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Lymphocytes of the gamma delta (γδ)T-cell lineage are evolutionary conserved and although
they express rearranged antigen-specific receptors, a large proportion respond as innate
effectors. γδT-cells are poised to combat infection by responding rapidly to cytokine stimuli
similar to innate lymphoid cells. This potential to initiate strong inflammatory responses
necessitates that inhibitory signals are balanced with activation signals. Here, we discuss
some of the key mechanisms that regulate the development, activation, and inhibition of
innate γδ T-cells in light of recent evidence that the inhibitory immunoglobulin-superfamily
member B andT lymphocyte attenuator restricts their differentiation and effector function.
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INTRODUCTION
The ability to generate antigen receptor diversity by somatic
recombination evolved approximately 500 million years ago (1)
and became the founding biological property of what we now
know as adaptive immunity. This evolutionary milestone pro-
vided our immune system with an innate and an adaptive arm
that synergized for the fight against infection and the recognition
of oncogenesis. Lymphocytes of the gamma delta (γδ) T-cell lin-
eage are evolutionary conserved among species (2) and although
they express rearranged antigen-specific receptors, a large pro-
portion display innate properties. In the mouse, where innate γδ

T-cells have been mostly studied, approximately 25% of lymph
node γδ T-cells respond rapidly to cytokine stimuli similar to
innate lymphoid cells (ILCs) and appear to have reduced T-cell
receptor (TCR) signaling capacity (3). Innate γδ T-cells are char-
acterized by the spontaneous and high expression of interleukin
(IL)-17 (γδ17) as well as IL-22 and express functional Toll-like
receptors (TLR) (4, 5). Importantly, IL-17 and IL-23 receptor
(IL-23R) expression, which is critical for IL-22 induction, are
turned on during embryonic development in the thymus strongly
pointing toward a bona fide innate nature (6–8). Although a
new interferon gamma (IFNγ)-producing innate γδ T-cell sub-
set with no IL-17 potential has recently been described (3), this
review will discuss briefly some of the key cytokines, cytokine
receptors, and transcription factors (TFs) that regulate the devel-
opment, activation, and inhibition of mouse innate γδ17 cells
(Figure 1).

IL-23 AND IL-1β: KEY PROINFLAMMATORY AND
ANTI-BACTERIAL MEDIATORS
Innate γδ17 cells localize mainly at barrier and mucosal surfaces
such as the skin, gut, and lung (9) and within the lymph nodes,
they position themselves in close proximity to the subcapsular
sinus and interfollicular regions both of which specialize in the
capture of antigen (10). Therefore, infectious and inflammatory
stimuli can readily activate γδ17 cells either directly through TLR
ligation or through cytokines such as IL-23 and IL-1β that are
produced by local innate sensors.

IL-23 induces the expression of IL-17 and IL-22 as well as
the transcription factor retinoid-related orphan receptor gamma-
t (RORγt) in T-helper 17 (TH17) cells while at the same time
promoting survival and cell proliferation (11). γδ17 cells express
functional IL-23R as early as embryonic day E18 in the thymus
(7), in contrast to CD4+ T-cells that upregulate the IL-23R upon
TH17 differentiation (12). Although IL-23 or IL-23R has not been
reported to be important for γδ T-cell development, they enhance
the production of IL-17 and IL-22 and can promote cellular prolif-
eration (3, 13). In vivo infectious and inflammatory models have
shown that IL-23 can be important for the activation of the γδ

T-cell response.
During imiquimod (IMQ)-induced psoriasis, genetic ablation

of IL-23 or IL-23R results in a significant reduction of IL-17 pro-
duction by γδ17 cells, diminished accumulation of these cells in the
skin, and a subsequent decrease in inflammatory symptoms (14–
16). In this model, IL-23 is produced locally in the skin by resident
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FIGURE 1 | Major pathways that regulate γδ17 T-cells. Signals in thymic
progenitors (TP): during development, RANK co-ordinates Skint-1
expression, which regulates the fate decision of thymic progenitors into
γδ17 or Vγ5/IFNγ γδ T-cells. IL-7 is critical for the development of γδ17 cells
from thymic progenitors. In the adults, IL-7 is also critical for the normal
homeostasis, function, expansion, and survival of adult γδ17. BTLA (and
perhaps other inhibitory receptors) suppress overt homeostatic proliferation
and hyperactivation in part by regulating IL-7 responsiveness. LTβR is critical
for normal homeostasis and function of γδ17 T-cells in the adult, likely
through differentiation of the microenvironment. IL-23 and IL-1β are both
critical cytokines that initiate inflammatory γδ17 responses.

macrophage and dendritic cell (DC) populations that receive a
combination of TLR and neuronal signals (15, 17, 18). The onset
of experimental autoimmune encephalomyelitis (EAE), which is
often used to model human multiple sclerosis, also depends to
a certain extent on IL-23-driven IL-17 production by γδ T-cells
(5, 19). More specifically, it has been shown that IL-23-activated
γδ17 cells are important for optimal TH17 polarization (5) and
the suppression of regulatory T-cell responses (19). In a mouse
model of brain ischemic injury, absence of IL-23 also abrogated
γδ17-induced inflammation (20). In addition to regulating inflam-
matory reactions, γδ17 cells and IL-23 have been linked with
protection from a number of bacterial infections. Thus, cutaneous
infection with Staphylococcus aureus triggers a γδ T-cell orches-
trated IL-17 response that depends on the combined effects of
IL-23 and IL-1β (21). Furthermore, infection with Listeria mono-
cytogenes elicits an IL-23-driven γδ17 response that is important
for bacterial clearance (22, 23), and the IL-23 pathway appears also
to operate during γδ17 activation by Mycobacterium tuberculosis
(24). Together, these data highlight the role of IL-23 in activating
γδ17 cell-induced inflammatory responses, both to pathogens and
in driving autoimmune disease.

Similar to IL-23, IL-1β has also been linked with IL-17-related
immunity both in CD4+ T as well as in innate γδ T-cells. γδ17 cells
constitutively express the IL-1 receptor and respond to in vitro
IL-1β stimulation by rapid proliferation and upregulation of
IL-17 (3, 5, 13). Interestingly, IL-1β appears to be important

for IL-23-mediated γδ T-cell expansion and IL-17 production
although the molecular mechanism is not yet understood (5, 13).
Effective IL-1β signaling was critical for γδ T-cell activation and
disease progression in the EAE model (5). However, during IMQ-
induced psoriasis, usage of Ilr1-/- mice has resulted in conflicting
conclusions. Whereas an earlier report presented no impact of IL-
1β on either dermatitis or γδ17 activation (25), a more recent study
showed that Ilr1-/- mice were consistently protected with severely
compromised γδ T-cell responses (13). A key difference in the two
studies was the site of inflammation: ear (no IL-1β effect) (25)
versus dorsal epidermis (strong IL-1β effect) (13), suggesting that
IL-1β may have site-specific regulatory roles, such as differential
effects on resident stromal and epithelial cells or due to differences
in lymphatic drainage.

IL-7: KEEPING THE BALANCE BETWEEN HOMEOSTASIS AND
INFLAMMATION
IL-7 is one of the best-studied T-cell homeostatic cytokines. IL-
7 deficiency is associated with lymphopenia and dysfunction of
naïve and memory T-cell subsets (26). IL-7 is essential for the
development of γδ T-cells (27, 28) by regulating the survival of
early thymic progenitors and by inducing V(D)J recombination
within the TCR-γ locus (29, 30). Further experiments have shown
that in addition to its developmental role, IL-7 supports the home-
ostatic proliferation of γδ T-cells (31). Although IL-7 is strongly
associated with signaling via the signal transducer and activator of
transcription 5 (STAT5) (32), it has been shown to induce STAT3
phosphorylation in diverse lymphocyte populations such as thy-
mocytes (33), B-cell progenitors (34), and γδ T-cells (35). STAT3
is a critical component of the IL-23 and IL-6 signaling pathways,
which are important for the differentiation of CD4+ T-cells into
the TH17 lineage (11, 36), in part by antagonizing STAT5 (37). Of
the γδ T subsets, IL-7 was found to preferentially expand and acti-
vate innate γδ17 cells in a STAT3-dependent manner (35), although
it sustained survival of all γδ T-cells (38).

We have recently demonstrated that in γδ17 cells, STAT5-
mediated IL-7 signaling induces surface expression of the check-
point receptor B and T lymphocyte attenuator (BTLA), which
is necessary for their normal homeostasis and activation during
skin inflammation (38). Blockade of IL-7 signaling itself has been
shown to acutely diminish γδ17-driven dermatitis (35) while dur-
ing viral hepatitis IL-7 co-operates with IL-23 to rapidly activate
intrahepatic γδ17 cells and initiate inflammation (39). Whether
IL-7-induced STAT5 and STAT3 phosphorylation operate in par-
allel, sequentially, or as mutually exclusive processes within the
γδ17 population is unknown. However, γδ T-cells deficient in
STAT3 display normal homeostatic responses (40) suggesting that
at steady state STAT5 may have a dominant role.

In addition to its direct effects on γδ T-cells, IL-7 indirectly
influences innate γδ T-cell development by promoting the gener-
ation of lymphoid tissues in part by inducing the expression of
tumor necrosis factor (TNF) superfamily members. IL-7 is pro-
duced homeostatically in the developing thymus and lymph node
anlagen (41) and has been shown to induce the expression of
surface lymphotoxin-αβ (LTαβ) on resident embryonic lymphoid
tissue inducer (LTi) cells (42). LTαβ expressed by LTi interacts
with the LTβ receptor (LTβR) in order to initiate lymph node
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development and organization (43, 44). Genetic ablation of LTβR
results in the absence of all secondary lymphoid tissues in addition
to disorganized splenic and thymic architecture (45, 46). Several
members of the TNF superfamily have been shown to directly
regulate γδ T-cell development, homeostasis, and function, as
outlined below.

LYMPHOTOXIN AND THE TNF NETWORK: CRITICAL
REGULATORS OF INNATE γδ T-CELLS
Innate IL-17 producing γδ T-cells as well as Vγ5 (Vγ3 in Gar-
man nomenclature) expressing cells that colonize the skin as
resident dendritic epidermal T-cells (DETCs) are strictly depen-
dent on the embryonic microenvironment (8, 47). Thus, adult
progenitors cannot reconstitute either of the aforementioned pop-
ulations even if they are provided with a fetal thymus suggesting
the need for embryonic-only progenitors (8). Thus, the fetal thy-
mus contains fully functional γδ17 cells that develop between
E15–18 (8). The development of these cells is intimately asso-
ciated with the TNF superfamily since as early as E15 Vγ5+

progenitors express the TNF ligand RANKL (receptor activator
of NF-κB ligand) and condition the thymic medulla to upreg-
ulate Skint-1 (48), an immunoglobulin (Ig) superfamily protein
that is necessary for the development of Vγ5 cells (49–51). Inter-
estingly, in Skint-1 deficient animals, Vγ5 cells are reprogramed
into a γδ17-like phenotype with severely reduced IFNγ production
(52). This suggests that innate γδ17 T-cells are likely to represent
the default differentiation pathway of most γδ T-cell progeni-
tors pre-Skint-1 selection. This is in line with the evolutionary
evidence that IL-17-producing γδ T-cells are conserved between
non-jawed vertebrates and human beings (2) while Skint-1 and
related genes (e.g., Btn1a1) are highly restricted to mammals
(www.ensembl.org).

In addition to RANK, LTβR has also been linked with the devel-
opment and functional maturation of γδ T-cells. Early reports
showed that γδ T-cells can acquire LTβR expression in the thymus,
and that activation of these receptors by LTαβ- and LIGHT-
expressing double-positive (DP) thymocytes drives maturation
of γδ T-cells assessed by the production of IFNγ (53). How-
ever, the expression of IL-17 or other γδ17-related properties was
not evaluated. The authors suggested that LTβR-induced matu-
ration likely occurred at the late stages of thymic development
when DP cells predominate. Given that γδ17 T-cells develop dur-
ing early embryonic life (8), one scenario to explain these find-
ings is that during thymic development the LTβR pathway in
part regulates the IFNγ potential of γδ T-cells, presumably fol-
lowing Skint-1 selection. In agreement with this argument, the
TNF receptor CD27 is required by thymic progenitors to induce
the innate IFNγ-related differentiation program and to sustain
expression of LTβR (7). Thus, while CD27 deficient animals retain
an intact γδ17 compartment, they showed a marked reduction
in IFNγ and LTβR expression (54). These results predict that
LTβR signaling is not absolutely necessary for γδ17 development
and function, although mice deficient in LTβR or its ligands had
very few IL-17-producing γδ T-cells in the spleen and thymus
(55). Mice lacking the NF-κB TFs RelA and RelB also showed
reduced IL-17-producing γδ T-cells (55). Since the NF-κB path-
way is central to TCR signaling and T-cell development (56), low

IL-17 production might be reflective of impaired TCR stimula-
tion rather than loss of LTβR signals. Furthermore, lack of lymph
nodes in LTβR deficient mice (45) may relocate γδ17 cells to the
skin or intestine and thus explain their reduced numbers in the
spleens. Importantly, loss of LTβR results in abnormal thymic
organization and maturation of the medullary epithelium (46,
57), which may negatively affect γδ17 T-cell development. Alter-
natively, organized secondary lymphoid tissues may be important
for the survival and steady-state turnover of γδ17 cells. Of note,
LTβR has been shown to participate in the production of IL-
7 by fibroreticular stromal cells in the lymph node (58), which
might explain why deficiency in LTβR can result in reduced γδ17

responses.
In addition to its involvement in stromal cell development,

LTβR is expressed on tissue resident DCs and macrophages (59)
both of which have been linked with the IL-23-mediated activa-
tion of γδ17 T-cells, whether this is in the context of skin (15, 17) or
brain inflammation (5). Notably, LTβR regulates the homeostasis
of DCs (60, 61) and can directly induce their production of IL-
23 (62). Interestingly, an LTβR-LTαβ interaction has been linked
with the production of IL-22 by intestinal ILCs (63, 64) raising the
possibility that a similar mechanism may be in place at sites where
γδ17 cells preferentially localize, such as the skin.

BTLA AND INHIBITORY RECEPTORS: PUTTING THE
BRAKES ON
In human beings, herpesvirus entry mediator (HVEM) interacts
with the two TNF ligands LIGHT (shared with LTβR) and sol-
uble LTα, and the Ig superfamily members CD160 and BTLA.
BTLA is an inhibitory receptor with an immunoreceptor tyro-
sine inhibitory motif (ITIM) that has been shown to interact with
the Src homology 2 (SH2)-domain containing protein tyrosine
phosphatase 1 (SHP1) and SHP2 and to inhibit T-cell activation
(65–67) upon interacting with HVEM, its only identified ligand
thus far (66, 68, 69). In addition to its inhibitory role in T-cell
responses, BTLA was shown to prevent overt TLR stimulation in
DCs (70) and to diminish cytokine production by natural killer T
(NKT) (71) and follicular T-cells (72) suggesting a regulatory role
both in adaptive and innate immunity.

BTLA and HVEM signal bi-directionally providing inhibitory
signals in T-cells and survival signals in cells expressing HVEM
(68). BTLA expression varies ~103 fold among hematopoietic lin-
eages, and co-expressed with HVEM forming a complex in cis that
may contribute to homeostatic signaling (73). Constitutive sur-
face expression of BTLA (74) implicates a unique ability among
inhibitory receptors to sustain the homeostatic balance of T-cells
(75) and DCs (61). Similarly, our recent data showed that BTLA
is necessary to inhibit homeostatic expansion and activation of
lymph node and skin resident γδ17 T-cells (38). γδ17 but not other
γδ T-cell subsets deficient in Btla were hyperresponsive to IL-7
stimulation suggesting that BTLA diminishes IL-7 receptor (IL-
7R) signaling. Interestingly, IL-7 increased surface BTLA on γδ17

cells in a STAT5-dependent way revealing the presence of a negative
feedback loop between IL-7 and BTLA (38) (Figure 2). Given the
broad range of SHP1 and SHP2 targets (76), it is likely that these
phosphatases can inactivate both STAT3 and STAT5 in response
to IL-7. However, the exact molecular details of BTLA-mediated
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FIGURE 2 | BTLA and RORγt mediated control of γδ17 T-cells. BTLA
expression limits inflammatory responses and homeostasis of γδ17 cells by
antagonizing IL-7 signaling. In turn, IL-7 induces BTLA expression creating a
negative feedback loop. The transcription factor RORγt represses the Btla
promoter limiting the expression level of BTLA. This regulatory loop
maintains BTLA expression at very low levels on the cell surface in resting
γδ T-cells.

suppression of IL-7R or other γδ17-expressed cytokine receptors
are currently not known.

Although there are numerous functional inhibitory receptors
that have been reported on the surface of lymphocyte subsets
either at steady state or after activation, there is little information
regarding their role on innate or non-innate γδ T-cells. Sev-
eral reports have mapped the expression of inhibitory molecules
like programed death-1 (PD-1) (77, 78), lymphocyte activation
gene-3 (LAG-3) (79), CD200 (80), Tim-3 (81), CD160 (82), and
cytotoxic T lymphocyte antigen-4 (CTLA-4) (83) on human or
murine γδ T-cells but the capacity to target these receptors using
agonistic or antagonistic manipulation has in general not been
addressed. Notably, we found that activating BTLA receptors using
an agonistic antibody limited pathology in mice (38). Additionally,
blockade of BTLA signaling enhanced activation of lymphoma-
specific human Vγ9Vδ2 T-cells (84). Thorough investigation of
the expression patterns and function of the different inhibitory
receptors on innate γδ T-cells may provide promising targets for
intervening when these lymphocytes need to be turned on or off.
Currently, and in combination with its suppressive activity, BTLA
appears to be a key targetable pathway for regulating innate γδ

T-cells.

TRANSCRIPTIONAL CONTROL: IS EVERYTHING
PRE-PROGRAMED?
It is now well-appreciated that there is an extensive network of TFs
that are expressed early in pre-committed progenitors and are nec-
essary for the development, functional differentiation, and survival

of all innate cells including γδ17 T-cells. A subset of these TFs
control lineage specification, either through activating or repress-
ing gene transcription. A number of TF mouse knockout lines
result in the complete abolishment or severe reduction in the num-
bers of the γδ17 subset in the periphery and in the thymus. Thus,
mice deficient for the high-mobility group (HMG) box TFs Sox13
and Sox4 show severe reduction of IL-17-producing γδ T-cells due
to a differentiation block early on during development (85, 86),
which correlates with high expression levels of Sox13 and Sox4 in
γδ17-comitted T-cell progenitors (86–88). Interestingly, the func-
tion of Sox13 can be counteracted embryonically by Egr3, which
drives the DETC differentiation program and IFNγ expression
(52), while TCF1, another HMG box TF, suppresses γδ17 differen-
tiation (86). Notch signaling turns on TCF1 (89), which can also
induce expression of Hes1, another TF critical for the generation
of γδ17 cells during embryonic differentiation (40). Interestingly, a
subset of innate γδ T-cells has been shown to depend on the expres-
sion of promyelocytic zinc finger (PLZF), which is also required
for the development of ILCs (90, 91). It remains to be seen whether
PLZF is specifically required for the development of γδ17 cells.

Although, RORγt is necessary for the differentiation of TH17
cells (36), it is not essential for the development of γδ17 progeni-
tors in the fetal thymus (40). However, consistent with its ability
to bind to and transactivate the Il17 promoter (92), RORγt is
important for optimal IL-17 production (40). Interestingly,despite
being developed, RORγt deficient γδ T-cells cannot persist in the
periphery (40), suggesting a potentially critical role for RORγt in
the homeostasis of adult γδ17 T-cells. This could be either cell-
extrinsic or cell-intrinsic. RORγt is necessary for the development
of all secondary lymphoid tissues (93). Thus, upon export in the
periphery, γδ17 T-cells may not have the appropriate microenvi-
ronment in order to sustain homeostasis (cell-extrinsic). In the
cell-intrinsic scenario, RORγt may be important for the survival
of γδ17 cells by regulating the levels of the anti-apoptotic protein
Bcl-xL (93). Our data have demonstrated that via its interaction
with LxxLL containing nuclear co-factors RORγt can function as
a transcriptional repressor and suppress expression of BTLA (38)
(Figure 2). Therefore, an alternative cell-intrinsic hypothesis is
that loss of RORγt results in aberrant expression of BTLA and per-
haps other co-inhibitory receptors (such as LAG-3; Bekiaris/Ware,
unpublished observations) leading to a sustained inhibition of
homeostatic expansion.

CONCLUSION
γδ17 and other γδ T-cell subsets comprise a unique family of
lymphocytes that provides an innate powerhouse to the immune
system. The innate nature of γδ17 cells is demonstrable by a
number of key biological properties including rapid response to
cytokines, functional maturation during embryogenesis, largely
TCR-independent responses, and TF-dependent lineage commit-
ment. Resolving the complex and fascinating biology of these cells
has been breaking the Frontiers of Immunology for a number
of years and has taught us a great deal about how lymphocytes
develop and function. The continued knowledge of how all innate
γδ T-cells work will certainly push forward these frontiers and
perhaps allow us to develop tools in order to manipulate them for
the treatment of human disease.
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