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Understanding the regulation of antibody production and B-cell memory formation and
function is core to finding new treatments for B-cell-derived cancers, antibody-mediated
autoimmune disorders, and immunodeficiencies. Progression from a small number of
antigen-specific B-cells to the production of a large number of antibody-secreting cells is
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ulation. This review will discuss the recent advancements in understanding how humoral
immune responses, in particular germinal centers and memory cells, are modulated by
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histone modifiers.

INTRODUCTION

Pathogen clearance and formation of immunity requires the acti-
vation of B-cells and subsequent differentiation into antibody-
secreting cells and memory cells. Humoral memory consists of
both memory B-cells and long-lived plasma cells, the latter of
which resides mainly in the bone marrow. Together, humoral
memory cells are able to clear subsequent infections by the same
pathogen more efficiently than responding B-cells during the ini-
tial response (1). The mechanisms underlying how memory is
formed, and what controls its reactivation, are still unclear. In
recent times, transcriptional regulation during B-cell differen-
tiation (2-5) has been the focus of efforts to understand the
intrinsic controls that regulate immune cell fates. In contrast, epi-
genetic regulation during a humoral immune response is relatively
unknown. This review will discuss the limited information that
is currently known about epigenetic regulators and their impor-
tance in the generation and maintenance of immune memory,
focusing on the role of histone modifiers within the germinal
center (GC).

HUMORAL IMMUNE RESPONSES AND GERMINAL CENTERS

Humoral responses can be broadly categorized into either T-
independent or T-dependent responses, with the production of
high-affinity antibody and class-switched memory the main out-
come of the latter (Figure 1). To this end, antigen-activated
B-cells that receive T cell help and do not participate in the
extrafollicular foci of low-affinity plasmablasts, or become early
GC-independent memory (1, 6), can instead form GCs. GCs are
divided into a light and dark zone. Within the dark zone, cells
undergo multiple rounds of proliferation and adapt their anti-
gen receptor to the immunizing antigen through the process of
somatic hypermutation and class-switch recombination (7-11).
B-cells then transition to the light zone, in which cells that have
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a high-affinity antigen receptor will be selected to continue to
divide or to differentiate (12—14). In contrast, low-affinity cells
and cells that have mutated their receptor to no longer be antigen-
specific will die. High-affinity cells that are selected to survive may
differentiate into plasma cells or memory cells.

Long-lived plasma cells are generally high-affinity, sessile cells
that reside in the bone marrow, relying on extrinsic factors from
niche cells for their survival (16). These plasma cells continu-
ally secrete high-affinity antibody, resulting in lowering of the
amount of an invading pathogen upon re-encounter. Together
with memory B-cells, they contribute to maintaining immunity.

REGULATION OF HUMORAL IMMUNE RESPONSES

The activation, proliferation, and differentiation of antigen-
activated B-cells during an immune response is orchestrated
and regulated at both the cellular and molecular levels. Dur-
ing an immune response, B-cell behavior is regulated by both
extrinsic and intrinsic mechanisms. B-cells respond to sig-
nals in the microenvironment, including cytokines, cell sur-
face ligand/receptor pairings, and other soluble factors such as
chemokines and cell survival molecules (17). For these signals to
orchestrate cell behavior in a coordinated manner, cells integrate
these signals, resulting in initiation or silencing of genes, which in
turn directs cellular behavior.

Transcription factors are molecules that coordinate the expres-
sion of a number of genes, thus one transcription factor is often
linked to the identity of a cell subset. Different B-cell subsets are
associated with particular transcription factors. The transcrip-
tional repressor B cell lymphoma 6 (BCL-6) is expressed in GC
B-cells, regulating a program of genes required for GC func-
tion and as such is essential for the formation of GCs (18, 19).
In contrast, the transcriptional repressor B lymphocyte-induced
maturation protein 1 (Blimp-1) is expressed in plasma cells (20).
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FIGURE 1 | Histone modifications that may regulate B-cell
differentiation. (A) B-cell differentiation during a T-dependent humoral
response. Naive B-cells that are specific to a foreign pathogen will
become activated and receive help from accessory cells. They may
become early memory B-cells or extrafollicular plasmablasts, or form a
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GC. GC B-cells then may either differentiate into long-lived plasma cells or
memory B-cells. Within the memory population, there are IgM and IgG
memory B-cells. Histone marks in naive and activated B-cells are noted
(15). (B,C) Phenotypes of EZH2-deficient (B) and MOZ-deficient (C) mice
after immunization.

BCL-6 and Blimp-1 were previously denoted as “master regulators”
of B-cell differentiation, by reciprocally repressing each other (21).
However, there are various lines of evidence demonstrating that,

similar to the Th1/Th2 paradigm for T cells, the idea of master
regulators was a useful concept but too simple to completely
explain the genetic programs underlying B-cell differentiation
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(22). For example, in the case of memory B-cells, no master
regulator transcription factor has been found, and both Bcl-6 and
Prdm]1, the gene encoding Blimp-1, are downregulated (2). Fur-
thermore, plasma cell differentiation can be induced in the absence
of Blimp-1 (23).

Memory B-cells are the centerpiece of the secondary response,
in which foreign pathogens are cleared more quickly than a pri-
mary response (1). As such, resting memory B-cells have decreased
expression of cell cycle inhibitors, correlated with their ability to
enter division earlier than naive B-cells (4). Transcriptionally, naive
and memory B-cells are actually quite similar (3, 4), despite the
enhanced survival and proliferative capabilities. Therefore, it is
likely there is an additional level of regulation that endows mem-
ory B-cells with the ability to respond more efficiently to pathogen
infection than naive B-cells.

EPIGENETIC REGULATION

Genetic regulation also occurs via modification of histones. This
is termed epigenetic regulation, i.e., stable inherited modifica-
tions of genetic material without altering the DNA sequence. The
N-terminal tail of histones can be modified either to promote
or inhibit transcription, via creating either an open chromatin
structure (euchromatin) or a tightly packed structure (heterochro-
matin) (24). This is performed by histone modifiers, a group
of enzymes such as methyltransferases, acetyltransferases, and
histone deacetyltransferases (HDACs). Through these modifiers,
histone structure and thus the ability of transcription to proceed is
regulated (25, 26). DNA methylation is another form of epigenetic
regulation, and recently it was demonstrated that inhibiting DNA
methyltransferase 1 (DNMT1) can abrogate GC responses (27)
(Table 1). However, due to space limitations, DNA methylation
will not be discussed further here.

In recent years, epigenetic regulation of B-cell development —
especially VDJ recombination (32) — has been revealed. How-
ever, much less is known about whether epigenetic modifiers can
regulate B-cell differentiation during a humoral response. This
mini-review will focus specifically on the current understanding

of differential histone modifications during the formation of
GC-dependent memory.

HISTONE MODIFICATION PATTERNS IN DIFFERENT B-CELL
SUBSETS

Germinal center B-cells and plasma cells have their own unique
transcriptional program compared to naive and memory B-cells
(2,18-20). A large number of gene expression changes occur dur-
ing differentiation of a naive B-cell to GC to memory or plasma
cell. In addition, an antigen-activated B-cell has the ability to
choose any one of those three fates during a response. Therefore, it
is likely that regulation of heterochromatin or euchromatin states
plays a large role in this adaptability. It could be hypothesized then
that the pattern of histone marks is unique to different mature B-
cell subsets. Indeed, assessment of H3K4mel, H3K4me3, H3Ac,
H3K36me3, H3K27me3, and Polll demonstrated that human
naive and GC B-cells had different patterns of open chromatin
(33). Thus, it appears that there is a change in the epigenetic land-
scape either upon B-cell activation or during the first couple of
days during an immune response.

CHANGES TO HISTONE MODIFICATIONS UPON ACTIVATION
OF B-CELLS
The immediate epigenetic events that may occur upon activation
of an antigen-specific B-cell are unknown. However, preliminary
data have shown differences in histone marks between quiescent
and activated B-cells (Figure 1). Methylation of various histone
lysines was found to be decreased in resting cells compared to
in vitro activated cells (15). For example, H3K4, H3K9, and H3K27
methylation increased after in vitro activation, whereas, H3K9
acetylation is present in both quiescent and activated cells (15). In
contrast to H3K9 and H3K27 methylation, H3K4 methylation is a
permissive mark. Although the authors suggest that histone lysine
hypomethylation was a mechanism that endowed B-cells with
reprograming potential (15), this has yet to be shown functionally.
Although it is clear that different B-cell subsets have differ-
ent patterns of histone modifications, there is limited evidence on

Table 1 | Humoral responses in the absence of EZH2, MOZ, p300 (acetyltransferase activity), or DNMT1 [from Ref. (27-31)].

Deletion Type (target) GC response

Memory Plasma cells/Antibody

EZH2 Methyltransferase — Absent
(H3K27) — Reduction in proliferative cells
— Higher frequency of cells in GO/G1
— Increase in apoptosis
MOz Acetyltransferase — Decreased
(H3K9) — Dark zone GC B-cells reduced
Higher frequency of cells in GO/G1
Decreased BCL-6
p300AT  Acetyltransferase No change
DNMT1  Methyltransferase — Decreased
(DNA) — Reduction in proliferative cells

— Decreased IgG1, IgG2b
— No change in IgG2a or IgG3

Decreased IgG1+ memory and
affinity
— Decreased plasma cells in vivo
— Increased plasmablasts in vitro

— Numbers of IgG1+ memory — No change in numbers, but

normal but decreased affinity decrease in affinity of plasma cells

- Increased IgM* memory

— Memory response impaired — No change in IgG1
—1gG2b decreased

— SLE-like disease

Not assessed Not assessed
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the role particular histone modifiers play during the early phase of
humoral responses. For example, B-cells from a mouse engineered
to have reduced acetyltransferase activity in p300 were still able to
respond to T cell-derived stimuli such as anti-CD40, IL-4, and the
T-independent stimuli LPS or CpG agonist (28). In contrast, there
was a 50% reduction in the ability of these cells to respond to BCR
stimulation (28). Because B-cell development is altered in these
mice, it is not clear whether this defect is the result of a defect that
occurred during B-cell development, as opposed to a direct role
upon BcR engagement in the periphery.

An area of great interest currently is whether “bivalency,”
i.e., the presence of both activating and repressive marks at the
same loci, is important for lymphocyte plasticity in identity and
function (22). Preliminary studies suggest that bivalency is an
important regulator of gene expression during differentiation of
naive to GC B-cells. Enhancer of zeste homolog 2 (EZH2) is a
histone methyltransferase and a polycomb group member that
catalyzes methylation of H3K27 (34). A number of EZH2 tar-
get genes in centroblasts that were marked by H3K27me3 were
also H3K27me3 marked in naive B-cells, although likely not by
EZH?2 as its expression is very low in naive B-cells (35). A study
of bivalent genes in naive and GC B-cells (with respect to the
activating mark H3K4me3 and silencing mark H3K27me3) found
that differentiation into GC B-cells resulted in ~1000 new biva-
lent domains (29). However, the vast majority of these promoters
that had dual marks came from the acquisition of H3K27me3
(likely due to upregulation of EZH2) — i.e., already marked
H3K4me3 promoters in naive B-cells (29). As the transcriptional
program in GCs is known to involve the large-scale repression
of many genes, bivalency may allow GC B-cells to establish the
transcriptional program required for the multiple rounds of pro-
liferation and somatic hypermutation that occurs, while retain-
ing the ability to differentiate into centrocytes and eventually
plasma cells and memory B-cells. However, the likely complex
roles of bivalent domains during B-cell differentiation are yet to
be unraveled.

REGULATION OF GCs BY EZH2 AND M0Z

Polycomb group proteins are differentially expressed in the GC
in human tonsils. BMI-1 and RING1 downregulation, and ENX
and EED upregulation, occur upon differentiation into centrob-
lasts (36). This was then reversed in centrocytes. EZH2 was also
found to be upregulated in centroblasts (30, 35, 37). It has also
been shown that while Ezh2 is expressed in plasmablasts, BMI-1 is
expressed in plasma cells (38), correlating EZH2 expression with
cycling cells in both the GC and in the plasmablast populations.
The expression of Ezh2 is decreased, however, in PC and memory
B-cell populations compared to GC B-cells (30).

To investigate the role of epigenetic regulation in B-cell differ-
entiation during humoral responses,a number of groups have con-
ditionally deleted histone modifiers (Table 1). Two such enzymes
are EZH2 and the histone acetyltransferase monocytic leukemia
zinc finger protein (MOZ) (Figure 1). EZH2 plays an important
role during B-cell development by modulating Igh rearrangement
(39), and has now been revealed to be essential for GCs (29, 30).
The deletion of EZH2, by use of either Cyl-Cre or CR2-Cre,

dramatically reduced GC frequency, with the remaining GC cells
EZH2™ (29, 30). Both research groups demonstrated the regula-
tion of cell cycle genes by EZH2 (29, 30, 35), although GC B-cells
were also found to undergo increased apoptosis in the absence of
EZH?2 (30).

Although MOZ is a histone acetyltransferase, there were sim-
ilarities between the phenotypes of MOZ-deficient and EZH2-
deficient mice. Deletion of MOZ using Mb-1-Cre (in all B-cells)
or Aicda-cre (specifically in activated B-cells) mice also resulted
in a decrease in GC B-cells (31), although not to the extent of
EZH2-deficiency (29, 30). This was found to be due to defective
proliferation, correlating to a decrease specifically in dark zone B-
cells (31). Thus, expression and/or function of EZH2 and MOZ
can be localized to the dark zone of the GC. Somatic hyper-
mutation and class-switch recombination is also known to be
regulated epigenetically, however, this has been reviewed recently
(32) and thus will not be discussed here. Given that a num-
ber of other histone modifiers are located either in the dark or
light zone (36, 37), future investigations could assess whether
these other modifiers regulate particular functions within the
light zone.

B cell lymphoma 6 (BCL-6) is absolutely required for GC for-
mation (18, 19). BCL-6 shares some common targets with EZH2
in GC B-cells. EZH2 binds approximately 1800 promoters in GC
B-cells (35), and a portion of these were specific to GC B-cells.
Within this GC-specific geneset, it appeared that EZH2 targets
were involved in cellular proliferation and repression of differ-
entiation (29, 30, 35). Interestingly, EZH2 targets that were not
H3K27me3-marked in naive B-cells were also bound by BCL-
6 (35). Approximately half of the genes that were bound by
both the polycomb repressor complex 2 and BCL-6 in wild-type
GC B-cells were upregulated in EZH2 mutants (30). In contrast,
EZH2-deficiency mostly did not affect the expression of BCL-
6 targets that lack the H3K27me3 mark (30), and EZH2 does
not modulate BCL-6 expression itself (30). In contrast, MOZ-
deficient GC B-cells had decreased levels of BCL-6 (31), which
may be associated with the gene expression program modulated
by MOZ (31).

REGULATION OF PLASMA CELLS BY HISTONE MODIFIERS

Conditional deletion of histone modifiers in B-cells has demon-
strated that differentiation of GC cells into plasma cells is epigenet-
ically regulated. In the case of MOZ, deficiency altered the affinity
but not numbers of plasma cells, likely due to the reduction of
dark zone B-cells (31). Similarly, the GC defect in EZH2-deficient
mice resulted in a significant reduction in both numbers and affin-
ity of plasma cells (30). However, when these authors stimulated
EZH2-deficient cells in vitro, differentiation into plasmablasts was
increased in the absence of EZH?2. This was correlated to functional
repression of the plasma cell genes Prdm1 and Irf4 by EZH2 (30),
and the reduction of H3K27me3 marking at Irf4 and Prdm]I loci
upon differentiation (30). In addition to Irf4 and Prdml, EZH2
appears to regulate the genetic programs associated with differen-
tiation of GC B-cells to plasma cells or memory B-cells (29, 30, 35).
Thus, continued EZH2 expression is likely required to maintain
the GC phenotype and prevent premature differentiation (35). Itis
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known that EZH2 mutations are associated with malignant trans-
formations (29, 30, 35,40), but it is also possible that dysregulation
of EZH2 may also play a role in antibody-mediated autoimmune
disorders.

Lastly, it is likely that HDACs can also regulate plasma cell
differentiation, although previous studies have had contrasting
results on whether inhibiting HDACs inhibit or promote differ-
entiation (41, 42). This will be important to determine as HDAC
inhibitors are being used to treat lymphocyte malignancies (43—
45). Dysregulation of gene expression during B-cell responses can
lead to autoimmune diseases, and there is some evidence this
could occur as a result of improper histone modifications. Mice
lacking acetyltransferase activity in p300 specifically in B-cells
develop a systemic lupus erythematosus-like disease (28). Thus,
there is future potential to use epigenetic modifiers as treatment
for antibody disorders.

REGULATION OF B-CELL MEMORY BY EZH2 AND M0Z
Immune memory is defined as the rapid and robust response that
occurs upon secondary infections, clearing invading pathogens
more quickly than the primary response. The memory B-cell
population is phenotypically and functionally heterogeneous (1,
46, 47). Recently, a number of research groups have postulated
that the heterogeneity evident within the memory population
allows the pool to undergo specialized functions, i.e., differen-
tiation into plasmablasts whilst being able to self-renew. IgM*
memory B-cells persist longer than IgG™ memory B-cells, and
are able to initiate a response to secondary infections when IgG*
memory B-cells are present in low numbers (48, 49). In contrast,
switched memory B-cells has been linked to the rapid produc-
tion of antibody during secondary responses (48, 49). A number
of genes expressed in IgM™ B-cells are silenced when those cells
are engineered to signal through the cytoplasmic tail of IgG1 (50,
51). Therefore, regulation of gene transcription programs may
be linked with the plasticity of the memory pool, allowing persis-
tence in the presence of rapid activation and differentiation during
re-infection.

In the absence of EZH2, GC-derived IgG1™ memory B-cells
and antibody produced in a secondary response were significantly
reduced (30). It is likely that the reduction in memory forma-
tion and function is a result of the absence of functional GCs (29,
30). High affinity IgG1* memory B-cells were also reduced in the
absence of MOZ (31). The latter study also investigated the IgM™
memory B-cell subset, which has been linked to longevity of the
memory population (48, 49). In the absence of MOZ, the make-
up of the memory B-cell population was altered such that IgM™
memory B-cell numbers were increased. It is likely that as a result,
secondary GC formation was increased in these mice, whereas,
secondary plasmablast formation was decreased (31). Thus, MOZ
regulated the composition and functional outcome of the memory
compartment. More work is now needed to investigate in detail
the role of epigenetic regulation in memory B-cell formation and
function.

CONCLUDING REMARKS
Histone modifications are an important component of gene
expression regulation. Specifically, in both T and B-cells, during

development and during differentiation in the periphery, patterns
of histone modifications are unique to different lymphocyte sub-
sets. These modifications likely allow adaptability of cells —i.e., for
the ability of an antigen-activated B-cell to undergo differentiation
into either a memory B-cell, GC or plasmablast.

The enzymes that catalyze modifications of histones, such as
EZH2 and MOZ, have recently been shown to play important roles
in formation, maintenance and modulation of B-cell populations.
Thus, these new studies demonstrate that programing of B-cell
subsets by epigenetic changes influence differentiation decisions
during immune responses. However, it is only the beginning for
these types of studies. A better understanding of epigenetic regu-
lation of humoral responses will be attained as the targets for each
modifier in B-cell subsets, factors involved in facilitating modi-
fications, and interactions between known regulatory complexes
are revealed. It will be important to use an integrated approach to
identify histone modifications important for B cell generation and
function, and the transcriptional networks they regulate. Thus,
in addition to ChIP-sequencing and gene-targeted mice, it will
be essential to use new methods that can systematically initiate
histone marks during B cell responses to unravel the role of par-
ticular modifications during memory formation and secondary
responses.

Revealing the roles of other histone modifiers has the potential
to reveal the molecular mechanisms underlying the production
of a memory population that is able to persist in the absence
of antigen whilst being poised to respond to subsequent infec-
tions. This not only has implications for vaccines and immun-
odeficiencies that are unable to produce memory cells, it will
also result in a wider understanding of how epigenetic regula-
tion controls gene expression during programs of cell differen-
tiation. Understanding these fundamental cellular processes are
applicable not only to B-cell and hematopoietic development,
but also more generally for developmental processes. It is note-
worthy that it is precisely these transcriptional networks that
are predictive in disease, particularly autoimmune diseases and
cancers.
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