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In early human immunodeficiency virus (HIV) infection, the virus population escapes from
multiple CD8+ cell responses. The later an escape mutation emerges, the slower it out-
grows its competition, i.e., the escape rate is lower. This pattern could indicate that
the strength of the CD8+ cell responses is waning, or that later viral escape mutants
carry a larger fitness cost. In this paper, we investigate whether the pattern of decreas-
ing escape rates could also be caused by genetic interference among different escape
strains. To this end, we developed a mathematical multi-epitope model of HIV dynamics,
which incorporates stochastic effects, recombination, and mutation. We used cumulative
linkage disequilibrium measures to quantify the amount of interference. We found that
nearly synchronous, similarly strong immune responses in two-locus systems enhance
the generation of genetic interference. This effect, combined with a scheme of densely
spaced sampling times at the beginning of infection and sparse sampling times later,
leads to decreasing successive escape rate estimates, even when there were no selec-
tion differences among alleles. These predictions are supported by empirical data from
one HIV-infected patient. Thus, interference could explain why later escapes are slower.
Considering escape mutations in isolation, neglecting their genetic linkage, conceals the
underlying haplotype dynamics and can affect the estimation of the selective pressure
exerted by CD8+ cells. In systems in which multiple escape mutations appear, the occur-
rence of interference dynamics should be assessed by measuring the linkage between
different escape mutations.

Keywords: theoretical biology, mathematical modeling, HIV dynamics, interference, cytotoxic T lymphocytes,
escape

1. INTRODUCTION
CD8+ T cell responses exert strong selection pressures on Human
Immunodeficiency Virus (HIV). Evidence for the importance of
CD8+ T cells stems from a variety of observations: first, there are
associations between set-point viral load and host HLA alleles (1);
second, CD8+ cell depletion in non-human primates leads to a
sharp increase of virus loads (2); lastly, viral mutants that escape
CD8+ T cell control can have a large fitness cost (3–9). The selec-
tive pressure exerted by CD8+ T cell responses has been quantified
from the growth rate advantage of these escape mutants (10–12).

More recently, studies based on the analysis of the entire viral
genome revealed escape in multiple epitopes targeted by CD8+

T cell responses (13, 14). In particular, escape mutations have
been found to sequentially fixate in up to eight epitopes. A math-
ematical analysis of these data shows that late-emerging escape
mutants outgrow the resident virus population more slowly than
early escapes (11, 14–18). We refer to this pattern as escape rate
decrease (ERD).

Escape rate decrease has been assumed to have a biological basis,
arising from either variation in fitness costs (15) or a decrease
of fitness advantages of escape mutants during the course of
infection (15, 17–19). But it could also be due to complex dynam-
ical interactions between escape mutations in different epitopes.
The complexity arises from the fact that two similarly beneficial

mutations rarely arise simultaneously on one genome. Rather, they
arise on different genomes which, after outcompeting the wild
type strain, enter a state of competition. This state is eventually
resolved by one mutation going to fixation by chance, or by one
of the strains acquiring the other beneficial mutation. In this sce-
nario, the fixation of one of the advantageous mutations takes
longer than its fitness advantage predicts. In population genetics,
this complex dynamics is called interference (20–23).

Figure 1 shows how interference can affect the interpretation
of ERD in early HIV infection. Describing the escape dynamics
with models that reduce the dynamics to the competition between
two types only – a wildtype and a single escape mutation – and
neglect interference, misrepresents the selection pressures at work,
and may lead to biased estimates of their strength.

In this study, we investigated under which circumstances
genetic interference arises and may thus lead to misinterpreta-
tion of pattern of escape rate changes in systems with two loci.
We adopted a modeling approach, building on well-established
research on the dynamics of HIV within its host (11, 17, 24–27).
To this end, we developed a virus dynamics model, in which viruses
possess multiple epitopes and can escape from CD8+ T cells
directed against them. Fitness costs associated with escape muta-
tions are neglected. The model builds on well-established work
(11, 17, 24–27), and is stochastic to describe mutation, extinction,
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FIGURE 1 | Pattern of ERD emerging from repeated application of logistic
model fits in an interference scenario. (A) Population frequencies of
two-locus system haplotypes display interference. The wildtype ab (green
area) gives rise to two beneficial single mutants Ab and aB (yellow and violet
areas, respectively). (B) Fixation patterns of the beneficial alleles A (orange

line) and B (green line). Samples of frequencies of A and B are taken at times
10, 20, and 50 days (blue points). Logistic model fits (red lines) are laid
through sample points with an added noise (green points). (C) From each
logistic model fit the escape time and escape rate are calculated. A pattern of
ERD is generated due to interference.

and fixation of virus strains adequately, and allows recombination
of viruses.

We found that interference emerges mainly when CD8+ T
cell responses coincide and are similarly strong, but only in sys-
tems with a high level of stochasticity. This interference leads
to ERD if the virus population was sampled more often early
than late, a scheme commonly adopted in empirical studies (14).
We tested these predictions in early-infection data from an HIV-
positive patient obtained by Henn et al. (16) and subsequently
reconstructed to haplotypes (28).

2. MATERIALS AND METHODS
Here, we extend the model of Althaus and De Boer (17), which
is in turn based on earlier work (11, 24–27). In our model, a
viral strain i is assumed to present n different viral epitopes to
the hosts’ immune system. The strain is represented by a string of
binary digits, where 1 at the j th entry signifies the presence of an
escape mutation in the j th epitope. A 0 at the same entry signi-
fies no mutation, and the strains is recognized by epitope-specific
immune responses Ej(t ). The model equations are:

d

dt
T = σ − dT T −

∑
i

βTpPi
hβ+T (1)

d

dt
Ii =

βTpPi
hβ+T − dIi − γ Ii +

∑
x

(mxiIx −mixIi)

+ r · tR · Itot

 ∑
x,y∈Q(i)

Px Py

P2
tot

1
2d(x,y)

ω′
(

x, y, i
)

−

∑
x

2Px Pi
P2

tot

2d(x,i)−1
2d(x,i)

(
−ω′ (x, i, i)

))
(2)

d

dt
Pi = γ Ii + δPi − k

n∑
j

(
ajiEj

hk+
∑

x ajx Px+
∑n

s asiEs

)
Pi. (3)

2.1. TARGET CELLS
We assume a compartment of CD4+ target cells T, which is replen-
ished at rate σ and gets naturally depleted at a rate dT per cell.

Virions of type i,V i, will infect target cells at a rate βT Vi
hβ + T and pro-

duce infected cells (Ii), where β is the maximum infection rate per
day for a virus particle, and hβ is the target cell density where the
infection rate is half-maximal (17, 26). Viral load and productively

infected cells of type i (P i) are connected by dVi
dt = f Pi − dV Vi .

We assume that V i and P i are fast coupling. Hence, V i = pP i,

where p = f
dV

is the net production rate per cell.

2.2. INFECTED CELLS
Target cells infected with strain i (I i) die at rate d and enter an
eclipse phase at rate γ , after which they become productively
infected.

2.2.1. Mutation
Cells infected with strains x are converted to cells infected with
strain y at rate mxy . mxy is the locus-wise product of the probabil-
ities for an epitope in strain x to be mutated into the corresponding
epitope in strain y. We distinguish between forward mutations and
reverse mutations. Forward mutations change a 0 allele into a 1.
Reverse mutations do the opposite. An epitope is assumed to con-
sist of about m= 8 codons. The mutation rate is 3 · 10−5 per bp per
replication (29). For an escape epitope to emerge, this amounts to
a rate of≈1× 10−4 per epitope per replication. The reverse muta-
tion rate was set to ≈5× 10−7 per epitope per replication (see
Supplementary Material).

2.2.2. Recombination
Cells infected with strain i can arise and be lost by recombination.
Both processes are assumed to occur at the same baseline recombi-
nation rate r and to be proportional to the fraction of co-infected
cells in the population tR≈ 5 · 10−3, (30–34). Itot =

∑
i Ii is the

total number of infected cells. We chose the baseline recombina-
tion rate r to incorporate those rates which do not directly depend
on the strain frequencies or types.

The terms within brackets in the recombination term in Eq. 2
deal with probabilities that depend on the strain frequencies. The
first sum encompasses recombination events that increase I i. All
pairs (x, y) that can recombine into i, Q(i), are considered. Each

such pair (x, y) co-infected a cell with probability
Px Py

P2
tot

, where
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Ptot =
∑

j Pj. Out of a pair (x, y), 2d(x,y) distinct recombinant
offspring types can potentially arise, where d(x, y) denotes the
Hamming distance between two strains. Hence, the probability
of i to be the recombinant offspring is 1/2d(x,y), where d(x, y)
denotes the Hamming distance between two strains.

Infected cell numbers should remain unaltered by the action
recombination, since recombination only reshuffles alleles. We
account for this by using the weights ω′(x, y, i). For example,
if the parent pair (x, y) is lost by recombination to i, the net
number of cells infected with i needs to be multiplied by ω′(x, y,
i)= 2. However, if one of the parent strains (x, y) is identical to
i, the net increase will only be of one. Thus, we defined ω′(x, y,
i)= 2− 1x=i− 1y=i, where 1y=i is one if y= i and zero otherwise
(see Supplementary Material for details on ω′).

The second type of events that can decrease I i are those in which
the strain i can recombine with any other into a strain different
from i. Pairs can be formed with all other strains, including itself
with probability 2Px Pi

P2
tot

. Such an event needs to be weighted with

the probability that i will yield offspring distinct to itself: 2d (x,i)
− 1

2d (x,i) .

Again, in order to keep infected cell numbers unaffected by recom-
bination, the weight −ω′(x, i, i) is factored in. Note that the
factor −ω′(x, i, i), becomes positive in these circumstances when
using the above definition of ω′ [see Supplementary Material,
proportionality to linkage disequilibrium (LD) for details].

The baseline recombination rate r incorporates several rates
and probabilities. These include the probability for co-packaging
two parent strains correctly, the number of newly infected cells
produced by a single infected cell, the template switching rate
and an assumption about the average distance between escape
mutations on the genome. We set r ≈ 1.4 · 10−4 day−1 for our
simulations (see Figure S4 in Supplementary Material).

2.3. PRODUCTIVELY INFECTED CELLS
Productively infected cells infected with a strain i are generated at
rate γ from the eclipsed population I i, and die with rate δ. The
CD8+ T cells specific to the epitope j, Ej, clear productively infected
cells whose epitopes they recognize maximally at rate k, with hk the
Michaelis–Menten constants (17). The coefficients aj i are 1 if i has

a zero at its j th position, and zero otherwise. They thereby encode
the recognition of non-escape epitopes by the CD8+ T cells.

2.4. CD8+ T CELLS
Unlike previous models describing CD8+ T cell escape (17, 26),
our model does not dynamically link the immune response to
the level of viral antigen. In our model, Ej(t ) is a numerically
constructed fixed time course of the CD8+ T cells of type j, con-
sistent with a program-type dynamics established for CD8+ T cell
responses against infections in mice (35–40).

In order to attain a descriptive CD8+ T cell function we com-
bined two exponential functions and a constant value. The default
CD8+ T cell-function starts growing from a single cell at time
t= 0 at a rate of rc= 0.9 per day (26, 41), until it reaches an
upper limit C, which is 1.5 logs larger than the final level value
K : C = 10log10(K )+1.5 (35). Once C has been reached, the func-
tion declines exponentially at a rate of 0.4 rc, until it reaches
K. For larger time values, it remains at K. In this study, we

Table 1 | Parameter values employed for simulations.

Parameter Description Value

σ Replenishment rate of target cells T (44) 108 cells/day

dT Natural rate of target cell death (45, 46) 10−2 day−1

p Net virion production rate per productively

infected cell (47, 48)

104 virions/day

β Maximum infection rate per day for a virus

particle

5.5 ·10−4 1/day

hβ Target cell number at which infection rate

is half-maximal (17)

5 ·107 cells

d Natural rate of infected cell death (26, 49) 2 ·10−2 1/day

γ Transition rate to productively infected

cells (eclipse phase) (50–53)

1 1/day

δ Natural rate of productively infected cell

death (25, 54, 55)

1 1/day

k Maximum killing efficiency (56)a 50 1/day

hk Cell number at which killing rate is

half-maximal (17)

109 cells

µ Viral mutation rate (29) 3 ·10−5 1/bp

replication

r Recombination rate (32, 57–59) 1.4 ·10−4 1/day

aWe deliberately omitted escape-based estimates here (10–12, 14).

restricted the final levels K to values of the order 107, in accordance
with (26, 35, 36).

2.5. IMPLEMENTATION
For all simulations described in this paper, we used parameters
as shown in Table 1. To implement the dynamics we used the R
language for statistical computing (42) and adaptivetau (43) for
the simulation of Eq. 1 by Gillespie algorithm. The rates of the
Gillespie algorithm are the terms on the right-hand side of the
ordinary differential equations Eq. 1.

2.6. STOCHASTICITY INDUCED BY SYSTEM RESCALING
Human immunodeficiency virus large census population size does
not imply a small role of stochastic effects in its dynamics (60).
Hence, we implemented methods to rescale the model system to
match a population size of 106 (see Supplementary Material). By
downsizing or magnifying a system we refer to transforming the
system under consideration S, with its variables T, Ii, Pi into a sys-
tem downsized by a factor a, Sa, with corresponding variables Ta,
Ii,a, Pi,a. Under a deterministic framework, the ratios between time
courses of the downsized variables and the corresponding original
system variables are 1/a. To rescale the responses Ej with a, we left
the growth and contraction rates unchanged, but modified K such
that Ka= a ·K.

3. RESULTS
3.1. VIRUS DYNAMICS MODEL REPRODUCES ESCAPE DYNAMICS
The model presented here reproduces basic empirically observed
aspects of HIV/SIV dynamics (Figure 2). In our model, the initial
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FIGURE 2 | Example for a simulation run showing sequential escapes
in a scaled down two-locus two-allele system. (A) Time course of the
number of non-productively infected cells by strain types show sequential
transitions from the wildtype to a single escape mutant to a double mutant.
(B) Analogous situation for the time courses of productively infected cells.
Productively infected cells are cleared by epitope-specific CD8+ T cell
action. The mounted immune response leads to a transitory decrease of
the total number of productively infected cells. (C) The CD8+ functions E 1

and E 2 start at 0 and 15 days, respectively, with a final value of 107. The
mounting of the immune response coincides with the temporary reduction
of infected and productively infected cell numbers. (D) The killing of
productively infected cells causes the transitory reduction of produced
virions, temporarily reducing net new infections, and releasing target cells.
Parameters are as given inTable 1.

growth of the virus has been gaged to 1.2± 0.1 per day in accor-
dance with (61). Consistent with clinical and experimental data
(46, 62, 63), the viral load peaks around day 20 after infection. In
line with (64), there are estimated to be≈108 HIV-infected target
cells at the viral set point. This value is about one to two orders of
magnitude below peak viremia, in accordance with Ref. (65–67).
The virus can only go extinct due to stochastic effects in the begin-
ning of infection. Lastly, the model can also realistically reproduce
the simultaneous emergence of distinct viral escape mutations, as
well as the generation of double escape mutants by mutation or
recombination.

3.2. CUMULATIVE LINKAGE DISEQUILIBRIUM AS A MEASURE FOR
INTERFERENCE

In order to quantify the expressed interference between viral escape
strains during infection, we used the population genetics mea-
sure of LD. In our two-epitope system (Figure 3), the LD is
D= pabpAB− pAbpaB, where pab is the frequency of the wildtype,
pAb and paB are the frequencies of single mutants, and pAB is the
frequency of the double escape strain (where A and B are strongly
advantageous).

In general, the wildtype is first replaced by single mutants,
which are then outcompeted by the double mutant (Figure 3)
(22, 68, 69). This dynamics is characterized by the duration of
the intermediate phase of single mutant dominance and by the
diversity in single mutants.

A quantitative measure of expressed interference of the dynam-
ics has to behave appropriately when duration and diversity
change. Firstly, the longer two single mutants coexist, the higher
the value of expressed interference should be (see Figure S1 in
Supplementary Material). Second, the higher the diversity during
the state of stasis, the higher the interference measure should be
(see Figure S2 in Supplementary Material). The cumulative LD
satisfies both of these requirements. The term cumulative refers
to the integral of the LD over time. This measure is also well-
behaved in standard population genetics models (see Figure S3 in
Supplementary Material).

Negative values of the cumulative LD specifically characterize
interference in a regime where selection is much stronger than
recombination, and not other types of dynamics. Dynamics in
which escape mutations sequentially fixate, are characterized by
zero LD.

3.3. SIMILARLY STRONG AND SYNCHRONOUSLY ELICITED CD8+ T
CELL FUNCTIONS FACILITATE THE APPEARANCE OF
INTERFERENCE

In our model, we considered two CD8+ T cell responses, each
recognizing one of two epitopes. We investigated how differences
in the strength and relative timing (see Materials and Methods)
of CD8+ T cell functions affect the HIV dynamics. Each CD8+ T
cell time course could assume two different values for its strength:
Kj ∈ {1 · 107, 7 · 106}, where j∈ {1, 2} denotes the order of elicita-
tion. The first response was set to start at t= 0, and the second
started with a delay of 0, 5, 10, 15, 20, 25, or 30 days. Each combi-
nation of CD8+ T cell function pairs was simulated 100 times.

We consider two levels of stochasticity here: a low and a high
level (see Materials and Methods). The low level is displayed in
our simulations at census population size of about 108 at set point
with parameters as in Table 1. The high level of stochasticity arises
when we scale the population sizes by a factor a= 10−4 (see Sup-
plementary Material), consistent with empirical estimates of HIV’s
effective population size (70, 71).

3.3.1. Negative cumulative LD most pronounced at near-identical
CD8+ T cell responses

To investigate under which circumstances interference between
escape mutation arises we calculated the cumulative LD for differ-
ent combinations of strength and timing of CD8+ T cell responses,
and levels of stochasticity. For the unscaled system with low sto-
chasticity, simulations showed positive cumulative LD, indicating
the immediate emergence of double escapes (see Figure S5 in Sup-
plementary Material). In contrast, Figures 4A–D show negative
values of cumulative LD for the downsized system with high sto-
chasticity, indicating interference. Interference is particularly likely
to occur when CD8+ T cell responses are nearly synchronous and
nearly equally strong.

The emergence of interference at high stochasticity levels
can be explained in terms of population genetics. The level of
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FIGURE 3 |Three HIV dynamics scenarios and the cumulative LD.
(A) The wildtype population is replaced by a double mutant. A positive
LD is generated during the replacement leading to positive cumulative
LD. (B) Succession of wildtype, single mutant, and double mutant. LD

remains zero for each transition. (C) Wildtype is replaced by two single
mutants, which are in turn outcompeted by the double mutant. The
longer the single mutants coexist, the more negative the cumulative
LD value will be.

stochasticity or drift is inversely related to the population size N.
The expected number of double mutants is Nµ2

b per generation,
where µb≈ 10−4 is the rate of beneficial mutations per epitope
and generation. If this number is larger than the establishment size
1/2S≈ 1 at the onset of selection, the double mutant is assumed
to go to fixation (S is the selective advantage of one beneficial
mutation). This is the case at low levels of stochasticity (N ≈ 109),
which leads to positive cumulative LD. Conversely, high levels of
stochasticity will delay the emergence of double mutants, entail-
ing interference between single mutants. Note that this behavior
is dissimilar to the standard behavior without a preceding neutral
phase, where larger population sizes cause more interference.

The reasons for the general pattern of negative cumulative
LD are intuitively clear. First, synchronous (time delay zero), but
unequally powerful CD8+ T cell functions favor one of the sin-
gle escape strains, leading to its fast fixation (Figures 4A,D). This
dynamics of sequential escape produces no substantial cumulative
LD, and no interference.

Second, CD8+ T cell responses that are elicited far apart
in time induce practically no interaction between haplotypes
(Figures 4B,C). The earlier immune response will select for a
first escape mutant, and the second elicited immune response will
select for the double escape mutant. Again, the escape dynamics is
sequential, which leaves no trace in the cumulative LD.

Third, higher selective pressures (higher K ’s) will decrease the
time of emergence as well as the fixation time of double mutants.

The coexistence time of single mutants will thereby be reduced.
Therefore, the cumulative LD, which scales roughly as the coexis-
tence time, will be smaller compared to lower selective pressures
(Figures 4B,C).

There is one exception to the general pattern: when the first
immune response is stronger than the second K 1>K 2, and pre-
cedes it by 5 days, substantial amounts of negative cumulative LD
are generated. This result arises through the complex interplay
between the timing and strength of the two responses in this sce-
nario. With a delay of 5 days, the total population of productively
infected cells is at a local minimum at about the time when the
action of the second response is at its peak. Due to the contracting
dynamics of the CD8+ T cell responses, the second response is
stronger than the first at that time point, even for K 1>K 2. The
difference between the responses at that time point is small enough
to allow for the emergence of interference.

3.3.2. Escape rate decrease
For each simulation, we calculated the escape time τ 50 and escape
rate ε from the frequency of both escape mutations (disregarding
their linkage), mimicking the sampling schedule and data collec-
tion of previous studies (11, 14–16) (see Supplementary Material,
Sampling Methods and Fitting section).

The estimated escape rates were in good accordance with com-
mon values for escape rates during early-infection. For example,
escape rates at high interference conditions (Figure 4C) were about
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FIGURE 4 | Cumulative LD values for simulation runs of a downsized
two-locus system (a=10−4) differing in CD8+ T cell function strength
and timing. The x -axis denotes the time delay the second immune
response has to the first.The black line is the median of 100 simulations, the
upper and lower end of the blue-shaded area are the 75 and 25 percentiles
of all measured simulation runs, respectively. K1 and K2 denote the final
values for the first and the second immune responses, respectively.
(A) Little cumulative LD is generated for K1 <K2. Pronounced negative
cumulative LD values are attained for nearly equally spaced CD8+ T cell
curves in (B,C). (D) Shows an increase in interference at a delay of 5 days.

0.04 day−1 in the median, 0.02 day−1 for the 2.5%-quantile, and
0.17 day−1 for the 97.5%-quantile.

With the values τ 50 and ε for each escape mutation, we cal-
culated the successive ERD in each simulation. This was done by
fitting a linear regression log10(ε)= a+ b · τ 50, as in Ref. (15).
The slope of the regression b is termed ERD value. Negative ERD
values indicate that later escapes are slower.

For small time delays, the ERD values are between−0.01 and 0
(see Figure S6 in Supplementary Material). In Ref. (14, 15), ERD
values inferred from escapes with τ 50 within the first 2 years, are
about−0.006 in patient CH44,−0.008 in patient CH77 and−0.01
in patient CH58 [based on data in Supplementary Material of
Ref. (15)].

3.4. CUMULATIVE LD IS ASSOCIATED WITH ESCAPE RATE DECREASE
To investigate the effects of interference on the ERD values we
focused on those time delays shown in Figure 4 that showed
substantial interference.

Figure 5 shows the association between cumulative LD and
ERD values in 1000 simulations run for CD8+ T cell functions
with equal final levels K 1=K 2= 7 · 106 and no time delay. In the
plot, simulations which lead to a cumulative LD larger than zero
(about 11% of simulations) have been removed in order to assess
the effects of interference only. The density distribution shows a
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FIGURE 5 | Density plot of negative cumulative LD versus ERD values
for 1000 simulations runs for equal CD8+ T cell final values of
K 1 =K 2 =7 ·106 and zero time delay between the elicitation of the
CD8+ T cell functions. Positive cumulative LD values were ignored. Black
line: base line through the origin. Red line: Theil–Sen estimator fit on data.
The density distribution is compressed along a line of positive slope,
indicating a positive association between interference and ERD values.

clustering of simulation results along a line of positive slope. The
distribution is compressed along that line.

A Theil–Sen estimator fit to the data (red line) yields a slope
of 8× 10−4 with confidence intervals (6× 10−4, 9× 10−4) for the
2.5 and 97.5 percentiles, respectively. This indicates an associa-
tion of interference and ERD. The pattern shown in Figure 5 can
also be identified in the other case with identical CD8+ T cell
final levels (K 1=K 2= 107) with no time delay (see Figure S7A in
Supplementary Material).

We considered other combinations of final levels and time
delays with median cumulative LD below minus one in the down-
scaled system. As time delays increase, in simulations with CD8+

T cell responses of equal strength we observe the appearance of a
density peak alongside the interference, centered at about zero LD
and negative ERD values. This peak indicates the appearance of a
different mode of escapes. These escapes are sequential and show
no interference. As expected, this second mode eventually replaces
the interference pattern as the time delay increases (see Figure S7
in Supplementary Material).

In the escapes of this second mode, the negative ERD values in
the absence of interference emerge due to an artifact of the sam-
pling scheme employed. However, the associations found between
cumulative LD and ERD values in Figure 5 indicate that a causal
relation must be present, because the sampling scheme is identi-
cal in each simulation. Whatever offset to the ERD value might
be contributed by the sampling scheme, it cannot explain these
associations.
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3.5. POSSIBLE INSTANCE OF ESCAPE RATE DECREASE DUE TO
INTERFERENCE

To investigate one possible instance of interference and its effects
on escape rates, we analyzed haplotype data obtained by deep
sequencing from a single patient (subject 9213) infected with HIV
(16). In this study, blood samples were taken at days 0, 3, 59, 165,
476, and 1543 after infection was determined. Haplotypes were
subsequently reconstructed from these sequence data by Pandit
et al. (28).

These data are of particular interest to test the effects pre-
dicted by our model because CTL responses specific to two
epitopes, Nef A24-RW8 and Vif B38-WI9 were similarly strong.
At day 59, these responses differed only about 10% in terms
of Elispot responses in Spot Forming Cells (SFC) per million
Peripheral Blood Mononuclear Cells (PBMC) [see Supplementary
Information in Ref. (16)].

To test the predictions of our model, we fitted logistic escape
functions to the data and measured LD and escape rates. Figure 6
shows the fitted escape curves on the mutant frequencies of Nef
and Vif, respectively, in Figure 6A. At day 59 the inferred LD in
these data are D=−0.09, as shown in Figure 6B. As shown in
Figure 6C, ERD is clear in the escape of these two mutations.

The results of this analysis are in accordance with the notion
that interference was acting to delay the emergence of escapes and
to reduce their escape rates.

4. DISCUSSION
In this paper, the main focus was the interference of viral strains
and its role in the escape dynamics. We identified signals of inter-
ference under very specific conditions: in systems with high levels
of stochasticity and highly synchronized and comparably strong
CD8+ T cell responses, the generation of interference is facilitated.
These conditions are often satisfied in empirically observed HIV
dynamics (35, 37, 70–72). Furthermore, when sampling at times
typical for empirical studies, increasing interference decreases ERD
values. Lastly, we also tested these predictions in one instance of
two equally strong CTL responses elicited against HIV in a patient

(16). In the data, a signal for interference was accompanied by
ERD.

We restricted the simulations to two-locus systems, while ERD
was inferred from empirical data involving more escape variants.
Our results are consistent with theoretical findings for two-locus
systems in the context of population genetics (73). Intuitively,
the principle that under interference the fast escape of one allele
implies the slow escape of competing alleles with similar fitness
should also hold in systems with more than two loci. Interfer-
ence effects for systems with more loci are expected to be stronger
(17, 19) and are likely to have a stabilizing impact on ERD (17)
(Figure 5). We thus hypothesize that the pattern of ERD is pre-
served in HIV dynamics models with more than two epitopes
showing interference. How interference between multiple bene-
ficial mutations at distinct epitopes is connected to multi-locus
linkage disequilibria is an open question. To our knowledge, there
exists no consensus on how to define LD for more than three
loci (74–76). This would be an interesting subject for further
investigation.

Furthermore, we ignored potential fitness costs of escape muta-
tions in our simulations. They can be safely neglected if they are
compensated at faster rates than the fixation times of beneficial
mutants. Only if fitness costs differ substantially between escape
mutants do we expect that their explicit consideration will alter
the role of interference.

These results have to be interpreted in the larger context of
estimating the selective pressures that immune responses exert on
the virus population. These selection pressures are often inferred
from the growth advantage of mutants that escaped the immune
response – the rate of escape. Estimating these rates of escape using
models that neglect the complex genetical interactions between
escape strains has revealed the pattern of ERD central to our
study. Our study shows that caution is warranted when draw-
ing conclusions from this pattern about the selection pressures
at work.

Very recently, Pandit et al. identified a clear instance of clonal
interference in HIV between mutations within the same epitope
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FIGURE 6 | A possible instance of interference generating ERD in Ref.
(16). (A) The fits of the logistic escape model as used in Ref. (15) to the
sample points of escape mutant frequency. Escape mutations appear in the
epitopes Nef A24-RW8 and Vif B38-WI9 as a consequence of two, nearly
equally potent CTL responses specific to these epitopes. (B) The LD between
Nef A24-RW8 and Vif B38-WI9 becomes negative at one of the time points

sampled (connected by blue line). To calculate LD, we constructed a
contingency table with the frequencies of wildtype (no mutations in any
epitope), single mutants (escape mutation in one epitope) and the double
mutant (escape mutations in both Nef and Vif ) reconstructed in Ref. (28) and
measured D as defined above. (C) The inferred escape rates of the escape
mutations in Nef and Vif show ERD.
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as well as between epitopes (28). The relevance of interference
during early HIV is further supported by “epitope shattering,”
where a founder strain can diversify into an array of strains
with distinct escape mutations at the same epitope (77). Leviyang
studied such mutational pathways in data presented in Ref. (78),
focusing on competition between intra-epitope escape mutations
(79). O’Connor also reported the coexistence of escape mutations
within the same epitope in SIV-infected Mauritian cynomolgus
macaques (80).

In contrast to our investigations, other studies expect interfer-
ence effects to be negligible. Da Silva modeled early HIV infection
with a Wright–Fisher process incorporating weakening CD8+ T
cell responses (81). He concluded that due to the transmission
bottleneck the effective population size of HIV should remain at
low levels (Ne≈ 102) throughout early-infection, thus preventing
interference.

Kessinger et al. (82) estimated escape rates of the HIV data
presented in Goonetilleke et al. (14) by employing multi-epitope
models of HIV. To do this, they imposed a scheme of sequential
escapes on their model. With that scheme, the escape rate estimates
were substantially higher than in other studies.

Very recently, Ganusov et al. presented stochastic simulations
of a multi-epitope model of HIV infection with recombination
(19). In that paper, the bias interference effects introduce in escape
rate estimates is also discussed. Escape rate estimates are heavily
underestimated at low sample sizes (≈20 samples), but improve
at sample sizes of about 200. They also find that in stochas-
tic simulations, escapes are delayed compared to deterministic
escapes, especially for low recombination rates. These theoretical
results strongly support the notion that current estimation meth-
ods might be inappropriate tools for escape rate inference under
interference regimes.

Our study makes a few testable predictions. Whether inter-
ference is involved in the generation of ERD can be assessed
by measuring the LD between HIV haplotypes over time. This
requires sequencing that either retains linkage information, or the
reconstruction of haplotypes using bioinformatic methods (83,
84). Sustained negative linkage disequilibria would be indicative of
interference. In this case, interference needs to be corrected before
escape rates can be related to selection pressures. After this correc-
tion, the estimates of the selection pressures should be higher than
previously estimated by means of logistic curve fitting. Further-
more, interference should be enhanced in mutations of epitopes
in close proximity in the genome, especially mutations within the
same epitopes.

ACKNOWLEDGMENTS
The authors thank the members of the Bonhoeffer group
at ETH Zurich for valuable discussions. Funding: the
authors gratefully acknowledge the funding of the Swiss
National Science Foundation (grant numbers 315230-130855,
P1EZP3_148648).

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at
http://www.frontiersin.org/Journal/10.3389/fimmu.2014.00661/
abstract

REFERENCES
1. Goulder P, Watkins D. HIV and SIV CTL escape: implications for vaccine design.

Nat Rev Immunol (2004) 4(8):630–40. doi:10.1038/nri1417
2. Schmitz J, Kuroda M, Santra S, Sasseville V, Simon M, Lifton M, et al. Control

of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes.
Science (1999) 283(5403):857. doi:10.1126/science.283.5403.857

3. Friedrich TC, Dodds EJ, Yant LJ, Vojnov L, Rudersdorf R, Cullen C, et al. Rever-
sion of CTL escape-variant immunodeficiency viruses in vivo. Nat Med (2004)
10(3):275–81. doi:10.1038/nm998

4. Barouch DH, Powers J, Truitt DM, Kishko MG, Arthur JC, Peyerl FW, et al.
Dynamic immune responses maintain cytotoxic T lymphocyte epitope muta-
tions in transmitted simian immunodeficiency virus variants. Nat Immunol
(2005) 6(3):247–52. doi:10.1038/ni1167

5. Kent SJ, Fernandez CS, Jane Dale C, Davenport MP. Reversion of immune escape
HIV variants upon transmission: insights into effective viral immunity. Trends
Microbiol (2005) 13(6):243–6. doi:10.1016/j.tim.2005.03.011

6. Peut V, Kent SJ. Fitness constraints on immune escape from HIV: implications
of envelope as a target for both HIV-specific T cells and antibody. Curr HIV Res
(2006) 4(2):191. doi:10.2174/157016206776055110

7. Crawford H, Prado JG, Leslie A, Hué S, Honeyborne I, Reddy S, et al. Compen-
satory mutation partially restores fitness and delays reversion of escape mutation
within the immunodominant HLA-B* 5703-restricted Gag epitope in chronic
human immunodeficiency virus type 1 infection. J Virol (2007) 81(15):8346–51.
doi:10.1128/JVI.00465-07

8. Frater AJ, Brown H, Oxenius A, Günthard H, Hirschel B, Robinson N, et al. Effec-
tive T-cell responses select human immunodeficiency virus mutants and slow
disease progression. J Virol (2007) 81(12):6742–51. doi:10.1128/JVI.00022-07

9. Li B, Gladden AD, Altfeld M, Kaldor JM, Cooper DA, Kelleher AD, et al. Rapid
reversion of sequence polymorphisms dominates early human immunodefi-
ciency virus type 1 evolution. J Virol (2007) 81(1):193–201. doi:10.1128/JVI.
01231-06

10. Fernandez CS, Stratov I, De Rose R, Walsh K, Dale CJ, Smith MZ, et al. Rapid
viral escape at an immunodominant simian-human immunodeficiency virus
cytotoxic T-lymphocyte epitope exacts a dramatic fitness cost. J Virol (2005)
79(9):5721–31. doi:10.1128/JVI.79.9.5721-5731.2005

11. Asquith B, Edwards CT, Lipsitch M, McLean AR. Inefficient cytotoxic T
lymphocyte-mediated killing of HIV-1-infected cells in vivo. PLoS Biol (2006)
4(4):e90. doi:10.1371/journal.pbio.0040090

12. Mandl JN, Regoes RR, Garber DA, Feinberg MB. Estimating the effectiveness
of simian immunodeficiency virus-specific CD8+ T cells from the dynamics of
viral immune escape. J Virol (2007) 81(21):11982–91. doi:10.1128/JVI.00946-07

13. Turnbull E, Wong M, Wang S, Wei X, Jones N, Conrod K, et al. Kinetics of
expansion of epitope-specific T cell responses during primary HIV-1 infection.
J Immunol (2009) 182(11):7131–45. doi:10.4049/jimmunol.0803658

14. Goonetilleke N, Liu M, Salazar-Gonzalez J, Ferrari G, Giorgi E, Ganusov V, et al.
The first T cell response to transmitted/founder virus contributes to the con-
trol of acute viremia in HIV-1 infection. J Exp Med (2009) 206(6):1253–72.
doi:10.1084/jem.20090365

15. Ganusov VV, Goonetilleke N, Liu MK, Ferrari G, Shaw GM, McMichael AJ, et al.
Fitness costs and diversity of the cytotoxic T lymphocyte (CTL) response deter-
mine the rate of CTL escape during acute and chronic phases of HIV infection.
J Virol (2011) 85(20):10518–28. doi:10.1128/JVI.00655-11

16. Henn MEA. Whole genome deep sequencing of HIV-1 reveals the impact of
early minor variants upon immune recognition during acute infection. PLoS
Pathog (2012) 8(3):e1002529. doi:10.1371/journal.ppat.1002529

17. Althaus CL, De Boer RJ. Dynamics of immune escape during HIV/SIV infection.
PLoS Comput Biol (2008) 4(7):e1000103. doi:10.1371/journal.pcbi.1000103

18. van Deutekom HW, Wijnker G, de Boer RJ. The rate of immune escape vanishes
when multiple immune responses control an HIV infection. J Immunol (2013)
191(6):3277–86. doi:10.4049/jimmunol.1300962

19. Ganusov VV, Neher RA, Perelson AS. Mathematical modeling of escape of HIV
from cytotoxic T lymphocyte responses. J Stat Mech (2013) 2013(01):01010.
doi:10.1088/1742-5468/2013/01/P01010

20. Hill W, Robertson A. The effect of linkage on limits to artificial selection. Genet
Res (1966) 8(3):269–94. doi:10.1017/S0016672300010156

21. Gerrish P, Lenski R. The fate of competing beneficial mutations in an asexual
population. Genetica (1998) 102:127–44. doi:10.1023/A:1017067816551

22. Desai MM, Fisher DS. Beneficial mutation selection balance and the effect
of linkage on positive selection. Genetics (2007) 176(3):1759–98. doi:10.1534/
genetics.106.067678

Frontiers in Immunology | HIV and AIDS January 2015 | Volume 5 | Article 661 | 8

http://www.frontiersin.org/Journal/10.3389/fimmu.2014.00661/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2014.00661/abstract
http://dx.doi.org/10.1038/nri1417
http://dx.doi.org/10.1126/science.283.5403.857
http://dx.doi.org/10.1038/nm998
http://dx.doi.org/10.1038/ni1167
http://dx.doi.org/10.1016/j.tim.2005.03.011
http://dx.doi.org/10.2174/157016206776055110
http://dx.doi.org/10.1128/JVI.00465-07
http://dx.doi.org/10.1128/JVI.00022-07
http://dx.doi.org/10.1128/JVI.01231-06
http://dx.doi.org/10.1128/JVI.01231-06
http://dx.doi.org/10.1128/JVI.79.9.5721-5731.2005
http://dx.doi.org/10.1371/journal.pbio.0040090
http://dx.doi.org/10.1128/JVI.00946-07
http://dx.doi.org/10.4049/jimmunol.0803658
http://dx.doi.org/10.1084/jem.20090365
http://dx.doi.org/10.1128/JVI.00655-11
http://dx.doi.org/10.1371/journal.ppat.1002529
http://dx.doi.org/10.1371/journal.pcbi.1000103
http://dx.doi.org/10.4049/jimmunol.1300962
http://dx.doi.org/10.1088/1742-5468/2013/01/P01010
http://dx.doi.org/10.1017/S0016672300010156
http://dx.doi.org/10.1023/A:1017067816551
http://dx.doi.org/10.1534/genetics.106.067678
http://dx.doi.org/10.1534/genetics.106.067678
http://www.frontiersin.org/HIV_and_AIDS
http://www.frontiersin.org/HIV_and_AIDS/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Garcia and Regoes Interference between CTL-escapes in HIV

23. Imhof M, Schlötterer C. Fitness effects of advantageous mutations in evolving
Escherichia coli populations. Proc Natl Acad Sci U S A (2001) 98(3):1113–7.
doi:10.1073/pnas.98.3.1113

24. Nowak M, May RM. Virus Dynamics: Mathematical Principles of Immunology
and Virology: Mathematical Principles of Immunology and Virology. New York:
Oxford University Press (2000).

25. Perelson AS. Modelling viral and immune system dynamics. Nat Rev Immunol
(2002) 2(1):28–36. doi:10.1038/nri700

26. De Boer R. Understanding the failure of CD8+ T-cell vaccination against
simian/human immunodeficiency virus. J Virol (2007) 81(6):2838–48. doi:10.
1128/JVI.01914-06

27. Fryer HR, Frater J, Duda A, Roberts MG, Phillips RE, McLean AR, et al. Mod-
elling the evolution and spread of HIV immune escape mutants. PLoS Pathog
(2010) 6(11):e1001196. doi:10.1371/journal.ppat.1001196

28. Pandit A, de Boer RJ. Reliable reconstruction of HIV-1 whole genome haplo-
types reveals clonal interference and genetic hitchhiking among immune escape
variants. Retrovirology (2014) 11:56. doi:10.1186/1742-4690-11-56

29. Mansky LM, Temin HM. Lower in vivo mutation rate of human immunode-
ficiency virus type 1 than that predicted from the fidelity of purified reverse
transcriptase. J Virol (1995) 69(8):5087–94.

30. Jung A, Maier R, Vartanian J-P, Bocharov G, Jung V, Fischer U, et al. Recom-
bination: multiply infected spleen cells in HIV patients. Nature (2002)
418(6894):144–144. doi:10.1038/418144a

31. Josefsson L, Palmer S, Casazza J, Ambrozak D, Kearney M, Shao W,
et al. Analysis of HIV DNA molecules in paired peripheral blood and
lymph node tissue samples from chronically infected patients. Antivi-
ral Therapy. (Vol. 15), London: International Medical Press Ltd (2010).
p. A41–41. Available from: http://www.intmedpress.com/serveFile.cfm?sUID=
c10a93ca-a12a-4ff9-980d-07561299189b

32. Neher RA, Leitner T. Recombination rate and selection strength in HIV intra-
patient evolution. PLoS Comput Biol (2010) 6(1):e1000660. doi:10.1371/journal.
pcbi.1000660

33. Batorsky R, Kearney MF, Palmer SE, Maldarelli F, Rouzine IM, Coffin JM.
Estimate of effective recombination rate and average selection coefficient for
HIV in chronic infection. Proc Natl Acad Sci U S A (2011) 108(14):5661–6.
doi:10.1073/pnas.1102036108

34. Mostowy R, Kouyos R, Fouchet D, Bonhoeffer S. The role of recombination
for the coevolutionary dynamics of HIV and the immune response. PLoS One
(2011) 6(2):e16052. doi:10.1371/journal.pone.0016052

35. Murali-Krishna K, Altman JD, Suresh M, Sourdive DJ, Zajac AJ, Miller JD,
et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activa-
tion during viral infection. Immunity (1998) 8(2):177–87. doi:10.1016/S1074-
7613(00)80470-7

36. Ahmed R, Gray D. Immunological memory and protective immunity: under-
standing their relation. Science (1996) 272(5258):54–60. doi:10.1126/science.
272.5258.54

37. Antia R, Bergstrom CT, Pilyugin SS, Kaech SM, Ahmed R. Models of CD8+
responses: 1. What is the antigen-independent proliferation program. J Theor
Biol (2003) 221(4):585–98. doi:10.1006/jtbi.2003.3208

38. Kaech SM, Wherry EJ, Ahmed R. Effector and memory T-cell differentiation:
implications for vaccine development. Nat Rev Immunol (2002) 2(4):251–62.
doi:10.1038/nri778

39. Kaech SM, Hemby S, Kersh E, Ahmed R. Molecular and functional profiling
of memory CD8 T cell differentiation. Cell (2002) 111(6):837–51. doi:10.1016/
S0092-8674(02)01139-X

40. Antia R, Ganusov VV, Ahmed R. The role of models in understanding CD8+
T-cell memory. Nat Rev Immunol (2005) 5(2):101–11. doi:10.1038/nri1550

41. Davenport MP, Ribeiro RM, Chao DL, Perelson AS. Predicting the impact of a
nonsterilizing vaccine against human immunodeficiency virus. J Virol (2004)
78(20):11340–51. doi:10.1128/JVI.78.20.11340-11351.2004

42. Team RDC. R: A Language and Environment for Statistical Computing. Vienna:
R Foundation for Statistical Computing (2012).

43. Johnson P. Adaptivetau: Tau-Leaping Stochastic Simulation. R Package Version
0.902 (2011).

44. Haase AT, Henry K, Zupancic M, Sedgewick G, Faust RA, Melroe H, et al. Quan-
titative image analysis of HIV-1 infection in lymphoid tissue. Science (1996)
274(5289):985–9. doi:10.1126/science.274.5289.985

45. Mohri H,Bonhoeffer S,Monard S,Perelson AS,Ho DD. Rapid turnover of T lym-
phocytes in SIV-infected rhesus macaques. Science (1998) 279(5354):1223–7.
doi:10.1126/science.279.5354.1223

46. Stafford MA, Corey L, Cao Y, Daar ES, Ho DD, Perelson AS. Modeling
plasma virus concentration during primary HIV infection. J Theor Biol (2000)
203(3):285–301. doi:10.1006/jtbi.2000.1076

47. Chen HY, Di Mascio M, Perelson AS, Ho DD, Zhang L. Determination of virus
burst size in vivo using a single-cycle SIV in rhesus macaques. Proc Natl Acad
Sci U S A (2007) 104(48):19079–84. doi:10.1073/pnas.0707449104

48. De Boer RJ, Ribeiro RM, Perelson AS. Current estimates for HIV-1 produc-
tion imply rapid viral clearance in lymphoid tissues. PLoS Comput Biol (2010)
6(9):e1000906. doi:10.1371/journal.pcbi.1000906

49. Markowitz M, Louie M, Hurley A, Sun E, Di Mascio M, Perelson AS, et al. A novel
antiviral intervention results in more accurate assessment of human immun-
odeficiency virus type 1 replication dynamics and T-cell decay in vivo. J Virol
(2003) 77(8):5037–8. doi:10.1128/JVI.77.8.5037-5038.2003

50. Dixit NM, Markowitz M, Ho DD, Perelson AS. Estimates of intracellular delay
and average drug efficacy from viral load data of HIV-infected individuals
under antiretroviral therapy. Antivir Ther (2004) 9(2):237–46. Available from:
http://www.intmedpress.com/journals/avt/abstract.cfm?id=998&pid=88

51. Nelson PW, Mittler JE, Perelson AS. Effect of drug efficacy and the eclipse phase
of the viral life cycle on estimates of HIV viral dynamic parameters. J Acquir
Immune Defic Syndr (2001) 26(5):405–12. doi:10.1097/00042560-200104150-
00002

52. Reddy B, Yin J. Quantitative intracellular kinetics of HIV type 1. AIDS Res Hum
Retroviruses (1999) 15(3):273–83. doi:10.1089/088922299311457

53. Rouzine IM, Sergeev RA, Glushtsov AI. Two types of cytotoxic lymphocyte regu-
lation explain kinetics of immune response to human immunodeficiency virus.
Proc Natl Acad Sci U S A (2006) 103(3):666–71. doi:10.1073/pnas.0510016103

54. Wei X, Ghosh SK, Taylor ME, Johnson VA, Emini EA, Deutsch P, et al. Viral
dynamics in human immunodeficiency virus type 1 infection. Nature (1995)
373(6510):117–22. doi:10.1038/373117a0

55. Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M. Rapid
turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature
(1995) 373(6510):123–6. doi:10.1038/373123a0

56. Wick WD, Yang OO, Corey L, Self SG. How many human immunodeficiency
virus type 1-infected target cells can a cytotoxic T-lymphocyte kill? J Virol (2005)
79(21):13579–86. doi:10.1128/JVI.79.21.13579-13586.2005

57. Jetzt AE, Yu H, Klarmann GJ, Ron Y, Preston BD, Dougherty JP. High rate of
recombination throughout the human immunodeficiency virus type 1 genome.
J Virol (2000) 74(3):1234–40. doi:10.1128/JVI.74.3.1234-1240.2000

58. Zhuang J, Jetzt AE, Sun G, Yu H, Klarmann G, Ron Y, et al. Human immunode-
ficiency virus type 1 recombination: rate, fidelity, and putative hot spots. J Virol
(2002) 76(22):11273–82. doi:10.1128/JVI.76.22.11273-11282.2002

59. Shriner D, Rodrigo AG, Nickle DC, Mullins JI. Pervasive genomic recombina-
tion of HIV-1 in vivo. Genetics (2004) 167(4):1573–83. doi:10.1534/genetics.
103.023382

60. Kouyos RD, Althaus CL, Bonhoeffer S. Stochastic or deterministic: what is the
effective population size of HIV-1? Trends Microbiol (2006) 14(12):507–11.
doi:10.1016/j.tim.2006.10.001

61. Ribeiro R, Bonhoeffer S, Nowak M. The frequency of resistant mutant
virus before antiviral therapy. AIDS (1998) 12(5):461. doi:10.1097/00002030-
199805000-00006

62. Nowak MA, Lloyd AL, Vasquez GM, Wiltrout TA, Wahl LM, Bischofberger N,
et al. Viral dynamics of primary viremia and antiretroviral therapy in simian
immunodeficiency virus infection. J Virol (1997) 71(10):7518–25.

63. Little SJ, McLean AR, Spina CA, Richman DD, Havlir DV. Viral dynamics of acute
HIV-1 infection. J Exp Med (1999) 190(6):841–50. doi:10.1084/jem.190.6.841

64. Chun T-W, Carruth L, Finzi D, Shen X, DiGiuseppe JA, Taylor H, et al. Quan-
tification of latent tissue reservoirs and total body viral load in HIV-1 infection.
Nature (1997) 387:183–8.

65. Kinloch-de Loës S, Hirschel BJ, Hoen B, Cooper DA, Tindall B, Carr A,
et al. A controlled trial of zidovudine in primary human immunodefi-
ciency virus infection. N Engl J Med (1995) 333(7):408–13. doi:10.1056/
NEJM199508173330702

66. Ho DD. Viral counts count in HIV infection. Science (1996) 272(5265):1124–5.
doi:10.1126/science.272.5265.1124

67. McMichael AJ, Borrow P, Tomaras GD, Goonetilleke N, Haynes BF. The immune
response during acute HIV-1 infection: clues for vaccine development. Nat Rev
Immunol (2010) 10(1):11–23. doi:10.1038/nri2674

68. Tsimring LS, Levine H, Kessler DA. RNA virus evolution via a fitness-
space model. Phys Rev Lett (1996) 76(23):4440–3. doi:10.1103/PhysRevLett.76.
4440

www.frontiersin.org January 2015 | Volume 5 | Article 661 | 9

http://dx.doi.org/10.1073/pnas.98.3.1113
http://dx.doi.org/10.1038/nri700
http://dx.doi.org/10.1128/JVI.01914-06
http://dx.doi.org/10.1128/JVI.01914-06
http://dx.doi.org/10.1371/journal.ppat.1001196
http://dx.doi.org/10.1186/1742-4690-11-56
http://dx.doi.org/10.1038/418144a
http://www.intmedpress.com/serveFile.cfm?sUID=c10a93ca-a12a-4ff9-980d-07561299189b
http://www.intmedpress.com/serveFile.cfm?sUID=c10a93ca-a12a-4ff9-980d-07561299189b
http://dx.doi.org/10.1371/journal.pcbi.1000660
http://dx.doi.org/10.1371/journal.pcbi.1000660
http://dx.doi.org/10.1073/pnas.1102036108
http://dx.doi.org/10.1371/journal.pone.0016052
http://dx.doi.org/10.1016/S1074-7613(00)80470-7
http://dx.doi.org/10.1016/S1074-7613(00)80470-7
http://dx.doi.org/10.1126/science.272.5258.54
http://dx.doi.org/10.1126/science.272.5258.54
http://dx.doi.org/10.1006/jtbi.2003.3208
http://dx.doi.org/10.1038/nri778
http://dx.doi.org/10.1016/S0092-8674(02)01139-X
http://dx.doi.org/10.1016/S0092-8674(02)01139-X
http://dx.doi.org/10.1038/nri1550
http://dx.doi.org/10.1128/JVI.78.20.11340-11351.2004
http://dx.doi.org/10.1126/science.274.5289.985
http://dx.doi.org/10.1126/science.279.5354.1223
http://dx.doi.org/10.1006/jtbi.2000.1076
http://dx.doi.org/10.1073/pnas.0707449104
http://dx.doi.org/10.1371/journal.pcbi.1000906
http://dx.doi.org/10.1128/JVI.77.8.5037-5038.2003
http://www.intmedpress.com/journals/avt/abstract.cfm?id=998&pid=88
http://dx.doi.org/10.1097/00042560-200104150-00002
http://dx.doi.org/10.1097/00042560-200104150-00002
http://dx.doi.org/10.1089/088922299311457
http://dx.doi.org/10.1073/pnas.0510016103
http://dx.doi.org/10.1038/373117a0
http://dx.doi.org/10.1038/373123a0
http://dx.doi.org/10.1128/JVI.79.21.13579-13586.2005
http://dx.doi.org/10.1128/JVI.74.3.1234-1240.2000
http://dx.doi.org/10.1128/JVI.76.22.11273-11282.2002
http://dx.doi.org/10.1534/genetics.103.023382
http://dx.doi.org/10.1534/genetics.103.023382
http://dx.doi.org/10.1016/j.tim.2006.10.001
http://dx.doi.org/10.1097/00002030-199805000-00006
http://dx.doi.org/10.1097/00002030-199805000-00006
http://dx.doi.org/10.1084/jem.190.6.841
http://dx.doi.org/10.1056/NEJM199508173330702
http://dx.doi.org/10.1056/NEJM199508173330702
http://dx.doi.org/10.1126/science.272.5265.1124
http://dx.doi.org/10.1038/nri2674
http://dx.doi.org/10.1103/PhysRevLett.76.4440
http://dx.doi.org/10.1103/PhysRevLett.76.4440
http://www.frontiersin.org
http://www.frontiersin.org/HIV_and_AIDS/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Garcia and Regoes Interference between CTL-escapes in HIV

69. Rouzine IM, Coffin JM. Evolution of human immunodeficiency virus under
selection and weak recombination. Genetics (2005) 170(1):7–18. doi:10.1534/
genetics.104.029926

70. Achaz G, Palmer S, Kearney M, Maldarelli F, Mellors J, Coffin J, et al. A robust
measure of HIV-1 population turnover within chronically infected individuals.
Mol Biol Evol (2004) 21(10):1902–12. doi:10.1093/molbev/msh196

71. Brown AJL. Analysis of HIV-1 env gene sequences reveals evidence for a low
effective number in the viral population. Proc Natl Acad Sci U S A (1997)
94(5):1862–5. doi:10.1073/pnas.94.5.1862

72. De Boer RJ, Oprea M, Antia R, Murali-Krishna K, Ahmed R, Perelson AS.
Recruitment times, proliferation, and apoptosis rates during the CD8+ T-cell
response to lymphocytic choriomeningitis virus. J Virol (2001) 75(22):10663–9.
doi:10.1128/JVI.75.22.10663-10669.2001

73. Barton NH. Linkage and the limits to natural selection. Genetics (1995)
140(2):821–41.

74. Mueller JC. Linkage disequilibrium for different scales and applications. Brief
Bioinform (2004) 5(4):355–64. doi:10.1093/bib/5.4.355

75. Slatkin M. On treating the chromosome as the unit of selection. Genetics (1972)
72(1):157–68.

76. Gorelick R, Laubichler M. Decomposing multilocus linkage disequilibrium.
Genetics (2004) 166(3):1581–3. doi:10.1534/genetics.166.3.1581

77. Boutwell CL, Rolland MM, Herbeck JT, Mullins JI, Allen TM. Viral evolution
and escape during acute HIV-1 infection. J Infect Dis (2010) 202(Suppl 2):S309.
doi:10.1086/655653

78. Fischer W, Ganusov VV, Giorgi EE, Hraber PT, Keele BF, Leitner T, et al. Trans-
mission of single HIV-1 genomes and dynamics of early immune escape revealed
by ultra-deep sequencing. PLoS One (2010) 5(8):e12303. doi:10.1371/journal.
pone.0012303

79. Leviyang S. Computational inference methods for selective sweeps arising in
acute HIV infection. Genetics (2013) 194(3):737–52. doi:10.1534/genetics.113.
150862

80. O’Connor S, Becker E, Weinfurter J, Chin E, Budde M, Gostick E, et al. Condi-
tional CD8+ T cell escape during acute simian immunodeficiency virus infec-
tion. J Virol (2012) 86(1):605–9. doi:10.1128/JVI.05511-11

81. da Silva J. The dynamics of HIV-1 adaptation in early infection. Genetics (2012)
190(3):1087–99. doi:10.1534/genetics.111.136366

82. Kessinger TA, Perelson AS, Neher RA. Inferring HIV escape rates from multi-
locus genotype data. Front Immunol (2013) 4:252. doi:10.3389/fimmu.2013.
00252

83. Zagordi O, Bhattacharya A, Eriksson N, Beerenwinkel N. ShoRAH: estimating
the genetic diversity of a mixed sample from next-generation sequencing data.
BMC Bioinformatics (2011) 12:119. doi:10.1186/1471-2105-12-119

84. Prosperi MC, Salemi M. QuRe: software for viral quasispecies reconstruc-
tion from next-generation sequencing data. Bioinformatics (2012) 28(1):132–3.
doi:10.1093/bioinformatics/btr627

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 08 October 2014; accepted: 09 December 2014; published online: 13 January
2015.
Citation: Garcia V and Regoes RR (2015) The effect of interference on the CD8+ T cell
escape rates in HIV. Front. Immunol. 5:661. doi: 10.3389/fimmu.2014.00661
This article was submitted to HIV and AIDS, a section of the journal Frontiers in
Immunology.
Copyright © 2015 Garcia and Regoes. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

Frontiers in Immunology | HIV and AIDS January 2015 | Volume 5 | Article 661 | 10

http://dx.doi.org/10.1534/genetics.104.029926
http://dx.doi.org/10.1534/genetics.104.029926
http://dx.doi.org/10.1093/molbev/msh196
http://dx.doi.org/10.1073/pnas.94.5.1862
http://dx.doi.org/10.1128/JVI.75.22.10663-10669.2001
http://dx.doi.org/10.1093/bib/5.4.355
http://dx.doi.org/10.1534/genetics.166.3.1581
http://dx.doi.org/10.1086/655653
http://dx.doi.org/10.1371/journal.pone.0012303
http://dx.doi.org/10.1371/journal.pone.0012303
http://dx.doi.org/10.1534/genetics.113.150862
http://dx.doi.org/10.1534/genetics.113.150862
http://dx.doi.org/10.1128/JVI.05511-11
http://dx.doi.org/10.1534/genetics.111.136366
http://dx.doi.org/10.3389/fimmu.2013.00252
http://dx.doi.org/10.3389/fimmu.2013.00252
http://dx.doi.org/10.1186/1471-2105-12-119
http://dx.doi.org/10.1093/bioinformatics/btr627
http://dx.doi.org/10.3389/fimmu.2014.00661
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/HIV_and_AIDS
http://www.frontiersin.org/HIV_and_AIDS/archive

	The effect of interference on the CD8+ T cell escape rates in HIV
	Introduction
	Materials and methods
	Target cells
	Infected cells
	Mutation
	Recombination

	Productively infected cells
	CD8+ T cells
	Implementation
	Stochasticity induced by system rescaling

	Results
	Virus dynamics model reproduces escape dynamics
	Cumulative linkage disequilibrium as a measure for interference
	Similarly strong and synchronously elicited CD8+ T cell functions facilitate the appearance of interference
	Negative cumulative LD most pronounced at near-identical CD8+ T cell responses
	Escape rate decrease

	Cumulative LD is associated with escape rate decrease
	Possible instance of escape rate decrease due to interference

	Discussion
	Acknowledgments
	Supplementary material
	References


