
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REVIEW ARTICLE
published: 06 January 2015

doi: 10.3389/fimmu.2014.00680

Innate immune programing by endotoxin and its
pathological consequences
Matthew C. Morris1, Elizabeth A. Gilliam2 and Liwu Li 1*
1 Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
2 Virginia Tech Carillion School of Medicine and Research Institute, Roanoke, VA, USA

Edited by:
Ulrich Blank, Paris Diderot University
– Paris 7, France

Reviewed by:
Carlo Pucillo, University of Udine, Italy
Ashley Mansell, Monash Institute of
Medical Research, Australia

*Correspondence:
Liwu Li , Department of Biological
Sciences, Virginia Polytechnic
Institute and State University, 970
Washington Street SW, Blacksburg,
VA 24061, USA
e-mail: lwli@vt.edu

Monocytes and macrophages play pivotal roles in inflammation and homeostasis. Recent
studies suggest that dynamic programing of macrophages and monocytes may give rise
to distinct “memory” states. Lipopolysaccharide (LPS), a classical pattern recognition mol-
ecule, dynamically programs innate immune responses. Emerging studies have revealed
complex dynamics of cellular responses to LPS, with high doses causing acute, resolving
inflammation, while lower doses are associated with low-grade and chronic non-resolving
inflammation.These phenomena hint at dynamic complexities of intra-cellular signaling cir-
cuits downstream of theToll-like receptor 4 (TLR4). In this review, we examine pathological
effects of varying LPS doses with respect to the dynamics of innate immune responses
and key molecular regulatory circuits responsible for these effects.

Keywords: innate programing, endotoxin, priming and tolerance, systems dynamics, acute and chronic
inflammation

CURRENT DOGMA AND LIMITATIONS WITH REGARD TO LPS
SIGNALING IN INNATE IMMUNITY
Lipopolysaccharide (LPS) is a ubiquitous molecule found on the
surface of Gram-negative bacteria and is recognized by innate
immune cells in humans. Slightly elevated levels of LPS persist in
humans with chronic diseases and lifestyles that involve chronic
smoking and drinking (1–7). Through a better understanding of
how inflammation plays a role in the development of chronic dis-
ease, it is possible to devise better treatments to prevent or mitigate
their debilitating effects. Currently, it is believed that low-grade
inflammation plays a significant role in slowing and preventing
normal healing processes from occurring, leading to chronic dis-
eases including heart disease, diabetes, reduced wound healing,
and even Parkinson’s disease and rheumatoid arthritis (RA) (2,
8–13).

Lipopolysaccharide challenge is known to induce a refrac-
tory state in cells, whereupon subsequent challenge, even with
a high dose of LPS, is characterized by less robust induc-
tion of pro-inflammatory cytokines and increased production of
anti-inflammatory cytokines, a state known as endotoxin tolerance
(14–16). The duration of exposure has also been implicated in

Abbreviations: BCAP, B-cell adaptor for PI3K; Btk, Bruton’s tyrosine kinase;
CD14, cluster of differentiation 14; CREB, cAMP response-element-binding pro-
tein; C/EBPδ, CCAAT-enhancer-binding protein δ; EPC, endothelial progenitor cell;
FoxO1, forkhead box O1; GBP-1, guanylate-binding protein 1; GSK3, glycogen syn-
thase kinase 3; IFN, interferon; IRAK, interleukin-receptor-associated kinase; LBP,
lipid-binding protein; LPS, lipopolysaccharide; MAPK, mitogen-activated protein
kinase; mTOR, mammalian target of rapamycin; NFκB, nuclear factor κ of acti-
vated B cells; PI3K, phosphatidylinositol-3-kinase; RA, rheumatoid arthritis; SFK,
Src-family kinase; TIR, Toll/IL-1R homology; TGFβ, transforming growth factor β;
TNFα, tumor necrosis factor α; TRAF6, tumor-necrosis-factor-receptor-associated
factor 6; TRIF, TIR-domain-containing adaptor protein inducing interferon-β.

different immune responses (16). Pretreatment with a very low
dose of endotoxin (in the picograms/milliliter range), in con-
trast, has an opposite effect, potentiating or “priming” the pro-
inflammatory response to subsequent endotoxin challenge. This
phenomenon is referred to as the Shwartzman-like reaction (17).
We and others have documented the priming response to very
low-dose LPS in vitro, where it results in augmented expression
of pro-inflammatory cytokines such as IL-6 and tumor necro-
sis factor α (TNFα), and in vivo, where mice pretreated with
super-low-dose LPS exhibit increased mortality in response to
challenge with a higher dose (18, 19). Endotoxin priming and
tolerance have both been well documented, though the molec-
ular mechanisms governing the decision between one response
and the other have not been well defined. Regardless, the “deci-
sion” must be made at the time of the primary challenge: since the
secondary stimulus can be delivered at precisely the same dosage
and for the same duration, the differences in the response cannot
originate with the secondary challenge. The difference between
priming and tolerance must therefore be in the response to the
preparatory dose, and it is here that a detailed examination of
the dynamics of the macrophage response to LPS would be most
fruitful.

The first events in the immune response to LPS occur outside
of the cell. LPS must first come into contact with the LPS-binding
protein (LBP). The LPS–LBP complex can then be recognized by
TLR4, acting in conjunction with MD-2 and cluster of differen-
tiation 14 (CD14) (20). Once this recognition has occurred, the
TLR4 signaling cascade can commence.

Upon ligation of TLR4 by LPS, signaling can proceed through
an MyD88-dependent or MyD88-independent pathway. The
intra-cellular portion of TLR4 contains a Toll/IL-1R homology
(TIR) domain, by which it is enabled to interact with a family
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of related proteins and adaptor molecules, most prominently
MyD88 and TIR-domain-containing adaptor protein inducing
interferon-β (TRIF) (21). TLR4 is unique for its ability to sig-
nal through both MyD88 and TRIF, as the other TLRs are limited
exclusively to either MyD88-dependent or TRIF-dependent sig-
naling (22). Recruitment of MyD88 to TLR4 is followed by a
signaling cascade involving the interleukin-1-receptor-associated
kinases or interleukin-receptor-associated kinase (IRAKs). There
are currently four known IRAKs, among which IRAK-1, -2,
and -4 play positive roles in signal transduction, while IRAK-
M (also known as IRAK-3) acts to suppress TLR signaling (23).
The MyD88-dependent pathway of TLR signaling culminates in
the activation of mitogen-activated protein kinases (MAPK) and
NFκB,with subsequent induction of pro-inflammatory genes (24).
Figure 1 presents an overview of prominent mediators of TLR4
signaling.

Signaling through TRIF usually requires endocytosis of TLR4
(25). This endocytosis in turn requires CD14, as interference with
CD14–TLR4–LBP interactions prevents effective TLR4 internal-
ization (26, 27). Interestingly, Watanabe et al. demonstrated that
TRIF-dependent signaling can be activated in the absence of CD14
(28), but this required the direct delivery of LPS to the interior
of the cell, suggesting even more strongly that TRIF-dependent
signaling requires signaling by TLR4 within the confines of the
cytoplasmic membrane. A single amino acid mutation in TLR3 is
sufficient to induce signaling through MyD88, rather than TRIF,
indicating that the two pathways are closely related (29). Once
recruited, TRIF in turn activates interferon regulatory factor 3
through TBK1, and signaling proceeds through PI3K, ultimately
resulting in the activation of interferon-β (IFNβ) and related
genes (14). LPS preconditioning has TRIF-dependent protective
effects with respect to the ischemic injury associated with stroke
(30), and deletion of TRIF exacerbates allergic dermatitis in
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FIGURE 1 | Overview of signaling cascades engaged byTLR4. LPS
triggers recruitment of various adaptor molecules that may recruit a myriad
of downstream kinases and transcription factors, resulting in the activation
of both pro- and anti-inflammatory responses. However, the dynamic
modulation and coordination of these complex events are not well
understood.

mice (31). Taken together, these results point to a broadly anti-
inflammatory role for TRIF-dependent signaling in addition to
its established pro-inflammatory effects downstream of TLR4
activation.

EMERGING CONCEPT OF INNATE PROGRAMING AND
MEMORY
Past studies have largely treated the MyD88-dependent and TRIF-
dependent pathways in isolation, with little attention paid to the
possibility of cross-talk between them. However, there are intrigu-
ing indications that such cross-talk does occur. IRAK-1, a pivotal
actor in MyD88-dependent signaling, plays a suppressive role in
TRIF-dependent TLR3 signaling (32), and MyD88 is important for
the suppression of TRIF-mediated apoptosis (33). The Src-family
tyrosine kinases (SFK) also play a role in the differential regulation
of pro- and anti-inflammatory effects downstream of TLR stim-
ulation (34), including direct involvement in MyD88-dependent
NFκB activation (35). The phenomena of endotoxin priming and
tolerance indicate that the pro- and anti-inflammatory responses
to TLR4 stimulation are not wholly independent; rather, the acti-
vation of one must affect the other somehow. These emerging
studies hint at a novel concept of “innate immune program-
ing” and “memory.” Based on the mutually inhibitory cross-talks
among these pathways, innate leukocytes may be skewed to dis-
tinct phenotypes and retain certain memory states, such as M1,
M2, and other intermediate states (36). However, the mechanisms
responsible for this potential memory are not well understood.
Our future efforts will be dedicated to the review of potential
leads that may help reveal the underlying mechanisms.

The major mediators of cross-talk between MyD88- and
TRIF-dependent TLR4 signaling appear to be the SFKs and
phosphatidylinositol-3-kinase (PI3K), which act at different “lay-
ers” downstream of the receptors to integrate signals from the dif-
ferent pathways. The SFKs are engaged by tumor-necrosis-factor-
receptor-associated factor 6 (TRAF6) (37), and activated within
minutes of LPS stimulation, along with the Syk kinase Pyk2 and
Bruton’s tyrosine kinase (Btk), a member of the Tec family (38).
The SFK Lyn has been studied chiefly in B cells, due to the spon-
taneous appearance of a lupus-like B-cell-mediated autoimmune
disease in Lyn-deficient mice (39). Lyn activates PI3K through
B-cell adaptor for PI3K (BCAP) in B cells (40), but DC-specific
deletion of Lyn still causes hyperactive MyD88 signaling and B cell-
mediated autoimmunity (41), pointing to a role for Lyn in myeloid
cells. Knockout of MyD88 either globally or conditionally in B cells
or dendritic cells counteracts the autoimmune symptoms charac-
teristic of Lyn deficiency (42, 43). BCAP itself is active in myeloid
cells as well (44), indicating that the network is not limited to lym-
phoid cells. In mast cells, Lyn is necessary for TLR4-dependent
NFκB and MAPK activation (45), and further contributes to the
activation of Btk (46), a TIR-domain-containing molecule, which
promotes LPS-induced NFκB activation in macrophages (47). Btk
also drives MAPK-dependent TNFα production in response to
TLR2 and TLR4 stimulation of myeloid cells (48).

Inhibition of Pyk2 ameliorates the symptoms of LPS-induced
lung injury (49), and it also promotes MyD88-dependent signaling
and NFκB activation (35). Together, these findings point toward a
generally pro-inflammatory role for Pyk2, but the discovery that
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PI3K inhibitors suppress Pyk2 activity (50) indicates that Pyk2
is involved in both pathways. Downstream of PI3K, Pyk2 may
act in part to modulate the inflammatory suppression driven by
PI3K/Akt signaling.

The need for further study of the regulation of pro- and anti-
inflammatory responses to TLR4 stimulation is clear. Since the
“switch” between endotoxin priming and tolerance appears to
depend on the dosage of the first challenge, the dynamics of that
response must be investigated with the aim of determining what
conditions lead to the activation of one pathway or another. The
network motifs active here are key to the understanding of the LPS
response. There exists a role for epigenetics in the broad repro-
graming of macrophages and endotoxin tolerance (51–53), but
the response to single dosages over a matter of hours is likely to be
regulated by faster dynamic molecular mechanisms, as discussed
below in further detail.

COMPETITIVE CIRCUITRY GOVERNING INNATE
PROGRAMING OF LEUKOCYTES BY LPS
A growing body of literature suggests that a competitive net-
work may be responsible for the decision between a predomi-
nantly pro- or anti-inflammatory response to LPS, with PI3K,
Akt, and the cAMP-response-element-binding-protein (CREB)
acting in opposition to glycogen synthase kinase 3 (GSK3) and
forkhead box O1 (FoxO1). BCAP, as mentioned above, is cru-
cial for TLR-dependent PI3K activation in myeloid cells and the
ensuing suppression of inflammation (44). PI3K dampens NFκB
activation by means of phosphoinositide-dependent kinase-1,
which suppresses TRAF6 activity and is necessary for the LPS-
induced activation of Akt and ERK (54). PI3K also activates Akt
in response to mammalian target of rapamycin (mTOR), com-
peting with MAPK/p38/JNK signaling (55). Inhibition of PI3K
leads to increased production of IL-6 and TNFα in response to
TLR2 stimulation of macrophages (56), and activation of PI3K
results in deactivation of FoxO1, preventing it from promot-
ing TLR4 signaling (57). Overall, PI3K is important for neg-
ative feedback and control of TLR signaling, acting to coun-
teract both NFκB and MAPK, two of the main transcription
factors responsible for pro-inflammatory gene transcription in
response to LPS.

Akt exerts its anti-inflammatory effects through NFκB and
MAPK signaling, as well as its activation of CREB. In non-
canonical NFκB signaling, the processing of p100–p52 requires
Akt, paving the way for increased activity of RelB (58), a sup-
pressive NFκB family member. Activation of Akt through the
mTOR–PI3K pathway both counteracts MAPK signaling and acti-
vates CREB (59), at the same time directly inactivating FoxO1 (55).
Quercetin treatment activates Akt in multiple cell types, leading
to decreased activity of FoxO1 in pancreatic islets (60), and ame-
liorating the inflammatory response of adipocytes to TNFα (61).
Akt activation has also been shown to correlate with suppression of
FoxO1 in HEK293 cells (62). Inhibition of JAK3 leads to decreased
activity of both Akt and CREB, and this loss of activity correlates
with an augmented pro-inflammatory response to LPS (63). The
role of Akt, then, seems to be to mediate the anti-inflammatory
effects of PI3K, in large part by suppressing FoxO1 and activating
CREB.

GSK3 has been implicated in many inflammatory signaling
pathways. It directly suppresses genes with CREB binding sites
(64). Inhibition of GSK3 increases IL-10 production and decreases
IL-12 in response to LPS in monocytes (65), which, in light of the
importance of IL-10 to the anti-inflammatory effects of PI3K (66),
points strongly to GSK3 as an actor in opposition to PI3K. GSK3
suppresses IFNβ induction by LPS (67), indicating a suppres-
sive effect on TRIF-dependent signaling. GSK3 inactivates CREB
directly (68, 69), and IFNγ activates GSK3 and suppresses CREB
(70), indicating that the pro-inflammatory effects of IFNγ may be
due in large part to its effects on this sub-network.

The opposing effects of PI3K activation and GSK3 activation
have been described in multiple cell types. They have oppos-
ing effects on the LPS response in DC (66), and in H2O2-
induced apoptosis in neurons (71). Inactivation of GSK3β is
important in inflammatory resolution and is associated with a
blunted pro-inflammatory response to LPS (72). In macrophages,
PI3K–Akt signaling directly opposes GSK3 activity during the
LPS response, with GSK3α knockdown potentiating the effects
of IL-10 while CREB knockdown reduces them. Furthermore,
the pro-inflammatory effects of PI3K inhibition can be coun-
teracted by treatment with IL-10 (73), another indicator that
IL-10 is a downstream effector of PI3K. The PI3K-dependent
increase in IL-10 production is due to its inactivation of GSK3
(67, 74), and direct activation of PI3K–Akt results in inhibitory
phosphorylation of GSK3 (75). Knockout of the mTOR signal-
ing molecule rictor prevents Akt from inactivating GSK3 upon
TLR4 stimulation, correlating with increased FoxO1 activity and
pro-inflammatory gene expression (76). Taken together, these
findings constitute a strong body of evidence that the anti-
inflammatory PI3K/Akt/CREB signaling axis acts by suppress-
ing GSK3/FoxO1, and that this competition is the lynchpin of
the primarily pro- or anti-inflammatory characteristics of the
dynamic LPS response (Figure 2). We recently reported that
super-low-dose LPS selectively activates GSK3 and JNK while
suppressing Akt and ERK (77). This may explain the mild skew-
ing of pro-inflammatory responses by low-grade endotoxemia
in mice and humans. In contrast, high-dose LPS can induce
robust activation of all MAPKs that include p38, JNK, and ERK,
as well as PI3K/Akt (77), which may lead to the robust yet
transient resolving inflammation followed by anti-inflammatory
tolerance associated with high-dose endotoxin challenge. With
regard to upstream signaling network, IRAK-1 is responsible
for the effects of super-low-dose and high-dose LPS (Figure 2)
(77, 78).

PATHOLOGICAL EFFECTS OF VARYING DOSAGES OF
ENDOTOXIN
Chronic diseases currently affect large proportions of the US pop-
ulation where currently one in three adults is obese and almost
one in five children between 6 and 19 years are also considered
obese (79–82). In 2005, the CDC estimated that one in two Amer-
icans suffered from at least one chronic disease, such as arthritis,
greatly decreasing their quality of life and participation in daily
activities (83).

Lipopolysaccharide is a ubiquitous molecule found on the
surface of Gram-negative bacteria and is recognized by innate
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FIGURE 2 | Competitive molecular circuits potentially responsible for
the dynamic programing of innate leukocytes. Varying doses of LPS
may engage unique TLR4 complexes that may cause intra-cellular pathway
switching, leading to either low-grade non-resolving inflammation, or acute
resolving inflammation. Super-low-dose LPS selectively activates GSK3 and
JNK, while suppressing AKT and ERK. These two branches may also have
mutually inhibitory interactions, further fine-tuning cellular inflammatory
states. Low- to high-dose LPS potently induces NFκB and MAP kinases,
leading to robust inflammatory reactions. On the other hand, low- to
high-dose LPS could also trigger the activation of AKT and ERK, which may
serve to dampen inflammatory responses. IRAK-1 appears to be critical for
both the low-grade inflammation triggered by super-low-dose LPS and the
anti-inflammatory responses (e.g., IL-10 expression through ERK activation)
activated by high-dose LPS.

immune cells in humans. Slightly elevated levels of LPS persist in
humans with chronic diseases and lifestyles that involve chronic
smoking and drinking (1–7). Elevated circulating endotoxin may
program host leukocytes into a low-grade “memory” state, and
contribute to the pathogenesis of diverse diseases that may include
atherosclerosis, diabetes, reduced wound healing, Parkinson’s dis-
ease, and RA (2, 8–13). Indeed, recent studies suggest that the lower
circulating levels of endotoxin may lead to enhanced pathogenesis
of atherosclerosis (84, 85). Elderly people tend to have elevated cir-
culating endotoxin associated with neurological disease (86, 87).
On the other hand, slightly elevated endotoxin in vivo may offer
protection toward ischemia reperfusion injuries (88–91). Varying
dosages of endotoxin may also affect the function of dendritic cells,
and alter vaccine efficacies (92).

To put these dynamic pathological and physiological responses
in perspective, we have simplified these contrasting profiles of
acute and persistent inflammation in Figure 3. A normal inflam-
matory response comprises an early, pro-inflammatory phase, in
which microbicidal functions predominate, and a secondary, anti-
inflammatory phase, where wound healing occurs and inflamma-
tory cells leave the area of damage (72, 93, 94). In chronic disease,
the pro-inflammatory phase fails to resolve, leading to a persis-
tent state of low-grade inflammation. This leads to changes in
mucosal barriers and commensal bacteria that line the gastroin-
testinal tract. As a result, these individuals tend to have slightly
elevated levels of LPS (1–100 pg/ml) circulating in their blood
(1, 2, 95–100). However, while inflammatory processes for high
doses of LPS (>10 ng/ml) have been intensively studied for its
role in septic shock (101, 102), much less is known about the
immunological response to subclinical doses of LPS. Typically, the
activation of the Toll-like receptor-4 (TLR4) complex leads to the

Pro-inflammatory

Anti-inflammatory

Acute, resolving inflammation

Persistent, non-resolving inflammation

Pro-inflammatory

Anti-inflammatory

FIGURE 3 |The course of acute and persistent inflammatory
responses. The upper panel depicts the trajectory of a typical inflammatory
response. An initial pro-inflammatory phase characterized by recruitment of
neutrophils and production of cytokines such as IL-6 and TNFα is followed
by resolution, with compensatory induction of anti-inflammatory cytokines
(e.g., IL-10, TGFβ). Non-resolving and persistent inflammation is mild but
unopposed by anti-inflammatory mechanisms.

activation of nuclear factor κB (NFκB) where it initiates the tran-
scription of genes encoding inflammatory cytokines (103–108).
These inflammatory cytokines are responsible for the recruitment
of neutrophils, natural killer cells, and antigen-presenting cells to
the site of the infection (103). Once the infection is cleared, other
cytokines such as IL-10 and transforming growth factor β (TGFβ)
combine with apoptosis of pro-inflammatory cells such as neu-
trophils to resolve inflammation and restore homeostasis (103).
Additionally, macrophages can enter a state of endotoxin tolerance
wherein they suppress their expression of pro-inflammatory medi-
ators to prevent excessive inflammation (109, 110). Suppression at
multiple levels including inhibitor of κB, phosphatidylinositol-
3-kinase (PI3K), MAP kinase phosphatases, and the inactivation
of IRAK-1 helps prevent inflammation in the absence of danger
signals (54, 56, 111).

It is important to note that “innate programing” and “mem-
ory”may not be limited exclusively to endotoxin responses. Rather,
recent studies have indicated that other microbial products such
as beta-glucan can analogously “train” or program host innate
immunity, and led to improved host responses toward controlling
infection (112–114).

CONCLUSION
Remaining questions include the plasticity of this network, and
the persistence of the programing for which it is responsible. Can
the character of the LPS response be easily altered by pharma-
cological intervention aimed at activating or inhibiting different
components of this signaling nexus? Once the character of the
response has been established, will the system reset itself? Answers
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to these questions will significantly advance the understanding of
TLR signaling in particular and the behavior of innate immune
cells in general. Some efforts have been made to apply large-scale
systematic methods to the study of this system (115, 116), but a
great deal of work remains to be done, particularly with respect to
the network herein described. There is a growing appreciation for
plasticity and memory in macrophages, with a movement away
from strict classifications of macrophage populations along lines
of classical/alternative activation to more flexible schemes of classi-
fication based on dedication to a variety of different functions (36,
117). It is likely that further examination of this and other myeloid
signaling networks will accelerate this. Innate immune “memory”
is not a function of dedicated cell types as in lymphoid cells but
rather a characteristic intrinsic to individual cells, whereby signals
percolating through a network change its state in such a way as to
influence its responses to subsequent stimuli. Such “memory” is
therefore likely to be an important characteristic of many different
cell types, particularly those responding to many different stimuli
through interlocking networks of receptors and signaling cascades
(neurons, in particular, come readily to mind). Innate immune cell
populations may come to be seen as temporary workers, dedicated
to their functions less strongly than has hitherto been supposed.
Increasing appreciation for this plasticity will open broad new
vistas for both the theoretical understanding of innate immunity
and the treatment of associated diseases. Further studies aimed at
the unique characteristics of innate memory and the underlying
mechanisms are urgently needed.
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