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HIV-1 infection results in chronic activation of cells in lymphoid tissue, including T cells,
B-cells, and myeloid lineage cells. The resulting characteristic hyperplasia is an amalgam
of proliferating host immune cells in the adaptive response, increased concentrations of
innate response mediators due to viral and bacterial products, and homeostatic responses
to inflammation. While it is generally thought that CD4 T cells are greatly depleted, in fact,
two types of CD4 T cells appear to be increased, namely, regulatory T cells (Tregs) and T
follicular helper cells (Tfh). These cells have opposing roles, but may both be important in
the pathogenic process.WhetherTregs are failing in their role to limit lymphocyte activation
is unclear, but there is no doubt now that Tfh are associated with B-cell hyperplasia and
increased germinal center activity. Antiretroviral therapy may reduce the lymphocyte acti-
vation, but not completely, and therefore, there is a need for interventions that selectively
enhance normal CD4 function without exacerbating Tfh, B-cell, or Treg dysfunction.
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INTRODUCTION
The pathogenesis of CD4 T cell decline during chronic HIV-1
infection is slow and complex. It typically begins with a decrease
of CD4 cell counts in peripheral blood, from a median of approxi-
mately 800 cells/µl to a median of 500 cells/µl during the first few
weeks of primary infection (1–3), but is then followed by a much
slower rate of decline over several years (1), eventually leading to
opportunistic infections. CD4 cell counts in blood may not accu-
rately reflect cell numbers in secondary lymphoid tissue, since
treatment commenced during primary infection leads to a very
rapid increase of CD4 cell counts that cannot be accounted for by
new production of CD4 T cells and is most likely due to redistri-
bution of resting cells that had been sequestered in lymph nodes
(4, 5), as had been suggested for treatment commenced during
chronic infection (6–8).

Therefore, depletion within lymphoid tissue early in infection
is not so clear. Contradictory results from the SIV model of infec-
tion in rhesus macaques suggest either very high levels of infection
and loss of CD4 T cells, particularly from gut associated lym-
phoid tissue (GALT) during primary infection (9, 10), as against
sequestration and even proliferation of CD4 T cells in secondary
lymphoid tissue during early chronic infection (11–13). In fact,
increased rates of proliferation of both CD4 and CD8 T cells are
a hallmark of chronic HIV-1 infection (14–16). This increased
proliferation begins at the earliest stages of primary HIV-1 infec-
tion (5) and is associated with a CD4 response to viral antigens
(17). An analogous proliferative response of CD4 and CD8 T
cells to vaccinia virus was also clearly observed around day 13
post-inoculation in healthy adults (18). However, in the response

to vaccinia virus, as neutralizing antibodies titers increased by day
21 post-inoculation, activation, and proliferation of CD4 and CD8
T cells were rapidly terminated (18), and this was later confirmed
using tetramers to identify antigen-specific CD8 T cells (19).

Taken together, these results suggest that changes in CD4 cell
numbers during HIV-1 infection are a complex summation of
proliferating, but mostly short-lived, CD4 T cells, loss of virally
infected cells, changes in trafficking, and feedback regulation to
limit responses. These processes will occur in secondary lymphoid
tissue and GALT, since they are the major sites of viral replication
and antigen deposition (20, 21) and hence antigen presentation.
In particular, germinal center (GC) hyperplasia and hypergam-
maglobulinemia are also absolutely characteristic of established
HIV-1 infection (22). For most of the time that HIV-1 infection
has been studied, it has been believed that very few antigen-
specific CD4 T cells can be found in patients, presumably due
to preferential targeting of these cells by virus (23), except that
they are somehow protected in rare long-term non-progressors
(LTNP) and even rarer elite controllers (EC) [reviewed in Ref.
(24)]. Yet, this view of a paucity of HIV-specific CD4 T cells did
not take into account the extremely high titers of HIV-specific
IgG antibodies found in virtually all patients (22), beginning
early in primary infection (25). These antibodies strongly sug-
gest vigorous CD4 T cell help for B-cell responses, consistent
with the greatly increased numbers of GCs associated with HIV-1
infection.

This review will discuss the regulatory environment within
HIV-1 infected lymphoid tissue, with particular reference to the
role of T follicular helper cells (Tfh) in driving B-cell activation and
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the role of regulatory T cells (Tregs) in countering lymphocyte acti-
vation. Since T cell and B-cell activation and proliferation appear
to be unrelenting during early chronic infection, the evidence
suggests that the positive regulation by Tfh prevails, and that Treg
suppression is insufficient to prevent this.

ANTI-VIRAL CD4 T CELL RESPONSES
CD4 T cell responses are pivotal in the development of effective
cellular and humoral immunity against viral infections (26). The
crucial role of CD4 T cells was firmly documented in murine
models, where adoptive transfer of lymphocytic choriomeningitis
virus (LCMV) specific CD4 T cells into mice with chronic infec-
tion restored function to exhausted CD8+ T cells and reduced
viral burden (27, 28). Similarly in human cytomegalovirus (CMV)
infection, loss of CD4 T cell function correlated with end-organ
disease, and adoptive transfer of CMV-specific CD4 T cells into
infected patients leads to reduction in viremia and immune
restoration (29, 30). In the case of HIV-1 infection, LTNP and
EC may control viral replication with the help of cytotoxic CD4 T
lymphocytes specific for p24 (31, 32), and characteristically have
CD4 T cells that vigorously proliferate in response to HIV-1 anti-
gens, compared to non-proliferative CD4 T cells from subjects
with progressive disease (24).

While exhaustion and dysfunction of anti-viral effector T cells
have been suggested as a major factor in chronic viral infections,
particularly the LCMV model in mice (33), the role of neutraliz-
ing antibodies, generated through CD4 help for B-cells in GCs may
well be the ultimate determinant of outcome (34, 35). Recently, it
has been reported in the LCMV model that late development of a
neutralizing antibody response correlates with eventual clearance
of the chronic infection, rather than T cell immunity (36). This
clearance is associated with a slow development of viral antigen-
specific Tfh (37). At the same time, a negative role for Tregs
in anti-microbial responses in animal models, and outcome of
these infections, is clearly established (38), and are highly likely
to provide negative feedback regulation to limit tissue damage.
Therefore, there are diverse effector and regulatory roles of CD4 T
cells in the anti-viral response.

Human immunodeficiency virus (HIV) infection is a prime
example of the clinical relevance of CD4 T cell loss, where progres-
sive depletion of the T helper (Th) population leads to increased
morbidity and eventual mortality if untreated. Depletion of CD4
T cells is believed to be mostly due to direct infection of this
subset (21). However, loss of cells may also be due to chronic
immune activation, secondary to chronic exposure to microbial
products translocated across epithelial barriers depleted of CD4 T
cells during primary HIV-1 infection (39) and alteration of home-
ostasis due to eventual fibrotic changes to lymphoid tissue (40).
Direct anti-viral effector functions of human CD4 T cells are quite
clear, particularly cytotoxic activity in HIV-1 and CMV infections,
respectively (31, 32, 41, 42). However, the demonstrated cardi-
nal role of the various subsets of CD4 T cells in experimental
models of immune responses is to ensure optimal help to other
lymphocytes, especially B-cells (Tfh subset of CD4 T cells) and
CD8 T cells, as well as to recruit monocytes (Th1), eosinophils
and basophils (Th2), and neutrophils (Th17), and also to limit
responses (Tregs) (43).

Treg PHENOTYPES AND MECHANISMS OF ACTION
Regulatory T cell-mediated suppression of inflammation serves as
a crucial mechanism in the prevention of autoimmune disorders
and the control of negative regulation of inflammatory diseases.
Tregs are indispensible for the maintenance of homeostasis of the
immune system that limits the magnitude of effector responses
and allows the establishment of immunological tolerance. Two
main types of Tregs have been identified, they include natural
(or thymic) and induced (or peripheral) Tregs and both play
important roles in turning down immune responses (44, 45).

Naturally arising CD4 regulatory T cells (nTregs) develop in
the thymus and are primarily engaged in dominant control of
self-reactive T cells (46). The initial evidence in support of thymic
generation of cells that can mediate immune tolerance through
suppression of other cells materialized from studies of neonatal
thymectomy (47), but differentiation of inducible Treg cells occurs
in the periphery, mainly within lymphoid tissue including GALT
(48),where peripheral Tregs have increased affinity to non-self Ags,
e.g., allergens, food, and commensal micro-biota. IL-10 producing
regulatory T cells, termed Tr1 cells, are another subset of CD4 T
cells, which produce the anti-inflammatory cytokines IL-10 (49)
and transforming growth factor-β (TGF-β), and are involved in
down regulating immune responses toward allergens and various
antigens such as nickel and insect venom, as well as controlling
autoimmunity, and preventing allograft rejection and graft versus
host disease (GvHD) (50).

The transcription factor Foxp3 has been identified as the mas-
ter regulator of Treg differentiation (45). In humans, CD25 alone
cannot distinguish Tregs from activated CD4 T cells, and stain-
ing for Foxp3 involved fixation and permeabilization, thus it was
necessary to find an additional marker for the identification of
Tregs. It was discovered in 2006 by Seddiki et al. that the IL7Rα

(CD127) is expressed at low to intermediate levels on the surface
of Tregs and the combination of CD25+ CD127lo can be used
to distinguish Treg from other CD4 subsets; CD25+ CD127low
Tregs contain high amounts of Foxp3 and can suppress immune
responses in vitro (51, 52).

Tregs IN HIV INFECTION
Regulatory T cells have been associated with several roles in HIV
infection, which may occur at different times during the infection
process and may be affected by ongoing therapy. The negative roles
of Tregs in HIV infection include inhibitory effects on effector T
cells during early infection (53); may serve as possible targets for
HIV replication (54); and may have the ability to suppress HIV-
specific responses that can lead to inhibition of T cell responses to
HIV and increase viral persistence, leading to immune exhaustion
(55, 56). Possible beneficial roles of Tregs may be their ability to
reduce immune activation (57–59), particularly in situations of
increased lipopolysaccharide (LPS) concentrations (60), and this
restriction of activation of CD4 T cells could limit their loss.

A subset of Tregs can express CCR5, at a level comparable
to other conventional CD4 T cells (Zaunders et al. unpublished
data), which makes them susceptible to HIV infection (61–63).
Naïve Tregs (nTregs) are able to upregulate CCR5 and CXCR4
following TCR stimulation, and when compared to conventional
effector T helper cells, Tregs are less susceptible to HIV R5 strain

Frontiers in Immunology | T Cell Biology January 2015 | Volume 5 | Article 681 | 2

http://www.frontiersin.org/T_Cell_Biology
http://www.frontiersin.org/T_Cell_Biology/archive


Phetsouphanh et al. Treg and Tfh in HIV infection

but more susceptible to X4 strain in vitro (61). However, it is
doubtful whether Tregs are major targets of HIV in vivo due to the
small absolute number of CCR5+Tregs [approximately 20 cells/µl
in peripheral blood; (Zaunders et al. unpublished data)], and the
relatively small amount of HIV DNA found in Tregs from HIV+
subjects reflects this (63). Rather the majority of Tregs may serve
a role in inhibiting viral replication in other target CD4 T cells
during early infection, which may assist in preventing the initial
spread of the virus from the mucosal sites to lymph nodes (64, 65).

Despite evidence of some Tregs being infected, their suppressive
function is largely retained in chronic progressive HIV-infection,
originally shown through depletion experiments (53, 55, 57, 66),
but more recently through analysis of the function of purified
Tregs (67, 68). However, in one study of a small number of HIV+
subjects with immune reconstitution disease following antiretro-
viral therapy (ART), Tregs exhibited reduced suppression, and at
the same time, responder cells from the same patients were less
able to be suppressed by Tregs from healthy controls, suggesting
overall impairment of Treg suppression (69).

During chronic HIV infection, the absolute Treg numbers in
peripheral blood declined, but the proportion of Tregs among
CD4 T cells is increased, regardless of the phenotype that was used
(54, 70). This suggests that there is relative resistance of Tregs to the
cell-depleting effects of HIV, compared to other CD4 T cell sub-
sets. In one study, there was a relatively low proportion of Tregs
in HIV+ EC that correlated with slightly higher T cell activation
(71), but in an earlier study, no such difference had been found
(18, 72). Other studies have shown that absolute numbers of Tregs
in LTNP was similar to progressors, but frequencies were much
lower than uninfected controls (62, 67, 73).

Accumulation of Tregs relative to conventional CD4 T cells
during HIV infection could be explained by several mechanisms,
which may include an increase in the proportion of CD25+
FoxP3+ cells regressing the thymus in HIV-infected individu-
als (74–76). Second, preferential survival and proliferation of
Tregs may result from decreased sensitivity to TCR re-stimulation
compared to non-Tregs, and a substantial resistance to activation-
induced cell death (77). It has also been shown that exposure of
Tregs to HIV-gp120 promoted their survival via a cAMP depen-
dent pathway (78), inhibited Treg apoptosis via up-regulation of
the anti-apoptotic protein Bcl-2 (79), as well as accumulation of
Tregs in peripheral and lymphoid tissues (80). Furthermore, there
is an increase in Ki67 (a cell cycle marker) expression in circulating
Tregs from untreated, chronically infected patients prior to under-
going ART (81, 82). Third, there may be increased conversion of
peripheral naïve CD4 T cells into induced Treg phenotypes. Plas-
macytoid dendritic cells (pDCs) represent a small proportion of
dendritic cells (DCs) (0.2–0.8% of PBMCs) (83) that have been
identified as the main subset of DCs that have the ability to convert
allogeneic non-Tregs into CD25+ FoxP3+Tregs, when exposed to
HIV (84). Several studies have shown positive correlations between
pDCs and Treg percentages post-therapy (83, 85, Phetsouphanh
et al. unpublished data), and indicates that pDCs may play a role
in the genesis of peripheral Tregs. Possible reasons for this include
(a) development of semi-mature mDCs through HIV interac-
tion that leads to stimulation and proliferation of Tregs (86),
which also occurs in SIV infection (87); (b) HIV-stimulated pDCs

could induce Treg proliferation by producing indoleamine-2,3-
dioxygenase (IDO), and Tregs induced by pDCs have been shown
to inhibit maturation of bystander conventional mDCs (84, 88).

ROLE OF CD39 AND DISEASE PROGRESSION DURING HIV-1
INFECTION
Two ectoenzymes: CD39 [ecto-nucleoside triphosphate diphos-
phohydrolase (E-NTPDase)] and CD73 [5′-nucleotidase (5′-NT)]
involved in catabolism of extracellular adenosine triphosphate
(ATP) have recently been shown to be highly expressed on Tregs
in mice, whereas, in humans only CD39 is present and is highly
enriched in antigen-specific Tregs (89–91). High levels of extra-
cellular ATP indicate tissue destruction and inflammation. The
presence of extracellular ATP can be sensed by purinergic recep-
tors. CD39 can hydrolyze ATP or adenosine diphosphate (ADP) to
adenosine monophosphate (AMP) and CD73 can further catabo-
lize AMP to adenosine. Removal of extracellular ATP by CD39
may allow Tregs to migrate to inflamed sites and permit Treg
cells to quench ATP-driven pro-inflammatory processes in mul-
tiple cell types, in particular, ATP-driven DC maturation. The
immunomodulatory effects of ATP removal by CD39 is further
enhanced by the generation of adenosine, which binds to A2A
adenosine receptor (A2AR) and elicits inhibitory functions of DCs
as well as activated T cells (62, 92). This mechanism is widely
believed to be important in the observed immunological tolerance
of tumors (93).

A consistent feature of Tregs in HIV infections is that they
express high levels of CD39, and this high level remains unaltered
even with therapeutic interventions (62, 82). Elevated CD39+
Treg frequencies positively correlate with plasma viral load and
negatively with CD4 recovery (94, 95). Nikolova et al. demon-
strated that a genetic variant of the CD39 gene ENTPD1 (ecto-
nucleoside triphosphate diphosphohydrolase 1) was associated
with lower expressions of the CD39 protein, and this led to a
slower progression to AIDS (95). High frequencies of CD39+
HIV-specific Tregs were identified in HIV-infected individuals pre-
treatment, and low frequencies of CD39−HIV-specific non-Tregs
were associated with higher viral load (91). Additionally, block-
ing of CD39 via monoclonal antibodies eliminated Treg-mediated
suppression of CD8+ cytokine production when stimulated with
Gag (95). Taking together, CD39+ Tregs may be critical for
the inhibition of T-cell associated immune responses, and may
control HIV-induced T cell activation, which may reduce HIV
replication (91, 96).

Overall, then HIV-1 infection is associated in general with a
modest increase in Tregs relative to the conventional CD4 T cells
that they normally regulate, and, if anything, may be more active
than normal.

T FOLLICULAR HELPER CELLS AND MECHANISMS OF ACTION
T follicular helper cells provide help to B-cells in GCs of secondary
lymphoid organs and are crucial for GC formation, immunoglob-
ulin class-switch recombination, somatic hyper-mutation, and dif-
ferentiation of B-cells into long-lived memory B-cells and plasma
cells (97). Tfh cells are central to the generation of efficient neutral-
izing and non-neutralizing antibody responses in HIV infection
and will be essential in generating an effective vaccine (98, 99).
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T follicular helper cells express high levels of surface mark-
ers program death-1 (PD-1) and chemokine CXC receptor 5
(CXCR5), which make them phenotypically distinct from other
T helper cell lineages and from peripheral CXCR5+ cells with
helper activity for B-cells in vitro (as discussed below) (97, 100).
However, Tfh cells’ identity as a separate lineage of T helper cells
was established when B-cell lymphoma 6 (Bcl-6) was discov-
ered to be necessary and sufficient to drive their differentiation
(101, 102).

Naïve CD4 T cells’ multi-step differentiation toward Tfh cells
begins with antigen-presenting DCs in the T cell zone (103), stimu-
lating Tfh through TCR, and costimulatory CD28 and ICOS (104).
Secretion of IL-6 by DCs serves as a primary signal for the induc-
tion of Bcl-6 expression in CD4 T cells in a STAT3-dependent
manner, which subsequently drives the expression of Tfh cell
signature genes critical for T cell: B-cell interaction, including
Cxcr5, Icos, Pdcd1, Sh2d1a, and Cd40l (105). Another DC secreted
cytokine IL-27 induces the expression of transcription factor c-
Maf, which cooperates with Bcl6 to enhance the expression of the
above Tfh associated genes and induces IL-21 production (106).
IL-21 acts to promote Tfh cell differentiation and maintain Tfh
cells, probably directly, as well as via its role in inducing Bcl-6
expression and differentiation of GC B-cells, which in turn rein-
force Tfh differentiation (107–112). During this process, IL-21 can
also induce the expression of B lymphocyte-induced maturation
protein 1 (Blimp-1), which is required for the switch from GC
B-cells to plasma cells, and activation-induced cytidine deaminase
(AID), which is required for class switched recombination (CSR)
(112, 113).

T follicular helper differentiation and activity may be regulated
at several levels. OX40 (CD134) signaling promotes expression of
transcription IRF4 that may cooperate with Bcl6 to maintain Tfh
cells (114, 115). High levels of PD-1 on Tfh cells binding to PD-L1
on B-cells provides inhibitory signal to Tfh (116–118). IL-2 sig-
naling prevents Tfh cell differentiation by activating STAT5, which
subsequently induces Blimp-1, which represses Bcl6 (119, 120),
whereas signaling by interferons or IL-12 may induce T-bet, which
complexes with Bcl6 to preemptively repress Blimp-1 (105, 121).
Tfh cell differentiation is also reportedly suppressed by CD8+ reg-
ulatory cells (122), plasma cells (123), but positively regulated by
available antigen presentation (103, 124).

FOLLICULAR Tregs
Follicular Tregs (Tfr) cells were first described as a subset of Tregs
that derive from Foxp3+ thymic Tregs and directly repress Tfh
cell proliferation and numbers in the GC (111, 125, 126). Tfr
and Tfh cells share differentiation and regulation mechanisms,
including up-regulation of Bcl6, which instructs the expression
of CXCR5, PD-1, and ICOS, and requires CD28 and SAP signal-
ing, as in Tfh cells (111, 125). PD-1/PD-L1 signaling negatively
regulates Tfr cells, not only their expansion but also their sup-
pressive ability (127), although the actual number of Tfr in lymph
nodes is very small relative to Tfh, in either non-human primate or
human lymph nodes (Xu et al. unpublished data). Circulating Tfr,
CXCR5+ICOS+Foxp3+ CD4 T cells, have also been described
(127). However, whether these cells in peripheral blood have truly
come out of a GC reaction and whether they will migrate back to

the GC upon recall stimulation needs to be further investigated,
to classify them as a distinct Treg subset.

CIRCULATING Tfh-LIKE CELLS
A subset of circulating memory CD4 T cells bearing the phenotype
of CXCR5+, and more stringently CCR7lo, PD-1+, and ICOS+,
have been termed “circulating Tfh,”“blood Tfh,”“peripheral Tfh,”
or“memory Tfh”cells and are now being intensively studied (128).
This reflects the need for surrogate biomarkers in the periphery
to correlate with the number of bona fide Tfh cells in lymphoid
tissue (129, 130). Whether circulating CXCR5+Tfh-like cells truly
represent the memory form of Tfh cells is controversial, although
most current evidence suggests that is the case.

First, CXCR5 and PD-1 are stably expressed on these cells rather
than a transient response to activation (131). Second, at least a sub-
population of blood CXCR5+CD4 T cells are highly functional in
helping B-cells to survive, to differentiate into plasmablasts, and to
produce class switched antibodies upon stimulation in vitro or in
response to vaccination in vivo and this B-cell help is mediated by
up-regulation of CD40L or ICOS, and secretion of large amount
of IL-21 (130–132). Third, it has been demonstrated in mice that
blood CXCR5+ CD4 T cell differentiation is dependent on Bcl6
and ICOS, but not SAP, suggesting that circulating CXCR5+ CD4
T cells are precursors of GC Tfh cells (128). Finally, it has been
demonstrated in mice that Tfh cells could revert to memory cells
in the absence of antigen and could differentiate into conventional
effector cells or Tfh cells upon recall (133, 134). However, blood
c-Tfh-like cells and Tfh cells in lymphoid tissue are clearly pheno-
typically different, particularly with respect to expression of PD-1
and Bcl6 ex vivo (135, 136). Recent RNA sequence data also showed
that a subset of blood CXCR5+, with the highest helper activity
for B-cells in vitro, exhibited a gene expression profile more closely
related to non-Tfh CD4 T cells than Tfh cells in tonsil (100). Fur-
ther investigation is required to harmonize the observations and
understand the relationship between Tfh cells in lymphoid tissue
and different subsets of blood CXCR5+ CD4 T cells.

Tfh IN HIV INFECTION
In recent years, Tfh cells have been studied intensively in the con-
text of acquired immunodeficiency such as SIV/HIV infection.
Early in the 1990s, HIV-1/SIV RNAs had been detected by in situ
hybridization at high concentrations in the lymph node GCs (20,
21, 137–139). Follicular dendritic cells (FDCs) have been recog-
nized as a major reservoir for virus in lymphoid tissues, facilitating
infection of CD4 T cells (140, 141). However, direct evidence for
Tfh cells harboring HIV/SIV DNA was only available in the last
2 years (135, 142, 143). Small numbers of Tfh cells were found
to be productively infected (135) and replication competent virus
could be isolated from infected Tfh cells (143), indicating that Tfh
cells are not only a major target of HIV/SIV infection but also a
significant CD4 compartment for viral replication and produc-
tion. This was paradoxical as Tfh cells express very low levels of
CCR5 and other HIV/SIV entry coreceptors (135), but they were
infected with HIV/SIV at higher or comparable levels, even at a
very early stage of infection (135, 143).

More surprisingly, despite being infected with the virus, both
cell number and relative percentage of Tfh cells increased during
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the chronic phase of HIV or SIV infection (135, 142–145). The
frequency of Tfh cells correlated with plasma viral load, which
suggests that Tfh may be a source of circulating virus (145). The
expansion of Tfh cells also correlates positively with the frequency
of GC B-cells and antibody production (143, 145). Aberrant Tfh
cell expansion is associated with B-cell abnormalities such as poly-
clonal B-cell activation (146), hypergammaglobulinemia (142,
147), and B-cell driven lymphadenopathy (99, 148, 149). In con-
trast, broadly neutralizing antibodies (bNAbs) specific for HIV
occur very rarely in natural infection (150). bNAbs exhibit unusu-
ally high levels of affinity maturation, a result of somatic hyper-
mutation (151). Although this was thought to be a by-product of
persistent infection, an optimal GC reaction may be required for
B-cells to undergo multiple rounds of mutation and selection.

The underlying mechanisms that lead to abnormal GC B-cell
responses and antibody production caused by Tfh cell expansion
are not fully understood, but at least one mechanism has been pro-
posed. During HIV infection, PD-L1 levels on GC B-cells, but not
in memory B-cells, were elevated. Increased PD-1/PD-L1 signaling
between Tfh and GC B-cells results in reduction of ICOS expres-
sion, which in turn affects downstream IL-21 secretion (118). Since
IL-21 is required for GC B-cells survival and differentiation into
long-lived plasma cells, GC B-cells receiving inadequate help from
Tfh cells may fail to function optimally.

cTfh-like cells, irrespective of how they were defined, were
reported to decrease in treatment naïve HIV+ patients (100, 152).
This might be a result of CXCR5 internalization in response to ele-
vated serum CXCL13 levels in untreated patients (100) and ART
was able to normalize the frequency of cTfh-like cells (100). Such
observations are in contrast to the majority of scenarios in pri-
mary immunodeficiencies and autoimmune diseases, where blood
CXCR5+ CD4 T cell frequencies decrease or increase along with
Tfh cells in lymphoid tissue (129, 153). This observation indi-
cates that, if the circulating CXCR5+ CD4 T cells are indeed the
memory form of Tfh cells, or traffic out of lymphoid tissue in
autoimmune conditions, HIV infection may alter the pattern of
Tfh cell trafficking.

The ability of cTfh-like cells’ to help B-cells in vitro is compro-
mised, in at least a proportion of HIV+ patients (100, 152). In one
report, PD-1+CXCR3−CXCR5+CD4 T cells in peripheral blood
positively correlated with bNAb development in HIV+ donors
(131), whereas in another report no such correlation was found
(100). This discrepancy likely arises from differences in patient
samples and cell subsets studied.

Treg AND Tfh IN TISSUES
An accumulation of Tregs in gut mucosa and lymphoid tissues has
been reported in HIV infection (64, 154). Tregs express the lymph
node homing marker CD62L (155, 156) and gut homing integrins
α4β7 (157), although the proportion of α4β7+ cells is relatively
low, typically around 10% of Tregs (Zaunders et al. unpublished
data). The expression of these receptors increases in Tregs follow-
ing HIV-1 exposure in vitro (80). This may explain the accumula-
tion of Tregs in lymphoid and mucosal tissues, where Treg frequen-
cies are much higher than peripheral blood (62, Xu et al. unpub-
lished data). Characteristic molecules such as FoxP3, cytotoxic T
lymphocyte antigen 4 (CTLA-4), glucocorticoid-induced-TNFR

family related receptor (GITR), and CD25, have been shown to be
overexpressed on Tregs in tonsil and lamina propria of duodenal
mucosa of untreated patients compared to treated (64, 154).

Other functional Treg markers such as IDO, TGF-β, and CD80
were also markedly increased in tonsillar tissue of untreated
patients (154). Furthermore, the prevalence of Treg correlated bet-
ter with viral load in tissues compared to plasma viremia (158).
GALT also represents a major site of HIV replication and CD4 T
cell depletion (96, 159, 160). HIV infection leads to a loss in Th17
cells that are vital for mucosal immunity against other pathogens,
which may play a role in the increased microbial translocation
across the gastrointestinal mucosa leading to systemic immune
activation (161, 162). A relative increase in Tregs may play a
role in aggravating this effect by inhibiting HIV-specific immune
responses in the GALT (163, 164).

There is evidence that Tregs can enter GCs in vivo, and suppress
CD4 T cell help for B-cells in vitro (165) and also directly suppress
B-cells (166). The reported mechanism required cell contact, con-
sistent with up-regulation of CXCR5 on Tregs activated in vitro
and chemotaxis directed by CXCL13. Furthermore, in one study,
it was shown that Treg suppression of GC reactions in vivo could
be counteracted by treatment of mice with antibodies to GITR,
TGF-β, or anti-IL-10 (167). As detailed above, there has now been
described a small subset of follicular CD4 T regulatory cells, Tfr,
which express both Bcl-6 and Foxp3 and exhibit suppressive activ-
ity (111, 125, 126). However, these cells appear to be generated
during the course of a GC reaction (134), and also may enter the
circulation as long-lived memory cells (127, 134). Therefore, these
cells may represent a potent feedback mechanism, but it is unclear
whether they would normally regulate the conditions during HIV
or SIV infection that drive lymph node hyperplasia. Generalized T
cell activation during HIV or SIV infection occurs in the T cell areas
and regulation of the initial CD4 activation, prior to expression
of Bcl-6 and CXCR5, is more likely to be mediated by canonical
Tregs.

It has been reported separately that Tregs and Tfh are both
increased in lymph nodes in HIV or SIV infection, with the latter
possibly showing greater increases, as detailed above, but direct
quantitation of both subsets within the same tissue during HIV
infection has not been documented. Xu et al. recently studied
T cells from lymphoid tissue using fine needle aspiration (FNA)
(135) in pigtail macaques. This technique has now been applied to
lymph nodes in HIV-infected and uninfected human subjects and
it was confirmed that the ratio of Treg to Tfh was <2:1 in lymph
node cells from HIV-infected subjects, but was 30:1 in uninfected
subjects (Xu et al. unpublished data).

An important consideration is how the increase in Tfh is main-
tained over such long periods of time, probably years. The lifespan
of individual Tfh cells is unknown, although, where studied, they
exhibit low levels of Ki67 and are generally not prone to spon-
taneous apoptosis (142, Xu and Zaunders, unpublished data).
Similarly the lifespan of individual GCs is not clear, since they
begin to regress by day 14 after primary vaccination in a mouse
model and do not greatly increase again with secondary challenge
(168), although some studies have reported that GCs can be long
lasting in mice, possibly up to 180 days (169, 170). One possibility
for long-term elevation of Tfh cell numbers in HIV-1 infection
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could be due to their own success, if they help generate antibodies
that put pressure on the virus, which causes mutations in gp120,
which in turn generates neo-antigens, and which in turn generate
further immune responses. A striking feature of HIV-1 infection is
the continual generation of envelope variants within each patient
(171), and later it was found that neutralizing antibody responses
were associated with sequential escape mutations (172). Therefore,
much more work is required to understand the direct interactions
between Tfh and Tregs, how GCs normally regress at the end of
an immune response and why this does not happen in HIV-1
infection. Also, the lack of a strictly parallel increase of Tregs and
Tfh cells in lymph nodes may indicate that other factors such as
cytokines or transcription factors can impact separately on the
dynamics of Treg and Tfh in HIV infection (Figure 1).

ROLE OF CYTOKINES
IL-6 is a pleiotropic cytokine produced by myeloid cells (mono-
cytes, macrophages, and DCs) (173, 174). It binds to a receptor
complex consisting of soluble/transmembrane IL-6 receptor (IL-
6R) and the signal-transducing receptor subunit gp130, binding
of the receptor potently activates signal transducers and activa-
tors of transcription 3 (STAT3), and to a minor extent STAT1
(175, 176). Plasma IL-6 was found to be elevated in HIV infected
patients (177) and SIV-infected macaques, but not in SIV-infected
African green monkeys, the natural host of SIV (142, 178). ART
reduced plasma IL-6 levels, but this reduction never reached lev-
els seen in uninfected donors (179). IL-6 levels in lymph nodes,
in contrast, seem to be high in both uninfected and HIV infected
samples (174, 179), although it was reported that IL-6 mRNA levels

FIGURE 1 | Expansion ofTfh in lymphoid tissue following HIV-1 infection, associated with increases in cytokines and viral and bacterial products.
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were increased in lymph nodes from macaques as early as 7 days
post SIV infection (180). However, HIV itself does not seem to
be the direct driver of IL-6 production (179, 181, 182). Instead,
LPS alone markedly induced IL-6 production at low concentra-
tions (181, 182). Increased plasma LPS is not only a property of
pathogenic SIV infection but has also been reported in progres-
sive HIV infection (159). Again, ART reduced plasma LPS level
significantly but failed to reach levels found in uninfected donors
(159). Therefore, persistently high levels of LPS despite ART may
result in persistently high levels of IL-6, and subsequently Tfh cell
accumulation in chronic HIV/SIV infection (183).

Transforming growth factor-β is a binary cytokine in CD4 T
cell induction. Together with IL-2, it stimulates the differentiation
of peripheral Tregs via STAT5; with IL-6, it inhibits the gener-
ation of peripheral Tregs but induces the development of Th17
cells via STAT3 (184, 185). The reciprocal relationship between
Th17 cells and Tregs has been well documented (184, 186). How-
ever, the relationship between Tfh cells and Tregs remains elusive.
Oestrich et al. showed that in IL-2 limiting conditions Th1 cells
can upregulate BCL-6, which converts these cells into Tfh-like
cells with similar gene profile including up-regulation of CXCR5
(121). High levels of exogenous IL-2 have been reported in HIV
infected subjects with high viral load (187, 188). As Tregs are
known to mop up IL-2 for homeostatic proliferation, this may
explain both the accumulation of Tregs and expansion of Tfh in
tissue. Tsuji et al. reported on the generation of Tfh cells from
Foxp3+ Tregs in gut Peyer’s patches, but not in spleen or lymph
nodes (189). However, more work is required to confirm this
finding.

Regulatory T cells and Tfh share an extremely important prop-
erty, namely, low expression of the IL-7 receptor alpha chain,
CD127 (51, 135), which distinguishes them homeostatically from
the vast majority of CD4 T cells. This feature may be highly rele-
vant to their ascendency during chronic HIV-1 infection if damage
to lymph nodes (40) affects IL-7 signaling.

ROLE OF TRANSCRIPTION FACTORS
Bcl-6 and BLIMP-1 are key antagonistic transcriptional regulators
of effector and memory differentiation in CD8+ and CD4 T cells,
but were first identified as critical regulators of B-cell matura-
tion and memory formation, determining cell fate decisions (101,
190). Bcl-6 and BLIMP-1 have been studied in HIV infection, and
BLIMP-1 is highly expressed at both the mRNA and protein levels
in CD4 T cells in patients with chronic HIV infection compared to
LTNP (191). The lower expression of BLIMP-1 in CD4 T cells from
LTNP correlates with lower levels of exhaustion in CD4 T cells
found in LTNP (191). The expression of BLIMP-1 can be modu-
lated at the translational level by microRNA-mir9 and Seddiki et al.
demonstrated that BLIMP-1 levels decreased following treatment
with pre-mir-9, while IL-2 expression was increased. Levels of mir-
9 were also found to be elevated in LTNP compared to chronically
infected subjects (191, 192). BLIMP-1 has also been found to be
required for effector Treg differentiation and is essential for IL-10
production (193). Therefore, the level of BLIMP-1 expression in
Tregs in chronically infected subjects and LTNP should be inves-
tigated to further delineate the importance of this transcription
factor in HIV infection. Also, the antagonistic effects of Bcl-6 and

BLIMP-1 may present a therapeutic target for the manipulation of
T helper subset fate decision.

Tregs/Tfh AS POTENTIAL TARGETS OF HIV
IMMUNOTHERAPY
As Tregs and Tfh cells play crucial roles in homeostatic immune
responses and the dysregulation of these cells due to HIV-infection
causes severe morbidity, therefore Treg and Tfh cells are of inter-
est as potential targets for immunotherapeutic intervention. Many
strategies have been implemented to influence the frequency and
function of these cells, such as inhibition of specific enzymes, mon-
oclonal antibody (mAb) therapy, and cytokine based clinical trials,
as detailed below.

The enzymatic activity of IDO has the ability to influence the
Th17/Treg balance, and can enhance the suppressive activity of
Tregs. Thus, modulation of IDO in disease is of therapeutic inter-
est. In an animal model of HIV-1 encephalitis, inhibition of IDO
via 1-methyl-d-tryptophanh (1-MT) enhances the generation of
HIV-specific cytotoxic T cells, which led to the destruction of
macrophages in the brain (194). In other observations, IDO seems
to synergize with therapy to control viral replication in lymph
nodes and plasma of macaques infected with SIV (195). The inhi-
bition of both IDO and CTLA4 in combination has been shown to
transiently reduce the kynurenine/tryptophan ratio, increase Th1
proliferation and block Treg suppressive functions. A side effect
of this combination therapy, however, resulted in fulminant dia-
betes with severe infiltration of lymphocytes in the pancreas (196).
Taking these previous findings into consideration, potential IDO
inhibitors need to be studied intensively in the context of HIV
therapy.

Program death-1 is an important marker that modulates the
inhibitory pathway, which regulates the T-cell receptor signaling
(197). This has been studied intensively in chronic viral infec-
tions (198–201). PD-1 is expressed at high levels on HIV-specific
T cells during HIV infection, and correlates with plasma viral
load, reduced cytokine production, and impedes proliferation of
HIV-specific CD8+ T cells (202). PD-1 blockade enhanced the
capacity of HIV-specific CD8+ T cells to survive and prolifer-
ate during infection, as well as intensifying HIV-specific CD8+ T
cells responses (202). PD-1/PD-ligand axis enables the conversion
of Th1 cells into Tregs, thus by blocking PD-1 with a mAb may
aid the initial response to HIV in early infection (203). Consistent
with a role for PD-1/PD-L1 and PD-L2 in Tfh function (116), it
has been shown that PD-1 blockage on PD-1 high Tfh cells co-
cultured with B-cells significantly inhibits IgG production (204).
As Tfh cells accumulate in HIV infection and these cells predispose
to B-cell related morbidities, PD-1 blockade could be considered
as potential therapeutic intervention.

Cytotoxic T lymphocyte antigen 4 (CD152) is another target
for therapeutic intervention. The administration of anti-CTLA-4
blocking antibodies was not detrimental and had beneficial viro-
logical effects in SIV-infected ART treated macaques. Decreases in
IDO, TGF-β, and viral RNA expression in tissues were observed
(205). However, in untreated SIV infection, CTLA-4 inhibition
did not restore SIV-specific immune responses and there was an
increase in viral replication and CD4 depletion, particularly at
mucosal sites (206). It was found that even at the earliest stages of
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primary HIV-1 infection,Gag-specific CD4 T cells were dominated
by expression of CLTA-4 (18), and it was found that in vitro block-
ade of CTLA-4 significantly increased CD4 T cell proliferation
and improved cytokine secretion from HIV-specific CD4 T cells
responding to cognate antigen (207). It has also been shown that
combination blockade of PD-1 and CTLA-4 reduced Treg activ-
ity in cancer (208). However, whether the same approach in HIV
infection would yield similar results, remains to be ascertained.

Cytokine based clinical trials have been implemented in the
past to facilitate the restoration of T cells in HIV infection. IL-2 is
a critical cytokine needed as a strong stimulatory signal for Treg
development and function (209, 210). IL-2 was the first candidate
cytokine used as an immunotherapeutic agent to boost total CD4
cell counts, although one of the benchmarks of treatment was
an increase of CD4+CD25+ T cells, which potentially included
Treg cells. Two major phase III clinical trials were conducted, but
despite substantial increases in CD4 T cell count, IL-2 in addi-
tion to ART yielded no clinical benefit compared to ART alone,
in either study (211). These trials showed predominant increases
in CD4+CD25+CD127lowFoxP3+ cells, and these cells exhib-
ited molecular and suppressive functions such as those found in
Tregs (75). However, there was also a lack of protective effect of IL-
2 expanded CD4 T cells on HIV disease progression. In addition,
there were potential deleterious effects observed in treated patients
relating to cardiovascular and inflammatory events (212). A pos-
sible explanation for this is the expansion of suppressive Tregs
with truncated STAT5 expression, rendering these IL-2 expanded
cells ineffective in protecting against disease progression (96,
212). Thus, other trials using other immunological-based com-
pounds must carefully monitor the phenotype and function of the
expanded CD4 T cells.

IL-7 immunotherapy was also developed for HIV infection, first
conducted in animal models, where increases in CD4 T cell counts
were observed in the absence of immune activation (213, 214).
Contrary to IL-2 based immunotherapy, administration of IL-7
resulted in the expansion of CD4 T cells without increasing the
frequency of immune-suppressive Tregs, consistent with the low
levels of the IL-7 receptor (CD127) expressed on Tregs (51). Also,
in one study, in vitro incubation in the presence of IL-7 reduced
the suppressive activity of Tregs isolated from HIV+ subjects (69),
suggesting that IL-7 therapy may have another effect to further
boost conventional T cell responses. Due to these differences in
responsiveness to IL-7, immunomodulation using various strate-
gies involving either blocking of the receptor to suppress responses
or addition of IL-7 to boost responses is currently being investi-
gated in a number of other clinical situations, including autoim-
munity, cancer vaccines, and transplant tolerance [reviewed in
Ref. (215)].

IL-21 is a pleiotropic cytokine that is important for T cell and
B-cell proliferation and maintenance (216) and is produced most
abundantly by Th17, Tfh, and natural killer T (NKT) cells. As
discussed above, Tfh cells require this cytokine to enhance pro-
liferation and function. Previous animal models have also shown
that IL-21 had stimulatory effects on NK cells and CD8+ T cells,
and this effect leads to anti-tumor activity (217). Now, IL-21 has
been used in phase I and II trials in cancer and early results demon-
strated that recombinant IL-21 administration has an acceptable

safety profile and has demonstrated encouraging activity in early
phase renal cell carcinoma and melanoma trials (218). This makes
IL-21 a potential agent for Treg/Tfh modulation, as IL-21 has
inhibitory effects on Treg differentiation via the reduction of IL-2
production from other CD4 T cells (219). Since Tfh cells require
IL-21 for homeostatic proliferation and are suited to function in
low IL-2 conditions, strategies to modulate IL-21 signaling could
be used to modulate Treg/Tfh dynamics in HIV infection.

CONCLUSION
HIV-1 infection leads to chronic activation of T cells, B-cells, and
myeloid lineage cells within lymphoid tissue, as a result of the
combined effects of the host immune response, the increased pres-
ence of viral and bacterial products that drive inflammation, and
homeostatic processes that fail to bring inflammation under con-
trol. There are increases in the number of both Tregs and Tfh, but
in the face of continuing viral replication, the feedback regulation
by Tregs does not prevent the florid hyperplasia associated with
increased numbers of Tfh and GC B-cells. ART may ameliorate
the lymphocyte activation mostly, but not completely. Therapeu-
tic strategies aimed at limiting Tfh activity, or modulating Tregs,
should be investigated for potential benefits to boost CD4 recon-
stitution without unduly boosting Tfh and B-cell hyper-reactivity,
or Treg activity.

However, the aim of therapeutic interventions will require very
careful consideration due to the complexity of the roles of Tfh and
Tregs in pathogenesis. In the case of Tfh, generation of neutralizing
antibodies through directed Tfh and B-cell vaccination is a highly
desirable outcome (98, 99), but this must be balanced by avoid-
ing excessively increased activation of CD4 T cells and additional
GCs as reservoirs of HIV. Similarly, increased Treg activity under
HAART may be advantageous in reducing atherosclerosis (220)
given the known increased risk of cardiovascular disease in HIV
patients, associated with increased inflammation (221), but must
be balanced against a need for improved immune reconstitution.
Only very detailed studies of these processes will allow rational
development of optimal therapy.
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