevasion, may represent the
new frontier of anti-cancer immunotherapy.
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