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Billions of cells undergo apoptosis every day in healthy individuals. A prompt removal of
dying cells prevents the release of pro-inflammatory intracellular content and progress to
secondary necrosis. Thus, inappropriate clearance of apoptotic cells provokes autoimmu-
nity and has been associated with many chronic inflammatory diseases. Recent studies
have suggested that extracellular adenosine 5′-triphosphate and related nucleotides play an
important role in the apoptotic clearance process. Here, we review the current understand-
ing of nucleotides and purinergic receptors in apoptotic cell clearance and the potential
therapeutic targets of purinergic receptor subtypes in inflammatory conditions.
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INTRODUCTION
Apoptosis occurs in all multicellular organisms and plays a role in
getting rid of superfluous and senescent cells during the develop-
ment of an organism, tissue homeostasis, and pathogenic processes
(1). In contrast to necrosis, apoptosis is a highly organized and
fine-tuned process, and is, therefore, usually referred to as pro-
gramed cell death. Besides the physiological process, apoptotic
cells are also observed in tumors (2), atherosclerotic plaques (3,
4), and autoimmune diseases (5, 6). Under normal conditions, the
apoptotic cell removal is performed very efficiently and fast by
neighboring or recruited phagocytes and is important for main-
taining the function of tissues (6, 7). Dying cells can undergo
secondary necrosis if not cleared promptly and the release of intra-
cellular contents has been linked to many human inflammatory
diseases (8, 9). Moreover, apoptotic cells have been shown to have
anti-inflammatory and regenerative effects (10).

Damaged tissues and dying cells can release nucleotides, which
are increasingly viewed as a new class of regulators of the immune
system. The class of purinergic receptors is involved in a wide
range of phagocytic and chemotactic processes (11). Moreover,
the purinergic signaling is an important regulatory mechanism in
several inflammatory diseases (12). Several studies provide strong
evidence that nucleotides and activated purinergic receptors are
linked to the pathogenesis of many chronic inflammatory diseases.
This review will discuss the apoptotic cell clearance with special
emphasis the specific role of nucleotides and the purinergic recep-
tors in the development of chronic inflammatory diseases related
with abnormal clearance of apoptotic cells.

COMPONENTS OF PURINERGIC SIGNALING
EXTRACELLULAR ATP RELEASE AND METABOLISM
Damaged tissues and dying cells can release adenosine 5′-
triphosphate (ATP) as a danger signal that triggers a variety
of inflammatory responses. Moreover, ATP can also actively be
released from intact cells in response to mechanical deformation,
hypoxia or acetylcholine, which do not damage the cell (7, 13, 14).
For example, ATP release from intact cells was firstly reported
for neuronal cells, which release ATP into the cleft of chemi-
cal synapses (15). However, the underlying mechanism has been
shown to be very complex and includes stretch-activated channels,
voltage-dependent anion channels, P2X7 receptors, and connexin
and pannexin hemichannels (16).

Contrasting to intracellular ATP, primarily utilized as energy,
extracellular ATP is considered to be a powerful signaling mol-
ecule through the nucleotide-selective P2 receptors. Extracellu-
lar ATP is rapidly metabolized to adenosine by ectonucleoti-
dases (17). The ectonucleotidases consist of four family types
including (i) ectonucleotide pyrophosphatase/phosphodiesterase
(E-NPP) family, (ii) ectonucleoside triphosphate diphosphohy-
drolase (E-NTPDase) family, (iii) alkaline phosphatases (AP), and
(iv) ecto-5′-nucleotidase (also known as CD73) (17, 18). Extra-
cellular adenosine, an intermediate metabolite of nucleotides, can
undergo three processes: (i) conversion to inosine by adenosine
deaminase, (ii) reconversion to AMP by adenosine kinase, and
(iii) cellular reuptake through concentrative nucleoside trans-
porters (CNTs) or equilibrative nucleoside transporters (ENTs)
(17, 19, 20).
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PURINERGIC RECEPTORS
Purinergic receptors have been widely studied in signaling sys-
tems in response to extracellular ATP and related nucleotides.
Purinergic receptors consist of three major families based on
their structural and biological properties (21). The G-protein-
coupled P2Y receptors (P2YRs) recognize ATP and several other
nucleotides, including ADP, UTP, UDP, and UDP-glucose (22).
P2X receptors (P2XRs) function as ATP-gated ion channels that
facilitate the influx and efflux of extracellular cations, includ-
ing calcium ions, which only respond to ATP (22, 23). To date,
P2YRs consist of eight subtypes, a family of P2Y1, P2Y2, P2Y4,
P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14Rs. P2XRs have seven sub-
units that may form six homomeric (P2X1–P2X5Rs and P2X7R),
and at least seven heteromeric P2X1/2, P2X1/4, P2X1/5, P2X2/3,
P2X2/5, P2X2/6, and P2X4/6Rs receptors (23–25). The conver-
sion of ATP/ADP to adenosine by ectonucleotidases terminates
P2R signaling within the extracellular compartment. Adenosine
can signal through four distinct G-protein-coupled receptors (P1
receptors): adenosine A1 receptor (A1), adenosine A2a receptor
(A2a), adenosine A2b receptor (A2b), and adenosine A3 recep-
tor (A3) (Table 1) (26–28). The purinergic receptor subtypes are
widely distributed throughout the immune cells and the central
nervous system (CNS) (Table 1) (29–31).

APOPTOTIC CELL RECOGNITION AND CLEARANCE
Apoptosis is a crucial process during development and regener-
ation of an organism. The prompt and efficient engulfment of
apoptotic cells by phagocytes is necessary to prevent inflamma-
tion resulting from uncontrolled release of intracellular contents
(34). Apoptotic cell clearance can be subdivided into four general
steps: sensing of the apoptotic cell, recognition, engulfment of the
corpse, and processing of the engulfed material (7, 35–38). Many
key molecules and several molecular pathways have been identified
to orchestrate the safe disposal of apoptotic cells. Apoptotic cells
release so-called“find me”signals, which are cell-derived chemoat-
tractants to entice phagocytes (9). To date, several proposed “find
me” signals released by dying cells have been reported. These
include the nucleotides ATP and UTP (39), lysophosphatidyl-
choline (LPC) (40), fractalkine (CX3CL1) (41), and sphingosine 1-
phosphate (S1P) (42). In addition to attracting phagocytes, apop-
totic cells are thought to release factors, referred to as “stay away”
signals, to exclude inflammatory cells such as neutrophils (43).

At the same time, apoptotic cells also expose phosphatidylserine
(PS) on the outer leaflet of the plasma membrane as an “eat-me”
signal to promote their recognition by the recruited phagocytes
(44, 45). PS can be detected directly through membrane recep-
tors, such as brain-specific angiogenesis inhibitor 1 (BAI1) (46),

Table 1 | Characteristics of purinergic receptors [Modified from Ref. (15, 29, 32, 33)].

Receptor Distribution Functions

P2Y P2Y1 Platelets, immune cells, epithelial and endothelial

cells, and osteoclasts

Platelet aggregation, smooth muscle relaxation, and bone resorption

P2Y2 Astrocytes, immune cells, epithelial and endothelial

cells, and osteoblasts

Promotes apoptotic cell removal; mediates airway surfactant secretion and

epithelial cell chloride secretion; vasodilatation through endothelium and

vasoconstriction through smooth muscle; bone remodeling; role in neutrophil

chemotaxis; and chronic inflammation

P2Y4 Endothelial and epithelial cells Epithelial chloride transport regulation; vasodilatation through endothelium

P2Y6 Activated microglia, T cells, and epithelial cells Enhances microglial phagocytic capacity; modulating cytokines release;

epithelium NaCl secretion; epithelial proliferation; and role in colitis

P2Y11 Dendritic cells, granulocytes Mediates dendritic cells maturation and migration; granulocytic differentiation

P2Y12 Platelets and glial cells Platelet aggregation; dense granule secretion

P2Y13 Spinal cord microglia, hepatocytes Regulates lipid metabolism and atherosclerosis

P2Y14 Hematopoietic cells, immune cells Hematopoietic stem cells chemotaxis; dendritic cell activation

P2X P2X1 Platelets, smooth muscle Platelet activation; smooth muscle contraction

P2X2 Autonomic and sensory ganglia, retina Sensory transmission and modulation of synaptic function

P2X3 Sensory neurons, sympathetic neurons Mediates sensory transmission; facilitates glutamate release in CNS

P2X4 Microglial cell, immune cells Modulates chronic inflammatory and neuropathic pain

P2X5 Dendritic cells Mediating cell proliferation and differentiation

P2X6 Neuron, retina, and myocardial cell Functions as a heteromeric channel in combination with P2X2 and P2X4 subunits

P2X7 Immune cells, osteoclasts, and microglia Mediates apoptosis, cell proliferation and pro-inflammatory cytokine release

P1 A1 Neurons, autonomic nerve terminals Modulates neurotransmitter release; treatment in cardiac tachycardia

A2a B cells, T cells Anti-inflammatory effect; mediates cytokines release; facilitates

neurotransmission; and smooth muscle relaxation

A2b Bronchial epithelial cells, cardiomyocytes Dampens inflammation in allergic and inflammatory disorders; vasodilatation

A3 Endothelial cells, immune cells, and cardiomyocytes Mediates anti-inflammatory, anti-ischemic, and antitumor effect
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stabilin 2 (47, 48), and members of the T cell immunoglobulin
mucin domain (TIM) protein family (including TIM1, TIM3, and
TIM4) (49–51). The recognition of apoptotic cells can also be
mediated indirectly via bridging molecules or accessory recep-
tors, such as MFG-E8, the C-reactive protein, and Gas-6 (52, 53).
Engagement of the PS receptors initiates signaling events within
the phagocytes that lead to activation of the small GTPase Rac, and
subsequent cytoskeletal reorganization, which ultimately leads to
engulfment of the apoptotic cell (54, 55).

The engulfment process is not only silent, but also actively
anti-inflammatory. Firstly, phagocytes act as “garbage collectors,”
which sequester dying cells thus preventing the release of poten-
tially dangerous or immunogenic intracellular contents. Secondly,
engulfed phagocytes actively secrete anti-inflammatory cytokines
to facilitate the “immunologically silent” clearance of apoptotic
cells. These include TGF-β and interleukin (IL)-10, which is even
potent enough to suppress LPS-induced inflammatory cytokine
release (10, 56, 57). A recent report demonstrates that 12/15-
lipoxygenase has been involved in maintaining immunologic tol-
erance (58). The uptake of apoptotic cells by 12/15-lipoxygenase
expressing, alternatively activated resident macrophages blocked
the uptake of apoptotic cells into freshly recruited inflamma-
tory Ly6Chi monocytes. Moreover, loss of 12/15-lipoxygenase
activity resulted in an aberrant phagocytosis of apoptotic cells
by inflammatory monocytes, subsequent antigen presentation of
apoptotic cell-derived antigens, and a lupus-like autoimmune
disease (58).

If apoptotic cells are not removed promptly they will undergo
secondary necrosis and display distinctive morphological changes
that can be assessed by flow cytometry (59, 60). Insufficient clear-
ance of dying cells may promote the initiation of autoimmunity
and chronic inflammation (61, 62). For example, deregulated
apoptosis and insufficient removal of apoptotic cells leads to the
release of modified chromatin into the circulation and activa-
tion of antigen-presenting cells, which play an important role
in the pathogenesis of systemic lupus erythematosus (61, 63).
Interestingly, recent studies imply that apoptosis is associated with
compensatory proliferation of neighboring cells and plays a piv-
otal role in modulating tumor cell repopulation (64, 65). For
example, Huang et al. reported that dying tumor cells produce
PGE2 in a caspase 3-dependent manner and that this has a potent
growth-stimulating effect that may stimulate tumor repopulation
after radiotherapy (66). The role of further “find me” signals
and damage-associated molecular pattern molecules (DAMPs)
released by tumor cells killed by chemo- or radiotherapy in the
repopulation of the tumor remains elusive. Here, we present a
current review that nucleotides derived from dead and dying cells
as powerful mediators with broad effects on survival of tumor cells
and on the immune system.

NUCLEOTIDES ACTING AS “FIND ME” SIGNALS
It is well established that apoptotic cells release “find me” signals to
attract phagocytes and thereby leading to the prompt clearance of
the dying cells. The nucleotides ATP and UTP have been recently
implicated as a new class of “find me” signals in vitro and in vivo
(39). However, the function of ATP and nucleotides as a find me
signal in apoptotic cell clearance is still controversial.

Elliot et al.’s study shows that small amounts of intracellu-
lar ATP and UTP are released in a regulated manner during early
apoptosis to establish a gradient for monocyte attraction (39). Pan-
nexin 1 channels opening mediate the release of ATP and UTP after
caspase-dependent cleavage of their carboxy-terminal tail during
apoptosis (67). Several other studies also seem to confirm that
nucleotides released from apoptotic cells and subsequent P2Y2
receptor activation promotes monocyte migration by regulating
adhesion molecule/chemokine expression in vascular endothe-
lial cells (68, 69). In the neural system, extracellular nucleotides
and P2YRs have been implicated in mediating the chemotaxis of
microglia toward injured neurons (70, 71).

However, the role of nucleotides in chemotaxis still remains
controversial. On the one hand, Elliot et al. could not exclude
the possibility that other chemotactic factors participate in the
observed chemoattractant effect. On the other hand, nucleotides
are unlikely to serve as long-range “find me” signals to phago-
cytes since they are readily degraded by extracellular nucleoti-
dases (72). Several recent publications do not consider ATP
any longer as a “real” direct chemoattractant for macrophages.
One study describes ATP as an indirect chemoattractant that
steers macrophages in a gradient of the chemoattractant C5a via
autocrine release of ATP, generating an amplification of gradi-
ent sensing via a “purinergic feedback loop” involving P2Y2 and
P2Y12 receptors (73). Hanley et al. confirmed that ATP and ADP
leaking from dying cells induce lamellipodial membrane protru-
sive activity and act as local short-range “touch me” (rather than
long-range “find me”) signals to promote phagocytic clearance
(74). It is more likely that ATP, together with additional find
me signals recruit phagocytes toward injured cells (75, 76). For
example, formyl peptides and mitochondrial DNA released from
the mitochondria of injured cells have been shown to induce
neutrophil activation and chemotaxis in the circulation (77).
Formyl peptides, together with chemokines and ATP, synergisti-
cally guide and localize phagocytes to sites of sterile inflammation
in long-range settings (75). HMGB1 could also synergize with
ATP stimulating P2X7 receptors to induce IL-1β release by DCs in
contact with dying tumor cells and promoting immunity against
tumors (78).

Moreover, nucleotides also play a role in modulating the phago-
cytic ability or activity of cells surrounding the apoptotic cells.
For example, extracellular nucleotides and subsequent P2 recep-
tor (P2X1R, P2X3R) signaling engagement have been reported
to enhance the ability of macrophages to bind apoptotic bodies,
internalize them and present processed antigens (79). UDP has
also been shown to enhance microglia phagocytosis toward apop-
totic corpses through the P2Y6 nucleotide receptor during neural
inflammation (80).

During tissue injury and/or infection, extracellular nucleotides
have been implicated to play a key role in the recruitment of
professional phagocytes to sites of tissue injury and/or infec-
tion. However, the underlying mechanism is still unclear and not
fully understood. It is still debating that extracellular nucleotides
act either as chemotactic “find me” signal released by dying
cells or through autocrine ATP amplifier signaling for chemo-
tactic navigation to other end-target chemoattractants, such as
complement C5a.
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P2 RECEPTORS SIGNALING IN INFLAMMATORY DISEASES
Nucleotides release from dying cells and damaged tissues and
subsequent purinergic signaling play a pivotal role in phagocytic
process and inflammatory diseases (11, 12). For example, P2X7R
activation is involved in PS expose in pseudoapoptosis and large
amounts of ATP release (81, 82). During the last decade, several
studies have highlighted fundamental roles for P2YRs in inflam-
matory and infectious diseases (Figure 1). Here in particular,
signaling events via P2Y2R, P2Y6R, and P2X7R will be discussed
thoroughly.

P2Y2R
P2Y2R has been shown to be up-regulated in a variety of tissues
in response to stress or injury and to mediate tissue regeneration
through its ability to activate multiple signaling pathways. Many
studies implicate that ATP and P2Y2R signaling appears to influ-
ence a diverse scale of biological processes such as the generation
of chemotactic signals and/or the activation of different immune
cells, causing inflammatory cells to migrate, proliferate, differen-
tiate, or release diverse inflammatory mediators (72, 83, 84).

Cystic fibrosis is a life-shortening disease in which airways of
the patients are susceptible to infection. Its pathology is character-
ized by protective and also destructive neutrophilic inflammation.
Neutrophil proteases are critical for killing engulfed bacteria, how-
ever, neutrophilic elastase accumulation in the airways of patients
with cystic fibrosis (CF) overwhelms antiprotease defenses, result-
ing in impaired ciliary function, crippling bacterial clearance, and
degrading structural proteins, eventually leading to bronchiectasis
(85). CF results from a variety of mutations in the gene encoding
the CF transmembrane conductance regulator (CFTR) protein,
a cAMP-regulated chloride channel in epithelial cells, which will
lead to sodium hyperabsorption in the airway of patients with

CF (86, 87). Mucociliary clearance in CF lung is limited by air-
way dehydration, leading to persistent bacterial infection and
inflammation. P2Y2 receptors have been shown to regulate chlo-
ride secretion and sodium absorption on epithelial cells in distal
bronchi (88). Moreover, ATP, acting through P2Y2 receptors, reg-
ulates the secretion of ions, mucin, and surfactant phospholipids
in respiratory epithelium (89). Several studies have shown that P2
receptor purinergic compounds are explored for the treatment of
CF, to bypass the defective function of CFTR, and to restore chlo-
ride secretion and/or inhibit sodium absorption through inhibit-
ing the epithelial sodium channel ENaC expression (90). P2Y2R
agonists increase the duration of mucociliary clearance stimu-
lation. The efficacy and safety of the P2Y2R agonist denufosol
has been evaluated in several clinical trials, however, long term
follow-up results do not show any improvement in pulmonary
function (91, 92).

P2Y2R is not only involved in enhancing mucociliary clear-
ance, but also plays a role in promoting wound healing (93).
Damaged fibroblasts release ATP or UTP and activate P2Y2R to
enhance the proliferation and migration of fibroblasts. Wound size
in WT mice decreases significantly compared to P2Y2R−/− mice,
and WT mice express proliferation marker Ki67 and extracellular
matrix (ECM)-related proteins VEGF. It indicates that triggering
of P2Y2R may be a potential therapeutic target to promote wound
healing (94).

Adenosine 5′-triphosphate has also been implicated to induce
chemotaxis of neutrophils via actin polymerization and direct
cell orientation by feedback signaling involving P2Y2R (95–97).
The subsequent P2Y2R activation will amplify gradient sens-
ing of chemotactic signals (e.g., N-formyl peptides and IL-8) by
stimulating F-actin to the leading edge (97–99). Chemotaxis of
neutrophils to sites of infection is critical for immune defense

FIGURE 1 | Nucleotides and activated purinergic signaling during injury resolution and chronic inflammatory diseases.
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and for the physiological downregulation of neutrophil-driven
inflammation (100).

However, excessive accumulation of neutrophils through inap-
propriate activation of P2Y2R can cause acute tissue damage
during sepsis, chronic obstructive pulmonary disease (COPD),
and hepatitis (101–104). COPD is one of the most common
inflammatory diseases and is associated with inflammation of the
small airways, which results in airway obstruction, destruction
of parenchyma, and development of emphysema (105). ATP and
activation of P2Y2R contribute to smoke-induced lung inflam-
mation and to the subsequent development of emphysema (104).
ATP acts as a“danger signal”recruiting neutrophils to the lung and
inducing inflammation. P2Y2R−/−mice show reduced pulmonary
inflammation and less emphysema development after short-term
smoke exposure. ATP enhances chemotaxis and elastase release in
blood neutrophils from patients with COPD, compared to normal
healthy subjects (103).

In asthmatic chronic airway inflammation, P2Y2R has been
indicated as a critical sensor for airway exposure to airborne
allergens by mediating ATP-triggered migration of immature
monocyte-derived DCs and eosinophils in both, mice and humans
(106, 107). This process is accompanied with the production
of pro-allergic mediators (for example, IL-33, IL-8, eosinophil
cationic protein) from different cellular sources (107, 108). More-
over, heightened expression and localization patterns of P2YR are
associated with chronic pancreatic diseases (109).

In summary,ATP and P2Y2R signaling is a double-edged sword.
On the one hand, it can protect against infections, promote wound
healing and enhance mucociliary clearance. On the other hand,
it can also lead to uncontrolled inflammation and promotion
of chronic inflammatory disease states and fibrotic remodeling
(Figure 1) (109). Indeed, P2Y2R may be a new target for therapy
of COPD and P2Y2R antagonists could be useful drugs for chronic
inflammatory diseases.

P2Y6R
Similar to P2Y2R, P2Y6R plays an ambivalent role in inflam-
matory diseases. The receptor is crucial for innate immune
responses against bacterial infection (110). Many studies show that
P2Y6R activation is involved in the release of chemokines from
immune cells, such as monocytes, DCs, eosinophils, and recruit-
ing monocytes/macrophages during inflammation or infection
(24, 110–114).

In neurodegenerative diseases, microglia are engaged in the
clearance of dead cells or dangerous debris, which is crucial for
the maintenance of brain functions. Extracellular ATP regulates
microglial motility dynamics in the intact brain, and its release
from the damaged tissues mediates a rapid microglial response
toward injury (71). Moreover, UTP and UDP released from injured
neurons have been shown to enhance microglial phagocytic capac-
ity for dying cells via activation of P2Y6R, serving as an “eat-me”
signal for microglia. This signal is considered to be an important
initiator of the clearance of dying cells or debris in the CNS (80).

However, P2Y6R signaling is relatively harmful in endothelial
or epithelial inflammation (111, 115). The idiopathic inflamma-
tory bowel diseases (IBD) comprise two types of chronic intestinal
disorders: Crohn’s disease and ulcerative colitis, which result from
an inappropriate inflammatory response to intestinal microbes

in a genetically susceptible host (116). Up-regulation of P2Y2R
and P2Y6R in intestinal epithelial cells has been reported in
experimental colitis (115).

Similarly, P2Y6R plays an important role in acute and chronic
allergic airway inflammation, and selective blocking of P2Y6R
or P2Y6R deficiency in structural cells reduces symptoms of
experimental asthma. Recently, P2Y6 receptors have not only
been found to be up-regulated in murine atherosclerotic plaques,
but also to play a key role in MSU-associated inflammatory
diseases (117, 118).

Thus, P2Y6R activation plays a role in innate immunity
against infection whereas P2Y6R over-activation can result in
harmful immune responses and chronic inflammation such as
atherosclerosis, COPD, and IBD (Figure 1).

P2X7R
P2X7R are predominantly expressed on immune cells such as mast
cells, macrophages, microglia, and dendritic cells (119). Many
evidences implicate the role of P2X7R against microbes during
inflammation and immune response (120, 121). Indeed, P2X7R
signaling plays a key role in immune responses against bacterial
and parasitic infection. It has been reported that P2X7R signal-
ing is involved in the elimination of intracellular microbes – such
as Mycobacterium tuberculosis, Chlamydia trachomatis, and Leish-
mania amazonensis – either by contributing to killing of the
pathogen or by inducing cell death of infected macrophages (121).
P2X7R is also involved in fever development via PGE2 and IL-1β

production (122).
The P2X7R is widely recognized to mediate the pro-

inflammatory effects of extracellular ATP. However, recently one
study revealed that P2X7 receptor also acts as one of the scavenger
receptor involved in the recognition and removal of apoptotic cells
in the absence of extracellular ATP and serum (123). The P2X7R
has drawn particular attention as a potential drug target due to its
broad involvement in inflammatory diseases (124).

In the CNS, P2X7R activation contributes to neuroinflamma-
tion through the release of pro-inflammatory cytokines, such as
IL-1β and TNF-α (125, 126). It also activates MAP kinases and
NF-κB, resulting in up-regulation of pro-inflammatory gene prod-
ucts, including COX-2 (127) and the P2Y2R (128). Alzheimer’s
disease (AD) is the most common form of dementia and more
than 35 million people worldwide suffer from AD (129). The
appearance of plaques consisting of extracellular β-amyloid pep-
tide (Aβ) is a neuro-pathological feature of AD, which is sur-
rounded by reactive microglial cells (129, 130). In P2X7R-/- mice,
Aβ triggered increase of intracellular Ca2+, ATP release, IL-1β

secretion, and plasma membrane permeabilization in microglia
(131). In fact, in vivo inhibition of P2X7R in mice transgenic for
mutant human amyloid precursor protein (APP) indicated a sig-
nificant decrease of the number of hippocampal amyloid plaques
(132). Thus, the identification of extracellular ATP and P2X7R as
key factors in Aβ-dependent microglia activation unveils a non-
conventional mechanism in neuroinflammation and suggests new
possible pharmacological targets.

Extracellular ATP and P2X7R signaling also contributes to
the development of smoking-induced lung inflammation and
emphysema. P2X7R-/- mice exhibit decreased inflammatory
responses, including a reduction in pulmonary fibrosis in a mouse
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model of lung inflammation (133). Inhibition of this receptor may
be a new possible therapeutic target for the treatment of COPD
(133, 134).

The purinergic P2X7R is associated with activation and release
of IL-1 and IL-18, which is strongly implicated in the multiple
inflammatory pathways involved in the pathogenesis of rheuma-
toid arthritis (RA) (135–139). P2X7R has also been shown to be
expressed by synoviocytes from RA joints and contributes to mod-
ulation of IL-6 release (140). P2X7R activation also plays a novel
and direct role in tissue damage through release of cathepsins
in joint diseases (141). Although, AZD9056, a P2X7R antagonist,
has been shown to reduce articular inflammation and erosive pro-
gression (142), clinical trials with the P2X7R antagonist in patients
with RA failed to inhibit disease progression (143, 144). Similarly,
the effect and safety of AZD9056 in Crohn’s disease is still under
clinical trial (145).

Taken together, P2X7R signaling not only plays a critical
role in mediating appropriate inflammatory and immunologi-
cal responses against invading pathogens, but also contributes to
a wide range of chronic inflammatory diseases when activated
inappropriately (Figure 1).

CONCLUSION
The interaction between dying cells and phagocytes is very com-
plex and nucleotides have been involved in orchestrating the
process of dead cell removal. On the one hand, nucleotides and
purinergic signaling have been shown to play a key role in the
apoptotic cell clearance avoiding secondary necrosis, preventing
inflammation and contributing to regeneration of injured tis-
sues. On the other hand, purinergic signaling over-activation is
involved in chronic inflammation and chronic inflammatory dis-
eases. Adenosine-mediated P1 and nucleotides-mediated P2 sig-
naling frequently have opposing effects in biological systems, and
shifting the balance between P1 and P2 signaling is an important
therapeutic concept in efforts to dampen pathological inflamma-
tion and promote healing (12). Nucleotides and purinergic sig-
naling might be used as biomarkers for various diseases and could
also provide potential novel therapeutic targets for the treatment
of chronic inflammatory diseases.
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