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Intravenous immunoglobulin (IVIG) is used as replacement therapy in patients with anti-
body deficiencies and at higher dosages in immune-mediated disorders. Although different
mechanisms have been described in vitro, the in vivo immunomodulatory effects of IVIG are
poorly understood. Different studies have suggested that IVIG modulates B-cell functions
as activation, proliferation, and apoptosis. Recently, it was shown that IVIG induces in vitro
B-cell unresponsiveness similar to anergy. In accord with this, we recently reported that
IVIG therapy in patients affected by common variable immunodeficiency (CVID) interferes
in vivo with the B-cell receptor (BCR) signaling by increasing constitutive ERK activation and
by reducing the phosphorylated ERK increment induced by BCR cross-linking. Moreover,
we observed that IVIG induces in CVID patients an increase of circulating CD21low B-cells,
an unusual population of anergic-like B-cells prone to apoptosis.Therefore, IVIG at replace-
ment dose in vivo could prime B-cells to an anergic, apoptotic program. Here, we discuss
these recent findings, which may improve our understanding of the immunomodulatory
effects of IVIG, individualizing single involved molecules for more specific treatments.
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Originally used only in primary and secondary immune deficien-
cies, intravenous immunoglobulin (IVIG), as a safe and efficacious
therapy, has now increasingly been used for the treatment of dif-
ferent autoimmune and systemic inflammatory diseases (1). One
of the most intriguing properties of IVIG preparations is the spec-
trum of interactions with our immune system involving almost all
its components (2). The effects of these interactions [mediated by
both the antigen-binding F(ab′)2 fragment and the Fc fragment
of the IgG molecule] vary from one disease to another. In addi-
tion to antibodies against pathogens, a broad range of naturally
occurring autoantibodies with the capacity to regulate impor-
tant immune functions are present in IVIG. Despite the wide use
of IVIG for immunodeficiencies as well as for various autoim-
mune and inflammatory disorders (indicated and off-label), the
exact mechanisms of their immunomodulation remain not fully
elucidated and somewhat controversial.

IgG antibodies are important for protecting us from microbial
infections, but IgG autoantibodies are also major pathogenetic
factors in several autoimmune diseases that benefit from IVIG
therapy. Typical examples of these conditions are immunothrom-
bocytopenia, autoimmune hemolytic anemia, and chronic inflam-
matory demyelinating polyneuropathy (CIDP). Therefore, the
same class of molecules that promotes pathology in a disease
can also be used as an anti-inflammatory treatment for the very
same disease and this has been referred to as the intravenous IgG
paradox (2).

B lymphocytes, unique cells with an immunoglobulin as a part
of the B-cell receptor (BCR), are capable of interacting with IVIG
in many ways. Our knowledge of these interactions is incomplete
and largely based on in vitro experiments or on animal models,

showing profound influence of IVIG on B-cell functions. The most
important effects of IVIG on B-cells interfere with the fine balance
of negative and positive signals, which maintain an appropriate
B-cell activation threshold, critical for immune tolerance, and
autoreactivity.

IVIG AND B-CELL INHIBITORY RECEPTORS BINDING
Interaction of the BCR with the antigen results in signal transduc-
tion, which leads to the modulation of gene expression, resulting in
activation, anergy, or apoptosis of B-cells. The role of co-receptors
expressed on the B-cell surface is to modulate BCR signaling either
positively or negatively. These co-receptors include the low-affinity
receptor for IgG (FcγRIIb), CD22, and CD72, which negatively
regulate BCR signaling, prevent overstimulation of the B-cells and
are thus called inhibitory BCR co-receptors (3).

It has been shown that IVIG may interact with almost all these
co-receptors significantly influencing B-cell fate.

IgG antibodies are glycoproteins that contain a carbohydrate
moiety attached to each of the asparagine 297 residues in the
two chains of the antibody Fc fragment. This glycan moiety is
an integral structural component of the IgG molecule, forming
part of the scaffold for FcγR binding. In addition, depending on
the variable region sequences, nearly 20% of serum IgG antibod-
ies have a F(ab′)2 fragment-attached N-linked sugar side chain
(4). In 2006, Kaneko et al. for the first time demonstrated that
IgG glycosylation and terminal sialic acid (SA) residues are cru-
cial for IVIG activity in mice (5). Moreover, it was shown that
only the enrichment of terminal SA residues of the Fc, but not
of the F(ab′)2, fragments increased the therapeutic activity of
IVIG (6).

www.frontiersin.org January 2015 | Volume 6 | Article 4 | 1

http://www.frontiersin.org/Immunology
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/about
http://www.frontiersin.org/Journal/10.3389/fimmu.2015.00004/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2015.00004/abstract
http://www.frontiersin.org/people/u/190050
http://loop.frontiersin.org/people/203636/overview
http://www.frontiersin.org/people/u/192910
http://loop.frontiersin.org/people/203627/overview
http://loop.frontiersin.org/people/202828/overview
http://loop.frontiersin.org/people/203604/overview
http://www.frontiersin.org/people/u/122626
mailto:mitmilica@tiscali.it
http://www.frontiersin.org
http://www.frontiersin.org/Primary_Immunodeficiencies/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mitrevski et al. Intravenous immunoglobulin and immunomodulation of B-cell

These effects in B-cells are mostly mediated through the inter-
action of IVIG with CD22, a receptor belonging to the SA – binding
Ig-like lectin (Siglec) superfamily. CD22 has seven immunoglobu-
lin (Ig)-like extracellular domains and a cytoplasmic tail contain-
ing six tyrosines, three of which belong to the ITIM sequences.
Unlike most other proteins from the immunoglobulin super-
family, Siglecs do not bind protein determinants but recognize
exclusively sialylated carbohydrates. Sialylated glycans are usu-
ally absent on microbes but abundant in higher vertebrates and
might therefore provide an important tolerogenic signal. CD22
plays a critical role in establishing signaling thresholds for B-cell
activation. It is the dominant regulator of calcium signaling on
conventional B2 lymphocytes (7). Séïté et al. proved that SA–IVIG
colligation to CD22 promotes apoptosis via inhibiting the cascade
of kinase phosphorylation in mature human tonsil B lymphocytes
and in human Ramos lymphoma B-cell lines by inducing phos-
phorylation of ITIM (8). They also showed that only SA-positive
IgG, but not SA-negative IgG bind to CD22, acting on several BCR-
signaling pathways, including inhibition of the phospholipase
Cγ2 cascade, sustained activation of extracellular signal-regulated
kinases 1/2 (Erk1/2), p38, and down-regulation of PI3K. These
changes are associated with the induction of cyclin-dependent
kinase inhibitor p27Kip1, which inhibits cell-cycle progression at
the G1phase and thus promotes apoptosis (8). Nevertheless, other
authors, using CD22-deficient mice in models of ITP and K/BxN
arthritis, could not demonstrate a role for CD22 in the immediate
anti-inflammatory activity of IVIG (9).

FcγRIIb, another important B-cell inhibitory receptor, is a low-
affinity single-chain receptor that carries an ITIM motif in its
cytoplasmic domain, a hallmark of this inhibitory protein family.
With the exception of T cells and NK cells, FcγRIIb is expressed
on all cells of the immune system, and it is the only classical Fc
receptor on B-cells. It regulates activating signals delivered by
immunocomplexes retained on dendritic cells to the BCR (10).
The inhibitory FcγRIIb on B-cells, by ITIM-dependent regulation
of BCR signaling, is important in maintaining immune tolerance,
thus preventing autoimmune disease. IgG immune complexes
can colligate the FcγRIIb to the BCR, leading to inhibition of
BCR-induced Ca2+ signals and cellular proliferation (11). It was
demonstrated that FcγRIIb represents a checkpoint of human self-
tolerance, probably during late stages of B-cell maturation (12).
It was shown on murine and human cells that FcγRIIb controls
bone marrow plasma cell persistence and apoptosis (13). More-
over, it was found that the isolated cross-linking of FcγRIIb on
B-cells leads to B-cell apoptosis via ITIM- and SHIP-independent
and c-Abl-family kinase-dependent pathways (14).

The study of Samuelsson et al. provided the first evidence that
FcγRIIb is required for IVIG efficacy in mouse ITP (15). Animal
models showed that in vitro and in vivo exposure of B lympho-
cytes from lupus-prone and from healthy mice to IVIG results
in an increased expression of their surface inhibitory FcγRIIb
receptors (16).

Tackenberg et al. found impaired inhibitory FcγRIIb expression
on B-cells in CIDP with upregulation on monocytes and B-cells
after clinically effective IVIG therapy, suggesting that strategies
specifically targeting FcγRIIb might have therapeutic merit in this
immune-mediated peripheral neuropathy (17). This is the first

demonstration that IVIG in vivo results in the upregulation of
FcγRIIB in human B-cells.

Recently, Bouhlal et al. showed that the existence of nat-
ural autoantibodies of IgG isotype directed against the FcγRIII
and FcγRII. Interestingly, the immunopurified anti-FcγIII and
anti-FcγII antibodies isolated from IVIG bind soluble and mem-
brane bound FcR and inhibit rosette formation, suggesting that
in vivo the natural anti FcR antibodies may inhibit the binding of
immunocomplexes to the membrane receptors and interfere with
the Fc-dependent functions (18).

IVIG AND ANTI-IDIOTYPIC ANTIBODY BINDING
Many antibodies to self-antigens are found in IVIG and are
thought to have important role in its immunonodulatory effects.
Some of these self-antigens include the variable domains of other
antibodies and are recognized by anti-idiotypic antibodies (19),
which may bind and neutralize pathogenic autoantibodies. An
additional protective mechanism provided by anti-idiotypic anti-
bodies is mediated through their binding by F(ab′)2 to the surface
IgG or IgM of B-cells, transmitting negative signals and resulting in
the downmodulation of pathogenic autoantibody production and
elimination of potentially autoreactive clones (20, 21). Because
of the small amounts of anti-idiotypic antibody in IVIG, it is
not clear whether this potential mechanism of action of IVIG
is a significant immune-modulating mechanism for autoimmune
and inflammatory disorders. During the last decade, the benefi-
cial effects of IVIG in diverse conditions were improved by using
target-specific IVIG (sIVIG) in vitro and in vivo in animal models
on such conditions as lupus (anti-DNA-idiotype-sIVIG in lupus
mice) or antiphospholipid syndrome (anti-β2GPI-idiotype-sIVIG
in APS mice) as a novel approach to treat different immune-
mediated conditions in a more accurate antigen-specific manner
(22). On a model of rats with experimental autoimmune myasthe-
nia gravis and on blood samples from myasthenia gravis patients,
Fuchs et al. demonstrated that a minor acetylcholine receptor-
specific immunoglobulin fraction present in IVIG is essential for
its suppressive activity (23).

An interesting mechanism of B-cell activation mediated by
IVIG through a superantigen-like binding pattern was shown by
Leucht et al. (24). They demonstrated that the favored Fab VH

germline gene segments bound by IVIG were 3–23 or 3–30/3–30.5,
the most frequently rearranged VH genes among human B-cells.
In a subsequent study, they provided in vivo functional evidence,
in patients with Kawasaki disease, that a subset of IVIG selectively
activated B-cells of the same VH germline origin, confirming the
B-cell superantigen proprieties (25).

IVIG IMMUNOMODULATION OF B-CELL ANTIGEN
PRESENTATION AND ACTIVATION
In order to identify the cell surface molecules recognized by IVIG
on human B-cells, Proulx et al. found that a significant amount
of IVIG was spontaneously internalized by B-cells and inter-
acted with intracellular targets, such as the lysosomal-trafficking
regulator or nucleolin. They showed that IVIG internalization
occurred in a BCR- and FcγR-independent pathway (26). More
recently, the same authors demonstrated in vitro that IVIG in
mice is able to inhibit the B-cell-mediated antigen-specific T cell
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activation following either BCR-dependent or BCR-independent
antigen uptake. This inhibition of antigen presentation could not
be explained by a modulation of MHC II molecules expression
and was shown to occur in an FcγRIIb-independent manner, sug-
gesting that the events responsible for the inhibitory effect occur
at the intracellular level (27).

De Grandmont et al. observed that the addition of IVIG in
culture of CD40L-stimulated B-cells reduced their expansion and
stimulated the differentiation of part of peripheral B lympho-
cytes into IgG-secreting cells (28). The secreted IgGs were reactive
with antigens such as nucleoprotamine, dsDNA, tetanus toxin,
and human IgG F(ab′)2 fragments. Maddur et al. demonstrated
that IVIG in vitro significantly inhibited the activation of BCR-
stimulated B-cells and in a dose-dependent manner inhibited the
proliferation of B-cells mediated by combination of anti-CD40
MAb, IL-21, and CpG (29). On the other hand, Heidt et al. showed
that IVIG in vitro is not capable of directly inhibiting key B-cell
responses, failing to affect the proliferative capacity of both puri-
fied in vitro stimulated B-cells and of autonomously growing B-cell
hybridomas (30).

Thus, as with other immune-modulating activities of IVIG,
these apparently contrasting observations may depend on the
in vitro systems used and the state of activation of the B-cells
exposed to IVIG (21).

An additional relevant mechanism of the immunoregulatory
effects of IVIG in autoimmune disorders acts through the modu-
lation of some toll like receptors (TLR) (31, 32). IVIG in culture,
by using its Fc fraction, inhibits TLR-9 and TLR7-mediated B-cell
activation and suppresses TLR-induced production of proinflam-
matory cytokines. IVIG mimics the effects of MyD88 inhibitor
by suppressing TLR-induced B-cell activation and recruits the
inhibitory SHP-1 phosphatase to regulate TLR-9 activation (33).
Accordingly, Kessel et al. showed that IVIG attenuates the activa-
tion of TLR-9 and decreases secretion of IL-10 and IL-6 in B-cells
from SLE patients (34).

IVIG AND B-CELL ANERGY
Dussault et al. demonstrated on human B-cell lines that
immunomodulation of human B-cells following treatment with
IVIG involves increased phosphorylation of ERK and also Grb2-
associated binder 1 and Akt, thus influencing BCR signaling (35).
Other studies demonstrated that IVIG in vitro induces apoptosis of
human B-cells through a Fas- and caspase-dependent pathway (36,
37). Besides this mechanism J. F. Séité and his group demonstrated
that modulation of ERK activation in B-cells by IVIG ligation with
CD22 is associated with cell-cycle arrest at the G1 phase and B-
cell apoptosis (see above) (8). More recently, they showed that
in vitro IVIG treatment of B-cells renders them refractory to BCR
stimulation, suppresses the PI3K signaling pathway, and induces a
long-term state of tolerance, promoting a program of long-term
functional silencing similar to anergy (38). High-constitutive ERK
phosphorylation is a central feature of murine models of anergy
driven by constant BCR occupancy by antigen (39); in these aner-
gic B-cells, constitutively activated ERK provides a tolerogenic
signal dampening TLR-9 responsiveness (40). We showed that
a subpopulation of human B-cells characterized by the reduced
expression of CD21 (CD21low B-cells) closely resemble murine
anergic B-cells (41). CD21low B-cells are expanded in a subset of

patients with common variable immunodeficiency (CVID) and
in some other immunological disorders and are characterized by
high-constitutive ERK activation (41), low responsiveness to TLR-
9 and BCR stimuli (42, 43), and propensity to apoptosis (44). In
this regard, we observed that IVIG replacement therapy in CVID
patients profoundly affects B-cell homeostasis (41). To investigate
whether IVIG modulates in vivo ERK signaling in B-cells from
CVID patients, we analyzed constitutive and BCR-induced ERK
phosphorylation before and after IVIG infusion. We showed that
unstimulated naive and IgM+ memory B-cells have significantly
increased constitutive ERK activation after IVIG infusion, whereas
BCR-induced activation, expressed as the fold increase respect to
the constitutive ERK level, decreased in these cells (41). More
recent observations from our group showed that IVIG infusion
induces in vivo selective B-cell depletion in CVID patients. This
effect is preceded by a profound modulation of B-cell homeostasis,
where IVIG induces the down-regulation of CD21 expression pro-
moting the generation of anergic-like, apoptosis prone CD21low

B-cells. We found that these newly generated CD21low B-cells
displayed the same peculiar pattern of receptors expressed by
CD21low B-cells present before IVIG, namely, increased FCRL4
and CD11c, and reduced CD62L expression (45).

In addition, these newly generated CD21low B-cells, upon
overnight culture, undergo spontaneous apoptosis. These obser-
vations suggest that IVIG therapy in vivo, even at a replacement
dosage, may influence antibody responses by inducing B-cell
depletion through differentiation into CD21low B-cells that
undergo accelerated apoptosis (45).

Bayry et al. demonstrated that IVIG in vitro at low doses
induced proliferation and immunoglobulin synthesis from B-
cells of CVID patients. It seems that IVIG rectifies the defective
signaling of B-cells normally provided by T cells and delivers T-
independent signaling for B-cells to proliferate (46). Moreover, in
accord with our data, they showed that IVIG at low does induced
the phosphorylation of ERK 1/2, Akt, and p38 MAPK in B-cells of
CVID patients.

In conclusion, all these observations suggest that IVIG therapy
in CVID patients, in particular, in those with autoimmune man-
ifestations, may not only replace the missing antibodies but also
regulate autoimmune and inflammatory responses through the
modulation of B-cell functions (46).

INTERACTIONS WITH B LYMPHOCYTES’ SURVIVAL FACTORS
Intravenous immunoglobulin contains antibodies against many
cytokines (47), but often the physiologic and therapeutic relevance
of these antibodies remains unclear.

In humans, B-cell-activating factor (BAFF) is considered to be
a master regulatory cytokine for B-cell homeostasis. BAFF serum
levels are increased in a variety of B-cell related autoimmune dis-
orders, like systemic lupus erythematosus (48), myasthenia gravis
(49), and rheumatoid arthritis (50).

It was observed that natural antibodies present in IVIG could
functionally neutralize cytokines, such as BAFF and proliferation-
inducing ligand, important for B-cell survival (51). In fact, it was
recently confirmed by two studies that IVIG treatment resulted
in a significant decrease of BAFF serum level in newly diagnosed
patients affected by CIDP, which all had elevated BAFF level before
treatment (52, 53).
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FIGURE 1 | Intravenous immunoglobulin and B-cell interactions. Five
mechanisms of the interactions between IVIG and B-cells are represented.
Point 1: binding of SA–IVIG with the inhibitory receptor CD22 acts on
several BCR-signaling pathways, including sustained activation of Erk1/2,
promoting apoptosis. Point 2: binding of IVIG with the inhibitory receptor
FcγRIIb leads to inhibition of BCR-induced Ca2+ signals and cellular
proliferation. Point 3: anti-idiotypic binding of IVIG with the BCR transmits
negative signals and modulates the production of pathogenic autoantibody.
Point 4: B-cell activation is mediated by IVIG through a superantigen-like
binding pattern. Point 5 : IVIG inhibits TLR-9 and TLR7-mediated B-cell
activation and suppresses TLR-induced production of proinflammatory
cytokines.

CONCLUDING REMARKS
To date, a considerable amount of data on IVIG interactions with
the immune system is available. However, most of them derive
from in vitro or in animal models studies that do not completely
reflect the pathophysiological status in clinical settings. It is there-
fore extremely important to correlate all these data in hand and to
integrate them with in vivo studies on human disease. Moreover,
no one single mechanism is responsible for the effects of IVIG
in autoimmune diseases and immunomodulation on the differ-
ent cells of the immune system should be combined for a better
understanding of the therapeutic effects.

B-cells play probably the most important role in the humoral
immune response that, as demonstrated by the increasing amount
of data, is profoundly affected by IVIG administration. A represen-
tation of some of the interactions of IVIG with B-cells is illustrated
in Figure 1.

Despite many established aspects of IVIG–B-cell interactions,
different other molecular mechanisms remain elusive. Increasing
the knowledge of key molecules involved in the interaction of IVIG
with B-cells may reveal which component of IVIG, whether, for
example, a specific anti-idiotype antibody or an Ig fragment, is
responsible for the immunomodulatory effects. This may provide
the basis for the creation of more specific and tailored therapies
for the different autoimmune diseases.
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