{frontiers in
IMMUNOLOGY

MINI REVIEW ARTICLE
published: 08 December 2014
doi: 10.3389/fimmu.2014.00623

Comparative evaluation of heterologous production
systems for recombinant pulmonary surfactant protein D

Daniela Salgado'*, Rainer Fischer'?, Stefan Schillberg’, Richard M. Twyman?® and Stefan Rasche’

" Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
2 Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany

3 TRM Ltd., York, UK

Edited by:
Uday Kishore, Brunel University, UK

Reviewed by:

Taruna Madan, National Institute For
Research in Reproductive Health,
India

Annapurna Nayak, Brunel University,
UK

*Correspondence:

Daniela Salgado, Department of Plant
Biotechnology, Fraunhofer Institute
for Molecular Biology and Applied
Ecology IME, Forckenbeckstral3e 6,
Aachen 52074, Germany

e-mail: daniela.salgado@molbiotech.
rwth-aachen.de

Commercial surfactant products derived from animal lungs are used for the treatment
of respiratory diseases in premature neonates. These products contain lipids and the
hydrophobic surfactant proteins B and C, which help to lower the surface tension in the
lungs. Surfactant products are less effective when pulmonary diseases involve inflamma-
tory complications because two hydrophilic surfactant proteins (A and D) are lost during the
extraction process, yet surfactant protein D (SP-D) is a component of the innate immune
system that helps to reduce lung inflammation. The performance of surfactant products
could, therefore, be improved by supplementing them with an additional source of SP-D.
Recombinant SP-D (rSP-D) is produced in mammalian cells and bacteria (Escherichia coli),
and also experimentally in the yeast Pichia pastoris. Mammalian cells produce full-size SP-
D, but the yields are low and the cost of production is high. In contrast, bacteria produce
a truncated form of SP-D, which is active in vitro and in vivo, and higher yields can be
achieved at a lower cost. We compare the efficiency of production of rSP-D in terms of the
total yields achieved in each system and the amount of SP-D needed to meet the global
demand for the treatment of pulmonary diseases, using respiratory distress syndrome as
a case study.
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INTRODUCTION

Mammalian pulmonary surfactant (PS) is a mixture of proteins
(10%) and lipids (90%) including the major lipid component
dipalmitoylphosphatidylcholine (DPPC) (1) (Figure 1A). Four
classes of surfactant proteins are associated with surfactant lipids,
named SP-A, SP-B, SP-C, and SP-D, representing 5, 2, 2, and
1% of the total PS composition by weight, respectively (2). The
hydrophobic proteins SP-B and SP-C are necessary for the adsorp-
tion of the surfactant layer to the alveolar air-liquid interface,
thus lowering the surface tension. The hydrophilic proteins SP-
A and SP-D contribute to surfactant homeostasis and also play
a role in innate immunity (3). The main function of the PS is
to ensure minimal surface tension within the lung to avoid col-
lapse during respiration. Furthermore, by interacting with inhaled
pathogens, the PS also participates in host defense (4). PS defi-
ciency is, therefore, associated with pulmonary diseases such as
asthma, bronchiolitis, respiratory distress syndrome (RDS), cys-
tic fibrosis, and pneumonia (5). A number of different exogenous
surfactant preparations have been developed and tested in clini-
cal trials (6). Curosurf®, a natural surfactant formulation derived
from minced porcine lungs, is currently one of the leading surfac-
tant products in USA, and comprises a mixture of phospholipids
and the hydrophobic surfactant proteins SP-B and SP-C (6). Sur-
factant formulations are indicated for the treatment of RDS,
which affects ~1.5 million premature babies globally every year
(Box 1).

Respiratory distress syndrome is a major PS deficiency disease
caused by the structural immaturity of the lungs in premature
infants, which makes it difficult to breathe, inhibits gas exchange,
and promotes alveolar collapse (13). However, treatment becomes
more difficult if the lungs are infected or if there are inflammatory
or oxidative complications, because current surfactant prepara-
tions lack SP-A and SP-D (1). The successful treatment of complex
pulmonary diseases, therefore, requires the production of sur-
factant formulations whose composition matches natural PS as
closely as possible (14).

Surfactant protein D has an important role in the pul-
monary innate immune system by providing anti-inflammatory
and antimicrobial activities that address chronic pulmonary dis-
eases such as asthma, cystic fibrosis, and smoking-induced emphy-
sema (15—18). Data based on premature newborn lambs suggest
that the administration of ~2-3 mg/kg of recombinant human
SP-D in combination with 100 mg/kg Survanta® (a natural sur-
factant available in USA) is more effective than Survanta® alone
for the prevention of endotoxin shock and the reduction of lung
inflammation caused by ventilation (19, 20).

Traditionally, SP-D has been isolated from the supernatant of
bronchoalveolar lavage or amniotic fluid, but most SP-D is lost
during the procedure because it is hydrophilic (21). The low SP-D
yields and variable oligomerization states make it difficult to use
natural sources for the production of pharmaceutical SP-D (22,
23). To overcome these limitations, recombinant SP-D (rSP-D)
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FIGURE 1 | Composition of pulmonary surfactant and SP-D
oligomerization. (A) Pulmonary surfactant is composed of lipids (90%) and

permission. DPPC, dipalmitoylphosphatidylcholine; PC, unsaturated
phosphatidylcholine; PG, phosphatidylglycerol; PL, phospholipids; NCD,

proteins (10%) distributed as shown. (B) SP-D comprises four domains: the
N-terminal, collagenous, neck, and carbohydrate-recognition domains.

(C) SP-D assembles as a trimer, which forms higher multimeric forms such as
dodecamers. Reproduced from Jobe and Ikegami (2) and Wright (7) with

N-terminal non-collagenous domain; CD, collagenous domain; ND,
a-helical-coiled coil neck domain; CRD, carbohydrate-recognition domain.
(A) reproduced from Jobe and lkegami (2), copyright (2001) with permission
from Elsevier. (B,C) adapted from Wright (7), copyright (2005).

Box 1| Calculating the annual demand for SP-D.

To calculate the annual demand for SP-D, we used RDS as a case study because this is the only disease for which surfactant products are
currently indicated. There are ~15 million premature births every year (8) and based on USA data only 10% of the premature babies are
affected by RDS (9). Therefore, we used ~1.5 million babies as the basis for our annual demand calculations.

Surfactants are administered on the basis of body weight so to simplify the calculations we determined the mean body weight of a pre-
mature baby based on USA data from the Centers of Disease Prevention and Control (10). We defined a premature birth as any baby born
weighing less than 2.5kg and calculated the mean weight based on averaged frequency data [Table F in Ref. (10)] resulting in an average
premature weight of 2 kg.

The recommended single dose of Curosurf® per kg body weight (11) contains 2.5 mg of protein (SP-B plus SP-C), which represents a dose of
5 mg for a 2 kg premature baby. For more complicated cases, two additional doses are recommended within 72 h, so a three-dose regimen
would administer 10 mg of protein, given that the second and third doses are half-strength. Because SP-B and SP-C together account for
40% of natural surfactant protein, whereas SP-D accounts for 10%, the corresponding “ideal” doses of SP-D to match the proportions
present in natural surfactant (2) would be 1.25mg for one dose and 2.5 mg for three doses. Multiplying these amounts by 1.5 million pre-
mature babies at risk of RDS we get minimum and maximum annual demands of 1.875 and 3.75kg SP-D, respectively. For the truncated
product [neck and carbohydrate-recognition domain (NCRD)], the same amount of functional protein would have 47% of the mass (12), so
the minimum and maximum annual demands are reduced to 0.881 and 1.762 kg, respectively.
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can be produced in microbes or mammalian cell lines, potentially
offering a large-scale platform for the production of homogeneous
rSP-D formulations. There is little data available concerning the
global demand for rSP-D so we have used RDS as a case study,
assuming that products such as Curosurf® would benefit from the
inclusion of rSP-D in the same proportion as found in natural PS.
It would also be valuable to gain insight into the productivity of
different rSP-D production platforms, comparing their advantages
and disadvantages to develop an effective production strategy.

SURFACTANT PRODUCTS IN CLINICAL USE

The exogenous surfactants tested in RDS clinical trials can be
assigned to three groups. The first comprises modified natural
surfactants of bovine or porcine origin, which contain a mix-
ture of phospholipids but only the hydrophobic proteins SP-B and
SP-C, e.g., Curosurf®, BLES®, Infasurf®, and Survanta® (6). The
second comprises the synthetic surfactants Surfaxin® and Ven-
ticute®. The former contains DPPC, phosphatidylglycerol (PG),
palmitic acid, and a protein analog KL-4 (sinalputide), which
mimics the activity of SP-B (1, 24). The latter contains DPPC, PG,
palmitic acid, and recombinant human SP-C (1, 25). Finally, the
third group comprises protein-free synthetic surfactants featuring
a mix of phospholipids and additives (e.g., ALEC® and Exosurf®)
(1). Clinical trials have been carried out to compare approved
surfactant products for the treatment of neonates with RDS. The
use of synthetic surfactants, which were initially promoted as a
less expensive product with homogeneous composition and a low
risk of contamination with animal pathogens, has declined due
to their poor clinical performance and complex manufacturing
process (1, 26). Synthetic surfactants should contain at least one
hydrophobic protein or analog for optimal results, but these are
structurally complex or unstable in pure form (27). Although
modified natural surfactants are more expensive (~$500 per dose
for neonates), they also reduce mortality and pulmonary air leaks
more successfully (13, 28). Nevertheless, there is a higher risk of
contamination with pathogens when animal-derived products are
used, and the modified natural surfactants have a low and variable
protein content compared to natural surfactants. For example,
Survanta® contains only ~12% of the SP-B content and ~50% of
the SP-C content compared to the endogenous bovine surfactant,
whereas Curosurf® contains only ~33% of the SP-B content and
~50% of the SP-C content compared to the endogenous porcine
surfactant (1, 29).

The in vitro activity of animal-derived surfactants shows vari-
able sensitivity to inhibition by plasma proteins, fatty acids, and
proteases that eventually inactivate endogenous PS, based on
the different protein contents of these products, making them
more resistant when the surfactant proteins are present in greater
amounts (1, 30). The concentration of SP-B and SP-C in surfactant
products must ensure the efficient adsorption and spreading of
phospholipids. Curosurf® is the most widely used product for the
treatment of RDS (31). This natural surfactant contains 1 mg/ml
of SP-B and SP-C proteins (11, 32) and one dose of 2.5 ml/kg body
weight is recommended followed if necessary by second and third
doses of 1.25ml/kg each (11). Assuming an average premature
birth weight of 2kg (Box 1), this means the average dose of SP-B
plus SP-Cis 5 mg for one treatment and 10 mg for three treatments.

With 1.5 million premature babies affected by RDS every year, this
equates to a global demand of between 7.5 and 15 kg of SP-B plus
SP-C to ensure enough supplies for each child to receive one or
three doses, as best and worst case scenarios.

STRUCTURE AND FUNCTIONS OF SP-D

Surfactant protein D is a glycoprotein that belongs to the family
of collagenous carbohydrate-binding proteins known as collectins
(33-35). This group includes SP-A, serum mannose-binding pro-
tein (MBL), conglutinin, and CL-43. Collectins comprise four
domains: a cysteine-linked N-terminal region required for the for-
mation of intermolecular disulfide bonds, a triple-helical collagen
region, an a-helical-coiled-coil trimerizing neck peptide, and a
C-terminal calcium-dependent carbohydrate-recognition domain
(CRD) (36) (Figure 1B). SP-D is assembled as trimer (129kDa
in total, comprising three identical 43-kDa polypeptide chains),
but higher oligomerization states such as dodecamers can also be
formed (36, 37) (Figure 1C). SP-D is an innate host defense mol-
ecule that interacts directly with carbohydrates on the surface of
pathogens including bacteria, viruses, fungi, and protozoa. These
interactions cause pathogen aggregation followed by the activa-
tion of phagocytes to destroy them (37, 38). A higher degree of
SP-D oligomerization increases the recognition and binding of
carbohydrate ligands to the pathogen surface (37).

NATURAL SOURCES OF SP-D

The structure of SP-D from human, murine, porcine, and bovine
sources has been studied to determine its function in the innate
immune system (39-43). SP-D is usually isolated from bron-
choalveolar lavage during alveolar proteinosis (the abnormal accu-
mulation of surfactantin the alveoli, interfering with gas exchange)
followed by carbohydrate affinity chromatography (21, 23).

The use of natural SP-D to supplement PS formulations is
the best option to ensure therapeutic efficiency because higher-
order multimerization in the endogenous surfactant increases the
number of SP-D-binding sites to carbohydrate ligands on the
surface of pathogens, achieving potent bacterial and viral agglu-
tination effects (44). However, the SP-D concentration after lung
lavage is low because the hydrophilic properties of SP-D cause
most of the protein to be lost during extraction (45). Animal
sources also present a risk of contamination with pathogens as
well as non-uniform SP-D composition, reflecting the different
oligomerization states that form after extraction and purification
(22,23).

HETEROLOGOUS SP-D PRODUCTION SYSTEMS
MAMMALIAN CELL LINES
One of the first in vivo assays using prematurely delivered lambs
demonstrated the positive effects of Survanta®, a natural commer-
cial surfactant, supplemented with full-size rSP-D produced by
Chinese hamster ovary (CHO) cells. A dose of 2 mg/kg recombi-
nant human SP-D improved the surfactant function by protecting
the premature lung against inflammation induced by ventilation.
This study was one of the first to indicate the benefits of adding a
full-size rSP-D to the natural surfactant product and its potential
use for the treatment of pulmonary diseases (19, 20, 46).

The production of active therapeutic proteins depends not only
on protein synthesis but also correct folding and post-translational
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modification, especially glycosylation (47). SP-D folds with the aid
of disulfide bonds in the N-terminal region and the collagen region
also undergoes N-glycosylation (37). Therefore, SP-D is usually
synthesized in mammalian cells because they produce authentic
glycan structures (43). Despite the typical advantages of mam-
malian cells in terms of yields and post-translation modifications
(48,49), the production of rSP-D remains a challenge because it is
not synthesized efficiently. The mammalian cell line that is most
widely used for the production of full-length SP-D is the CHO-K1
subclone (48). CHO cells can produce many biopharmaceutical
products in the grams per liter yield range following extensive cell
line and process optimization (50), but in the case of rSP-D, the
yields are typically 0.5-2.0 mg of purified protein per liter (51). If
we match the demand for rSP-D against the current annual use
of Curosurf® for the treatment of RDS (34), it would be neces-
sary to produce 1.875-3.75 kg/year based on a single dose for the
minimum demand and three doses for the maximum demand,
in each case representing ~1.5 million premature babies (Box 1).
Even if rSP-D could be produced by industrial fermentation in
20,000-1 bioreactors (52, 53), each campaign would only produce
a maximum of 40g of purified protein per campaign, so even
with 100% success at the highest current yields this would require
47-94 campaigns per year to meet the annual demand for this
protein.

Human embryonic kidney cell line 293 (HEK293) has also been
used to produce rSP-D and in this case yields were reported in the
range 1-5mg/l (54). Using the same assumptions as above, this
suggests that a single campaign in a 20,000-1 fermenter would yield
100 g of pure rSP-D, requiring 19-38 campaigns to meet annual
demand (52, 53).

As well as the large volumes of mammalian cell culture required
to produce sufficient amounts of rSP-D to meet global demand,
such cell lines also present an additional risk of contamination
with animal pathogens, which increases the costs of downstream
processing and purification, and hence the cost of the produc-
tion facilities (55). However, mammalian cells are advantageous
over natural sources of SP-D because they provide continuous
and uniform amounts of protein over a short cultivation period
and the source material is not scarce. SP-D yields could be
improved in the future by medium optimization, the selection
of better production cell lines and the optimization of cultivation
strategies (55).

Escherichia coli

Escherichia coli was the first organism used for the production of
therapeutic recombinant proteins and is still widely used today,
particularly for the production of small proteins lacking gly-
can structures. Cultivation is simple and inexpensive, and large
amounts of protein can be produced in a relatively short time
(55). E. coli has been used successfully for the production of a
truncated form of rSP-D (35, 56-58) comprising only the NCRD.
These components of the protein are not glycosylated and do not
require any other post-translational modifications, but retain the
biological activity of the full-size protein in vitro and in vivo (57)
because they undergo normal CRD folding, intramolecular disul-
fide bond formation, the co-ordination of calcium ions, and ligand
binding (12, 58-60). Human, rat, and mouse versions of NCRD

have been produced successfully in E. coli (58). The yields of puri-
fied mouse NCRD (5-10 mg/1) were about four times lower than
human and rat NCRD, suggesting that the maximum yield of
human NCRD is 40 mg/l in this system. The Arg-Ala-Lys (RAK)
sequence from CL-43 bovine serum collectin was inserted into the
corresponding SP-D sequence and this modified protein was also
expressed with a yield approaching 40 mg/1 (56). Trimeric NCRD
is a 60 kDa polypeptide but each molecule has the same activity
as the trimeric full-size rSP-D, which is 129 kDa (12). This means
that every kg of the full-size product can be replaced with 470 g
of the truncated derivative. On this basis, the annual demand for
active rSP-D can be met by producing 0.881-1.762 kg of NCRD
(Box 1). Again assuming a campaign based on a 20,000-1 biore-
actor, the entire annual demand for NCRD could be met by 1-2
campaigns (52, 53).

Several in vivo studies have demonstrated the therapeutic
effects of purified recombinant NCRD produced in E. coli in
mouse models of infectious, allergic, and inflammatory dis-
eases. The administration of recombinant NCRD suppressed the
development of allergy symptoms against Aspergillus fumigatus
(12, 61) and Dermatophagoides pteronyssinus (18, 62). In addi-
tion, the intrapulmonary administration of recombinant NCRD
also reduced the number of apoptotic and necrotic alveolar
macrophages, helped to control asthma-related inflammation and
improved lung health in SP-D-deficient mice (63).

The successful preclinical testing of recombinant NCRD pro-
duced in E. coli demonstrates the suitability of this platform for
the production of an active pharmaceutical ingredient for human
use. The yields can be improved by optimizing gene expression
and protein accumulation (e.g., by using different promoters to
boost gene expression, incorporating a leader peptide to direct the
protein into the periplasmic space or by expressing fusion pro-
teins to increase product stability) and by improving the growth
medium and process parameters (55).

Pichia pastoris

Yeast provide cost—effective production systems with high produc-
tivity and rapid growth like bacteria, but they are eukaryotic cells
and can, therefore, fold complex proteins and carry out most forms
of post-translational modification (55). Despite these advantages,
rSP-D is not yet produced in yeast, although Pichia pastoris has
been used to produce truncated SP-D to enable the analysis of its
crystal structure. The yield of human NCRD in P. pastoris was
7mg/1 (60), which means that 140 g of purified NCRD could be
produced by P. pastoris cells using a 20,000-1 fermenter (52, 53).
Based on the calculations presented above, this would require 6-13
campaigns to meet annual demand. The capacities of the pro-
duction platforms compared in this review are summarized in
Table 1.

FUTURE PERSPECTIVES

In addition to the heterologous expression systems discussed
above, alternative platforms can be developed to make the pro-
duction of rSP-D more efficient. For example, insect cells carry
out more complex post-translational modifications than either E.
coli or P, pastoris, and they also have the ability to fold and assemble
complex proteins, which should enhance the formation of SP-D
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Table 1 | The ability of heterologous production systems to meet the
current global demand for recombinant SP-D.

Heterologous Maximum Number of Number of

production reported campaigns required campaigns required

system yields to meet minimum  to meet maximum
(mg/1) annual demand? annual demand®

FULL-SIZE SP-D

CHO-K1 2 47 94

HEK293 5 19 38

NCRD

Escherichia coli 40 1 2

Pichia pastoris 7 6 13

2Minimum annual demand is 1.875 kg rSP-D or 0.881 kg NCRD (see Box 1).
bMaximum annual demand is 3.75 kg rSP-D or 1.762 kg NCRD (see Box 1).

The reported maximum yields of purified full-size recombinant SP-D and its trun-
cated form (NCRD) in different heterologous production systems were used to
estimate the number of campaigns required to meet annual demand assuming
~1.5 million premature babies require one treatment per year (minimum demand)
or three treatments per year (maximum demand) and that each campaign has a
production volume of 20,0001. The calculations are explained in detail in Box 1.

dodecamers and higher order multimers (55). SP-A and SP-B have
already been produced using insect cells, thus demonstrating the
capacity of this system to produce complex surfactant proteins
(64, 65). However, insect cells require more expensive media than
bacteria, which makes the production of large quantities of protein
more cost intensive (66).

Surfactant protein D could also be produced in transgenic
plants or plant cell suspension cultures, which offer economic
benefits for the large-scale of production of pharmaceutical pro-
teins (67, 68). Upstream production in plants is less expensive
than all other systems because only light, water, and basic nutri-
ents are needed for growth, and cultivation can be implemented
on an agricultural scale without bioreactors or skilled labor (55).
However, downstream processing is more expensive compared
to mammalian or microbial culture media and represents up to
80% of the total costs of therapeutic protein production (69-71).
The development of new purification strategies would, there-
fore, be necessary for the cost—effective production of SP-D in
plants.

During the last 5years, the structural characteristics of SP-D
have been solved in detail and this knowledge now makes it possi-
ble to design synthetic peptide analogs, a new production strategy
that could replace native and rSP-D in future artificial surfac-
tants. For example, Surfaxin® contains sinalputide (KL4 peptide),
a poly-N-substituted glycine analog that mimics the function of
SP-B, and this promotes healthy surfactant film morphology and
adsorption (72). However, SP-D is significantly larger than SP-
B and is organized as a trimeric structure comprising several
amphipathic helices, which can assemble into dodecameric or
higher multimeric complexes. Therefore, the development of SP-
D analogs is likely to be more complex. It is possible that small
peptide analogs could be developed to mimic the functions of the
neck domain together with the CRD as an alternative to rSP-D
and NCRD.

CONCLUSION

Heterologous expression platforms are used for the production of
SP-D because only small amounts of the protein can be isolated
from animals, and this is insufficient to meet the global demand.
Surfactants are widely used for the treatment of RDS and would
benefit from the inclusion of rSP-D, which has shown promising
results in clinical trials for infectious and inflammatory lung dis-
eases. The global demand in the context of RDS is currently in the
low kilogram per year range and can be met by weekly campaigns
in mammalian cells, which can produce full-size SP-D. The com-
plete SP-D molecule is essential for innate defense against acute
bacterial or viral respiratory infections because it achieves high-
affinity binding to lipopolysaccharide and causes the subsequent
agglutination of the pathogens. However, this platform can be sus-
ceptible to contamination with animal pathogens, which limit its
production in mammalian systems. As an alternative, the global
demand for rSP-D in the context of RDS can be met with only 1-2
large-scale campaigns in E. coli for the production of a truncated
fragment of SP-D lacking the collagenous domain. The truncated
version of the protein can reduce the total number of apoptotic
macrophages during chronic lung inflammation in mice deficient
for SP-D. The demand for SP-D will grow when it is approved for
other indications such as asthma and cystic fibrosis, and current
systems will not produce sufficient quantities of the protein. Fur-
ther research is therefore required to develop efficient production
platforms based on a wider range of expression systems includ-
ing yeast, insect cells, and plants, to ensure that the production
capacity for SP-D meets the growing demand for this protein.
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