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Hematopoietic stem-cell transplantation (HSCT) is the most potent curative therapy for
many malignant and non-malignant disorders. Unfortunately, a major complication of HSCT
is graft-versus-host disease (GVHD), which is mediated by tissue damage resulting from
the conditioning regimens before the transplantation and the alloreaction of dual immune
components (activated donor T-cells and recipient’s antigen-presenting cells). This tissue
damage leads to the release of alarmins and the triggering of pathogen-recognition recep-
tors that activate the innate immune system and subsequently the adaptive immune
system. Alarmins, which are of endogenous origin, together with the exogenous pathogen-
associated molecular patterns (PAMPs) elicit similar responses of danger signals and
represent the group of damage-associated molecular patterns (DAMPs). Effector cells
of innate and adaptive immunity that are activated by PAMPs or alarmins can secrete
other alarmins and amplify the immune responses. These complex interactions and loops
between alarmins and PAMPs are particularly potent at inducing and then aggravating the
GVHD reaction. In this review, we highlight the role of these tissue damaging molecules
and their signaling pathways. Interestingly, some DAMPs and PAMPs are organ specific
and GVHD-induced and have been shown to be interesting biomarkers. Some of these
molecules may represent potential targets for novel therapeutic approaches.

Keywords: graft-versus-host disease, danger signals, tissue damage, alarmins, pathogen-associated molecular
patterns, damage-associated molecular patterns, innate immunity, biomarkers

INTRODUCTION
Hematopoietic cells that are capable of self-renewing and recon-
stituting all types of blood cells along with allogeneic donor T-cells
can be used to treat numerous malignant and non-malignant
lethal diseases, including leukemias, lymphomas, inherited genetic
diseases, and immune deficiencies. However, the success of allo-
geneic hematopoietic stem-cell transplantation (HSCT) is unfor-
tunately limited by transplant-associated toxicities related to the
applied conditioning regimens and the immunologic consequence
of donor T-cell recognition of recipient alloantigens, which causes
graft-versus-host disease (GVHD). Acute GVHD is characterized
by selective tissue damage to the mucosa, particularly of the skin,
gastrointestinal (GI) tract, and liver. Other tissues and organs such
as the bone marrow, thymus, lungs (1, 2), and brain (3) have also
been shown to be potential GVHD targets. Chronic GVHD not
only targets organs, including the ones mentioned above, but also
can damage the connective tissue and exocrine glands.

The pathogenesis of GVHD can be summarized in three
sequential steps: first, the conditioning regimen damages the tis-
sues, causing production of danger signals, which are detailed in
this review, and pro-inflammatory cytokines such as tumor necro-
sis factor (TNF)-α, interleukin (IL)-1, and IL-6. The culmination
of these events is what the field refers to as the “cytokine storm,”
which activates host antigen-presenting cells (APCs) and the newly
infused donor T-cells. The second phase involves proliferation and
differentiation of donor T-cells in response to host APCs, which

results in rapid intracellular biochemical cascades that induce pro-
duction of T helper (TH) 1, TH17 (for CD4 T-cells), T cytotoxic
(TC) 1, and TC17 cells (for CD8 T-cells) that secrete cytokines such
as interferon (IFN)-γ, IL-2, IL-17, and TNF-α. The last step is a
complex cascade of cellular mediators and soluble inflammatory
molecules that work synergistically to amplify local tissue injury.
These mediators further amplify inflammation and target tissue
destruction. GVHD is also characterized by an imbalance between
the effector T-cells and the regulatory T-cells (Tregs). At all of these
steps, the inflammatory cascade and various types of tissue dam-
age lead to the release of biomarkers of GVHD into the blood, the
detection of which can be achieved via blood tests. Markers such as
elafin (skin-specific), regenerating islet-derived 3-alpha (REG3α,
gut-specific), suppressor of tumorigenicity 2 (ST2, a member of
the IL-1 receptor family, binding IL-33), and others are detailed in
this review. Figure 1 summarizes these events.

DANGER SIGNAL PROTEINS FOLLOWING HSCT
Following conditioning (radiation and/or chemotherapy), exoge-
nous and endogenous “danger” signals released from damaged
tissues orchestrate mesenchymal, epithelial, and immune cellular
communications to attempt to restore homeostasis. These danger’
signals induce rapid changes in redox-sensitive proteins, leading
to the activation of nuclear transcription factors including nuclear
factor (NF)-κb (4),early growth response factor (Egr1),and activa-
tor protein (AP)-1 (5), which are heavily involved in inflammatory
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FIGURE 1 | Pathogenesis of acute GVHD. Conditioning by irradiation and/or
chemotherapy causes tissue damage. Damaged tissues and cells release
DAMPs (HMGB-1), PAMPs (LPS) from gut microbiota as well as inflammatory
cytokines such as IL-1β, IL-6, and TNF-α, which contribute to the “cytokine
storm.” These are the first danger signals that activate host APCs, which
activate and polarized donor T-cells toward pathogenic T-cells (TH1 and TH17
for CD4 and TC1, TC17 for CD8). Activated pathogenic T-cells infiltrate target

organs (i.e., GI tract, liver, skin) and amplify local tissue destruction. The
presence of regulatory T-cells (Tregs) helps reduce GVHD severity through the
inhibition of pathogenic cells activation and/or expansion at early or further
phases of GVHD. Some of these DAMPs and PAMPs such as elafin
(skin-specific), regenerating islet-derived 3-alpha (REG3α, gut-specific), and
suppressor of tumorigenicity 2 (ST2, a member of the IL-1 receptor family,
binding IL-33) have been shown to be biomarkers.

cytokine production. Indeed, both radiation/chemotherapy effects
and pro-inflammatory cytokines generate free reactive oxygen
species (ROS) and reactive nitrogen species (RNS) such as super-
oxide, nitric oxide, hydroxyl radicals, peroxynitrite, and their prod-
ucts (6). Furthermore, inflammatory cytokines, including those of
the IL-1 family, and TNF-α (7) require ROS for their activation. In
contrast, anti-inflammatory cytokines [transforming growth fac-
tor (TGF)-β, IL-10, and IL-4] inhibit ROS/RNS-mediated effects
and display anti-oxidative properties (8–10). Therefore, inflam-
matory and anti-inflammatory cytokines mutually influence each
other through the production of ROS/RNS. Recently, it has been
shown that mice exhibiting overexpression of ROS (mice deficient
for negative regulator of ROS) develop more severe disease in an
experimental autoimmune encephalomyelitis model (11), whereas
mice deficient in ROS (NOX2 knockout mice) show less infiltra-
tion of neutrophils into the ileum and less tissue damage, leading
to less severe GVHD (12).

Damage-associated molecular patterns (DAMPs) include
exogenous pathogen-associated molecular patterns (PAMPs) as
well as endogenous alarmins, each of which play a crucial role in
the initiation of GVHD and are described in detail in subsequent
paragraphs.

EXOGENOUS PAMPs DURING INFLAMMATION AND GVHD
Early studies in allogeneic murine chimeras induced by radiation
showed that the mortality due to “secondary disease,” later called
GVHD, was significantly reduced in germ-free mice compared to
conventional mice (13). Treating conventional mice with antibi-
otic prophylaxis also significantly delay mortality in comparison to
that in the control group (14). Clinical studies have demonstrated
the efficiency of GI decontamination in reducing GVHD (15,
16). PAMPs are conserved microbial molecules released by invad-
ing microorganisms (17, 18). They recognize pattern recognition
receptors (PRRs), primarily toll-like receptors (TLRs), members
of the cytosolic retinoic acid-inducible gene-I-like helicase family
(19), and receptors with a nucleotide-binding domain (NOD) and
leucine-rich repeats (NOD-like receptors, NLRs). These activate
different pathways, resulting in the production of inflammatory
cytokines through NF-κb activation. The main link between the
PRRs and NF-κb activation/cytokine production during GVHD is
the cytoplasmic myeloid differentiation primary response protein
88 (MyD88) in APCs (20). APCs, particularly recipient dendritic
cells (DCs), primed by the conditioning are potent sensors of
PAMPS, which leads to their activation and augmented major
histocompatibility complex (MHC) presentation to T-cells (21).
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Similar to TLRs, the NLR family has an impact on GVHD. The
absence of NOD2 in recipients results in more severe GVHD in
both MHC-mismatched and MHC-matched models (22). Sin-
gle nucleotide polymorphisms of NOD2/CARD15 have also been
associated with severe GVHD in patients receiving stem cells from
either human leukocyte antigen (HLA)-identical or unrelated
donors (23).

ALARMINS AND ENDOGENOUS DAMPs DURING INFLAMMATION
AND GVHD
The term “alarmins” is used to describe the endogenous molecules
equivalent to PAMPs. They rapidly produce a danger signal after
non-programed cell death or a specific modality of programed
cell death (24). More recently, they are increasingly referred to as
DAMPs, in reference to the term PAMPs, because they share struc-
tural and functional similarities with exogenous PAMPS. However,
this definition of DAMPs is not used consistently, and sometimes
endogenous alarmins and exogenous PAMPs are classified together
as DAMPs.

High mobility group box 1
High mobility group box 1 (HMGB-1) is a nuclear protein that
binds to nucleosomes and promotes DNA bending (25). It is
expressed in most cells but at varying levels, and it is also present in
the extracellular milieu after non-programed cell death (26, 27).
It can be released in tumors (28). When under oxidative stress
induced by irradiation, HMGB-1 acts as a DAMP and can medi-
ate endotoxin lethality in mice (29). Persistence of a high level
of HMGB-1 has been reported in chronic inflammatory disorders
such as autoimmune disease (30), ischemia, and reperfusion injury
(31). Targeted knockout or inhibition of HMGB-1 was shown to
be able to increase apoptosis and suppress pancreatic cancer cell
growth (32, 33). HMGB-1 has chemotactic activity toward mono-
cytes, macrophage, neutrophils, and DCs (34, 35) in response to
inflammatory cytokines such as TNF-α, IL-1, and IFN-γ (29, 36)
as well as via reaction with TLR2/4 (37). It has been reported
that certain donor HMGB-1 polymorphisms are associated with
increased chronic GVHD, whereas recipient with the 2351 insT
showed reduced risk of grade II–IV acute GVHD (38). A recent
study showed that irradiation downregulates the HMGB-1 recep-
tor (Siglec-G), which makes HSCT recipients more susceptible to
GVHD. Moreover, addition of CD24 (Siglec-G ligand) alleviated
GVHD in both minor and major-mismatched murine models of
allogeneic bone marrow transplantation (39).

S100 proteins
S100 proteins are among more than 20 members of a family of
low molecular weight proteins (9–13 kDa). They are produced
as monomers and form dimers or multimers spontaneously (40,
41) following calcium binding protein activation (42). The most
studied members in this family are S100A7, S100A8, S100A9,
S100A12, and S100A15, which are mainly expressed in phagocytes,
where they show high antimicrobial activity (43). They are thus
released in inflammatory sites (44). Both S100A7 and S100A15
are induced by TH1, TH17, and TH22 cytokines and play an
important role in psoriasis pathogenicity and act as alarmins in
priming keratinocytes, thereby enhancing IL-6, IL-8, and TNF-α

production and amplifying inflammation in the skin (45). On the
other hand, S100A8 and S100A9 show a pathogenic role in lung
inflammation mediated by neutrophil recruitment (46). Another
member, S100A12, has been shown to be positively correlated
with increased Escherichia coli colonies in infants via disturbance
of the homeostasis between the intestinal microbiome and host
immunity (47). No studies have shown the impact of this fam-
ily in GVHD yet, but all of the above findings suggest that these
DAMPs may play a role in different types of tissue damage and the
pathology of skin and GI GVHD. Moreover, proteomic analysis of
saliva showed that healthy controls have low or non-detectable lev-
els of S100A9 and S100A8 proteins, whereas patients after HSCT
without GVHD showed augmented levels of these proteins. Inter-
estingly, patients with GVHD show higher levels of S100A8 and
S100A9 than patients without GVHD (48). Moreover, a new study
found that released S100 proteins are involved in the pathogenesis
of GI GVHD through stimulation of monocytes, which enhance
TH17 cells in patients receiving allogeneic HSCT (49).

Elastase inhibitors (endogenous proteases inhibitors)
During infection, the activity of locally produced mucosal alarm
antiproteases, such as elafin and secretory leukocyte peptidase
inhibitor (SLPI), may add an extra edge to the host defense
(50). SLPI and elafin alarm antiproteases have been isolated and
characterized under a variety of names in adult and fetal tis-
sues (51). They belong to the family of whey acidic proteins
(WAPs). Elafin was isolated from the skin of psoriasis patients
(52) and is produced by both epithelial cells and immune cells.
Alarm antiproteases are generated locally in areas of infection
or neutrophil infiltration and are upregulated by pathogen- and
inflammation-associated factors, including cytokines and neu-
trophil elastases (NEs) (53). Elafin and SLPI have been proposed
to possess “defensin/cathelicidin-like” properties (54). It has been
shown that in the 117 amino acids encoded by the elafin gene, the
first 22 amino acids represent hydrophobic signal peptide. Elafin is
produced as a 9.9-kDa full-length non-glycosylated cationic pro-
tein (55, 56). Elafin expression in vitro can be enhanced by adding
inflammatory cytokines (IL-1 and TNF-α) to cultured bronchial
and alveolar epithelial cells (57). These cytokines induce a sim-
ilar increase in elafin expression by keratinocytes in vitro (58).
Interestingly, these cytokines increase expression of elafin more
than that of SLPI in vitro (57). Thus, elafin may have greater
significance during an inflammatory challenge to the lung, in
keeping of the notion that elafin mRNA expression in bronchial
epithelial cells is increased by free NE, which is found in abun-
dance during inflammatory events (53, 59). In addition to its
NE inhibitory and immunomodulatory activities, elafin possesses
broad-spectrum antibacterial, antiviral, and antifungal proper-
ties. Elafin expression is increased in the plasma of patients
with skin GVHD compared to that of patients without GVHD
following allogeneic HSCT without T-cell depletion. Moreover,
elafin concentrations have been positively correlated with the
grade of skin GVHD. Importantly, elafin is not elevated in rashes
caused by conditions other than GVHD, making it a specific bio-
marker for skin GVHD (60). This is because elafin is induced
by inflammatory cytokines, which mediate GVHD by targeting
keratinocytes (61).
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Defensins
The defensins are short peptides with a characteristic β-sheet-rich
fold and, like SLPI and elafin,are cysteine-rich,containing multiple
disulfide bonds (62, 63). Defensins are classified into three sub-
families (α, β, θ). The α-defensins are neutrophil peptides [human
neutrophil peptides (HNPs) 1–4]. In humans,α-defensins [human
defensin (HD)-5 and HD-6] are mostly expressed in Paneth cells
in the small intestine (64, 65). HNPs 1–3 are expressed in B-cells,
γδ T-cells, natural killer (NK) cells, and DCs. α-defensins exhibit
wide spectrum antimicrobial coverage against Gram negative and
Gram positive organisms and also have some antifungal activity
against Candida albicans, as one example. β-defensins (four diverse
human β-defensins, HBD 1–4) have been classified based on their
function and genomic targeting. They are expressed by epithe-
lial cells, macrophages, macrophage derived DCs, and monocytes
(66). In murine models of haploidentical or minor mismatched
BMT, it has been shown that the reduction in α-defensins following
GVHD damages Paneth cells, resulting in a loss of variation in the
gut microbiota composition (67). Consistently, clinical data show
significant increases in Lactobacillales and decreases in Clostridi-
ales in patients with GVHD after allogeneic HSCT (68, 69). In this
cohort, overall survival was significantly worse in patients with
lower intestinal diversity at engraftment as compared to interme-
diate and high diversity groups, respectively, even after adjustment
for other clinical predictors (69).

Cathelicidins
Cathelicidins, which are recognized as a constitutive component
of myeloid-derived cells (70), are the second major family of
antimicrobial peptides (AMPs). Cathelicidins are highly hetero-
geneous (71–73), and as mediators of an effective system of host
defense, they provide protection to intestinal epithelial cells against
invading microorganisms and control the overgrowth of commen-
sal bacteria (54). The human cathelicidin hCAP-18/LL-37 has a
C-terminal peptide of α-helical type, which is present in all mam-
mals. The widespread presence of this C-terminus suggests that
the α-helical cathelicidin type is the progenitor molecule of this
family (74). Even though it is considered a neutrophil-specific
constituent distributed in all tissues, which is liberated as LL-37,
it has also been shown to be produced by different immune cells,
such as NK cells, γδ T-cells, B-cells, monocytes, mast cells, and
immature neutrophils (75–77). LL-37 plays an important role in
the prevention of oral bacterial infection, and it was found to be
down-regulated in gut biopsies of patients infected with Shigella
(78, 79). LL-37 expression is also induced after skin injury (80).
In addition, its overexpression in human bronchial xenografts
preserves the cystic fibrosis-specific bacterial killing defect (81).
Recently, LL-37 has been shown to protect against arthritis in
murine models through IL-32 suppression, and this observa-
tion was confirmed in human peripheral blood mononuclear
cells (PBMCs) through decreases in pro-inflammatory cytokines
such as TNF-α and IL-1β (82). In contrast, it also mediates
immune cell recruitment by promoting chemotaxis, autophagy,
and phagocytosis (83–87). It also enhances the adaptive immune
responses (88, 89). LL-37 expression is decreased in Crohn’s dis-
ease and dermatitis, but elevated in psoriasis and systemic lupus
erythematosus (90–92).

The regenerating protein family
The regenerating (Reg) III proteins were discovered in 1984 in
pancreatitis experimental models (93). Later studies showed the
presence of homologous proteins in human and mice (94–96).
There are three different types of Reg III genes in mice (97)
and all type III Reg genes appear to have diverged from a com-
mon ancestral gene. RegIIIα, RegIIIβ, and RegIIIγ have 60–70%
homology and are all expressed in the intestine (97, 98). Reg1α

expression is increased in inflamed colonic mucosa and corre-
lates with IL-22 expression (99). In inflammatory bowel disease
(100), it has been reported that Reg3α in humans or RegIIIγ,
the homologous mouse protein, has an antimicrobial function,
controlling bacterial proliferation (101, 102). In addition, follow-
ing skin injury, RegIIIα expression increases in keratinocytes in
response to IL-17 (103). In a haploidentical murine model of
GVHD, it has been shown that RegIIIγ is upregulated, and this
upregulation is not due to radiation-induced damage but due to
the allogeneic response (104). Reg3α concentrations in plasma
are increased by threefold in patients with GI GVHD compared
to all other patients, including patients with non-GVHD enteri-
tis following allogeneic HSCT. Reg3α expression is also positively
correlated with GI GVHD grade and volume of diarrhea, sug-
gesting that Reg3α represents a biomarker for the diagnosis of GI
GVHD (105).

Heat shock proteins
The heat shock proteins (HSP) are a family of proteins that
have an essential role as molecular chaperones, facilitating pro-
tein folding and intracellular transport (106). Expression of these
proteins increases under various stress conditions such as infec-
tion, hypoxia, trauma, or exposure to toxic drugs, and high levels
of HSPs are released by necrotic cells (107, 108). HSP60 (60 kDa) is
expressed mainly in mitochondria and on the cell surface of mono-
cytes after IFN-γ stimulation as well as on apoptotic T-cells (109).
HSP60 also is overexpressed in intestinal epithelium in Behcet’s
disease and in keratinocytes in skin lesions (110, 111). CD14/TLR
acts as a coreceptor for HSPs (112). HSP70 expression correlates
positively with GVHD grade (113). Another study showed that
antibodies to 70 and 90-kDa HSPs are associated with GVHD in
patients receiving allogeneic peripheral blood stem-cell (PBSC)
transplantation (114).

Heparan sulfate proteoglycans
Heparan sulfate proteoglycans are proteins carrying one or more
covalently bound heparan sulfate chain, a large anionic polysac-
charide of glycosaminoglycan. These proteins show considerable
diversity and interactive properties and are widely found in tissues
within the extracellular matrix and are also found intracellu-
larly (115). Functionally, heparin sulfate proteoglycans play critical
roles in (i) mediating the formation of chemokine gradients for
cell migration (116, 117); (ii) protecting cytokines such as IFN-
γ against proteolysis (118); (iii) controlling the diffusion of their
ligands (119). Heparan sulfate has also been shown to act as an
endogenous TLR4 ligand and is a potent stimulator of T-cell
alloreactivity in vitro (120). This action is dependent of the TLR4
pathway in DCs, but not in T-cells. Serum levels of heparan sulfate
are elevated at the onset of GVHD and correlate to disease severity
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in an allogeneic mouse model and in patients received allogeneic
HLA-matched HSCT (121).

Adenosine triphosphate
Adenosine triphosphate (ATP) is an essential purine base required
for almost all physical responses. Extracellular ATP released from
injured but not apoptotic cells is secreted rapidly after irradiation
and mediates cellular responses through activation of purinergic
receptors, which activate calcium channels (122). ATP activates
caspase-1 and produces IL-1β, depending on the NLRP3 inflam-
masome (123). In GVHD, ATP is an endogenous danger signal
released from necrotic cells (124, 125). Accumulation of ATP leads
to upregulation of co-stimulatory molecules (e.g., CD80, CD86)
in vitro and in vivo, which activates pathogenic donor T-cells and
reduces the number of Tregs, resulting in greater production of
inflammatory cytokines and aggravation of GVHD severity in an
allogeneic murine model (126).

Uric acid
Uric acid is a metabolite of purine nucleotides in humans and has
been described as a DAMP released from dying cells (24). Solu-
ble uric acid induces the production of inflammatory cytokines
such as monocyte chemotactic protein-1 in rat vascular smooth
muscle cells (127) and is recognized by TLR2 and TLR4 and sig-
naled through MyD88 (128). It can also be sensed by NLRP3, a
member of the NLRs, and induces IL-1β production via caspase-
1 activation (129). Injection of uric acid into mice along with
antigen results in activation of CD8 T-cells, whereas abolition
of uric acid inhibits the cytotoxicity of T-cells (130). In vitro
addition of uric acid upregulates co-stimulatory molecules on
bone marrow-derived DCs and leads to T-cell activation (131).
In patients with acute GVHD showing high levels of uric acid
in serum during the pre-transplantation period, inhibition of
uric acid activity may be one aspect of the treatment strategy
for reducing the severity of GVHD as is discussed later in this
review (132).

DANGER SIGNALING PATHWAYS IN GVHD
Individual danger signaling pathways involved in GVHD are
detailed below and summarized in Table 1. Figure 2 summarizes
TLRs and IL-1 receptor family signaling pathways. Figure 3
summarizes PAMPs and DAMPs common pathogen recognition
receptors and their interactions with the signaling pathways.

TLR SIGNALING
The TLR family proteins are transmembrane receptors that were
first described in humans in 1994 (141). In 1997, TLR4, which
senses lipopolysaccharide (LPS) and activates innate cells, was
described (142). TLRs play a key role in innate immunity by rec-
ognizing PAMPs. TLRs also recognize endogenous DAMPs (143).
This family consists of 10 functional members in humans, where
they are expressed on hematopoietic and non-hematopoietic cells
(144). Their expression is either on the cell surface (TLR1, TLR2,
TLR4, TLR5, and TLR6) or in endosomes (TLR3, TLR7, TLR8,
and TLR9). Different TLRs recognize different PAMPs or DAMPS
specifically. Among the surface TLRs, TLR2 recognizes Gram pos-
itive lipoprotein [such as peptidoglycan (PGN)], and TLR4 with
its coreceptor MD-2 recognizes the Gram negative component of
the cell wall LPS. TLR5 recognizes bacterial flagellin, and TLR1
and TLR6 form a dimer with TLR2 to recognize PGN. The
other members of the family are expressed in endosomes and
recognize viral or bacterial nucleic acid components: TLR3 rec-
ognizes double-stranded viral RNA; TLR7 and TLR8 recognize
single-stranded viral RNA; and TLR9 recognizes bacterial or viral
RNA and CpG-containing DNA (145–152). TLR4 also recognizes
DAMPs such as the HSP family (HSP70 and HSP90) and heparan
sulfate proteoglycans. Upon activation, TLRs transmit the signal
through adaptor molecules shared with the IL-1R family myeloid
differentiation factor 88 (MyD88) with the exception of TLR3,
which signals through toll-IL-1 receptor (TIR) domain-containing
adapter inducing IFN-β (TRIF). Only TLR4 can signal through
both MyD88 and TRIF (143). Stimulation of TLRs activates NF-κB
through a signaling cascade that is mostly MyD88-dependent.

Table 1 | GVHD-related PAMPs and DAMPs along with their signaling pathways and effects in GVHD.

Signaling pathway Effect Reference

PAMPs Lipopolysaccharide TLR4/MyD88 or TRIF Aggravation (133)

TLR7 ligand (3M-011) TLR7/MyD88 Aggravation (134)

Flagellin TLR5/MyD88 Reduction (mouse) (135)

Intestinal microflora TLR/MyD88 Aggravation (translocation) (136, 137)

Peptidoglycan TLR2/MyD88 or NOD1 Not yet studied (138, 139)

DAMPs ATP NOD2 Aggravation (126)

S100 proteins NOD2 Aggravation (48, 49)

HMGB-1 TLR2/4/MyD88 Aggravation (37)

Reg III proteins IL-22/IL-17/IL-1 family Marker of intestinal GVHD (104, 105)

HSP CD14/TLR4/MyD88 Aggravation (112)

Heparan sulfate TLR4/MyD88 Aggravation (120)

Uric acid NOD2/NLRP3 Aggravation (129)

Elafin NF-κB Marker of skin GVHD (60)

Defensins Secreted Protection (67)

sST2 (IL-33r) MyD88 Marker of treatment refractory GVHD (140)
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FIGURE 2 |Toll-like receptors and IL-1 receptor family signaling
pathways. ST2L (IL-33r) and IL-1r signal through the MyD88, IRAK4,
and TRAF6 pathway. ST2L and IL-1r share this pathway with most
TLRs. Binding of ST2L, IL-1r, and TLRs activates NF-κb, resulting in the
release of inflammatory cytokines. Most TLRs signal through MyD88

expect for TLR3, which signals through the TRIF pathway. TLR4 can
signal through both MyD88 and TRIF. TLR3, TLR7/TLR8, and TLR9 are
expressed in the endosome while other TLRs are expressed on the
cell surface. TLR1 and TLR6 recognize their ligand with TLR2
heterodimers.

FIGURE 3 | Pathogen-associated molecular patterns and DAMPs share
the same pathogen recognition receptors. TLR4 recognizes LPS from
Gram negative bacteria as well as DAMPS [i.e., HMGB-1, heat shock
proteins (HSP)70/90, and heparan sulfate]. NOD can recognize
peptidoglycan, which is known as TLR2 ligand, and some DAMPs such as
ATP, S100 proteins, and uric acid. These signaling pathways all end with
activation of NF-κb.

TIR adaptor protein (TIRAP) and IL-1 receptor-associated kinase
4 (IRAK4), which interact with TNF receptor-associated protein 6
(TRAF6), result in activation of mitogen-activated protein kinase

(MAPK) and NF-κB signaling, leading to inflammatory cytokine
production (153). On the other hand, TLR3 signaling, which is
independent of MyD88 but dependent on TRIF, requires translo-
cating chain-associating membrane protein (TRAM) for this sig-
naling and activates TRAF3 (154). Stimulation of innate cells (e.g.,
DCs, macrophage, monocytes, neutrophils, and mast cells) via
TLRs results in maturation, upregulation of MHC expression as
well as that of co-stimulatory molecules (CD80/CD86, and CD40),
and production of pro-inflammatory cytokines such as IL-12,
TNF-α, and IL-6 (138, 155–157). This results in T-cell activation
and proliferation. The inflammatory environment generated by
TLR responses polarizes the response toward TH1, suggesting that
the absence of TLR signaling may reduce GVHD severity. This
was shown in a murine experimental model; mice deficient for
TLR4 showed less severe GVHD than wild-type mice (133). More-
over, clinical studies showed association of TLR4 polymorphisms
with GVHD severity (158). Other clinical studies of patients who
received Tregs with their allo-HSCT showed significant augmen-
tation of TLR5 expression, which correlated with GVHD severity
(159). In contrast, an allogeneic BMT murine model demonstrated
that treating mice with flagellin improves overall survival and
suppresses GVHD (135). Likewise, TLR7 signaling was shown to
increase donor T-cell infiltration when using R-848, a TLR7 lig-
and. The timing of administration of TLR7 ligands is important
for GVHD pathogenesis as when using another TLR7 ligand
(3M-011), as repetitive administration aggravates GVHD in an
allogeneic mouse model (134). TLR9 signaling was shown to
be important for GVHD pathogenicity as TLR9-deficient mice
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developed less severe GVHD and experienced increased survival.
This effect was achieved through the production of less IFN-γ by
host APCs (136, 160). Moreover, repeated treatment with CpG (a
TLR9 ligand) increased mortality and GVHD severity (134). One
clinical study showed no differences in the incidence and sever-
ity of GVHD between patients with gene variants associated with
TLR9 reduction and controls (161), but another study reported
severe acute GVHD when patients received stem cells from an
unrelated donor with the A1174 gene. The T1635C variant was
found to have a protective effect against GVHD (162). Thus, the
roles of TLRs in GVHD remain controversial, according to dif-
ferences in the timing of administration, experimental settings,
microbiota constitution, and other alternative danger signaling
pathways.

NLR SIGNALING
Another family associated with PRRs is the cytoplasmic NLR fam-
ily, which was first described in 1999 and 2001 studies of NOD1
(CARD 4) (163) and NOD2 (CARD 15) (164), respectively. NOD1
was shown to bind to d-gamma-glutamyl diaminopimelic acid
derived from peptidoglycan (139), and NOD2 binds to muramyl
dipeptide (MDP) (165). Activation of NOD1 and NOD2 enables
the recruitment of kinase receptor-interacting protein 2 (RIP2)
(RICK) through caspase recruitment domain (CARD)–CARD
homotypic interaction (166). RIP2 engagement by NOD recep-
tors leads to ubiquitination of K63-linked by cellular inhibitors of
apoptosis (cIAP)1 and cIAP2 (167), followed by recruitment of
the TAK1/TAB2/TAB3 kinase complex to RIP2. X-linked inhibitor
of apoptosis protein (XIAP) interacts with RIP2 and results in
recruitment of the platform for the linear ubiquitination assembly
complex (LUBAC), which mediates NF-κB activation. This sig-
naling pathway converges on the induction of pro-inflammatory
cytokines and initiates the innate immune response (168). Muta-
tion in NOD2 leads to an inability for NF-κB activation after
MDP stimulation in intestinal epithelial cells (169). However,
NOD1 and NOD2 are able to induce direct autophagy through
interaction with ATGL16L1, and this mechanism is independent
of both RIP2 and NF-κB (170). NOD2 showed the capacity to
recognize single-stranded RNA virus and to elicit interferon reg-
ulatory factor 3 activation, producing IFN-β through interaction
with anti-viral signaling factor mitochondrial adaptor proteins
(171). NOD2 also plays an important anti-viral role via CD8 T-
cell priming in influenza A virus infection (172). Other studies of
the expression of NOD2 on CD4 T-cells showed that the absence
of NOD2 signaling impairs TH1 proliferation and response upon
Toxoplasma gondii infection (173). Interestingly, the NLR family
not only recognizes PAMPs but also recognizes DAMPs, such as
ATP and DNA released from dying cells and uric acid (174, 175).
Activation of the NLR family occurs via the inflammasome, cleav-
age of caspase-1, and production of active IL-1β and IL-18 (176).
In GVHD models, the absence of NOD2 on donor cells has no
impact on GVHD pathogenicity, whereas NOD2 deficiency on
only hematopoietic and not on non-hematopoietic recipient cells
aggravates GVHD. In vitro experiments showed that the absence of
NOD2 on DCs increases the expansion of alloreactive T-cells, indi-
cating that NOD2 negatively regulates DC function and activity
(22). Studies in humans proved that the relationship between this

signaling pathway and GVHD is more complex. Polymorphisms in
NOD2/CARD15 were identified as a risk factor in HSCT involving
a HLA-identical sibling donor (177, 178), whereas in other stud-
ies of HLA-unrelated transplants, such polymorphisms adversely
impacted disease relapse but not GVHD (179–181).

Overall, interactions between TLRs and NLRs have a crucial role
in APC stimulation, subsequent alloreactive T-cell recruitment,
and activation and aggravation of GVHD.

IL-1 RECEPTOR SIGNALING
The absence of TLR signaling in TLR-deficient mice does not com-
pletely abrogate GVHD (160, 182, 183). The counterpart of TLR
in the TIR family is highly involved in different phases of GVHD
pathogenesis. IL-1 is one of the most active pro-inflammatory
cytokines in inflammatory diseases. The IL-1 receptor family con-
tains 10 members in total. The first two members are IL-1α and
IL-1β, both of which are synthesized as 31-kDa precursors (pro-IL-
1α and pro-IL-1β). They are enzymatically cleaved into N-terminal
prodomains (184) and are agonists for the IL-1 type 1 receptor
(IL-1R1) (185). IL-1α and IL-1β seem to activate similar cellular
responses upon binding IL-1R1 in vitro, and the main biological
difference between these proteins seems to be associated with the
source and presentation of the cytokine in vivo.

IL-1α has a central role in mediating sterile inflammation
induced by cell necrosis, and it seems to be the dominant agonist in
a response dependent on IL-1R1 and MyD88 signaling (186). IL-
1α also has been shown to be released from dying cells (187, 188).
In HSCT, IL-1α is also a dominant mediator of CD4 T-cell activa-
tion mediated by allogeneic endothelial cells expressing HLA-DR
(189). IL-1β increases the expression of adhesion molecules on
vascular endothelium and enhances the expression of chemokines
on T-cells, thus attracting blood-borne inflammatory cells into
target tissues. IL-1β also stimulates mucosal myofibroblasts and
matrix metalloproteinase (MMP) release, causing tissue mucosal
destruction (190–192). The IL-1 receptor antagonist (IL-1Ra)
competes with the two agonist molecules for IL-1R1 binding. All
three genes are located in a cluster on chromosome 2q. The fourth
member of this family is IL-18, the gene for which is located on
chromosome 11q (193). IL-18 was identified as a factor promot-
ing IFN-γ production and activates TNF-α receptor-associated
factor (194). It has been reported that many hematopoietic and
non-hematopoietic cells produce IL-18 in inflammatory condi-
tions (195). In HSCT, it was shown that IL-18 levels in plasma
increase with acute GVHD in both human and animal models
(196–199).

IL-33 AND ITS RECEPTOR (ST2) SIGNALING
IL-33 (also known as IL-1F11) was identified as a new member
of the IL-1 cytokine family (200). Similar to IL-1α and HMGB-
1, IL-33 has dual functions, acting both as a traditional cytokine
and as an intracellular NF with transcriptional regulatory prop-
erties (201). IL-33 is widely expressed in tissues, but it appears
that its expression in organs is restricted. Human and murine
mRNA analysis showed that IL-33 is predominantly expressed in
stromal cells including fibroblasts, smooth muscle cells, epithelial
cells, and endothelial cells and is largely absent in hematopoietic
cells (200). IL-33 may be produced during necrosis. In apoptosis,
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IL-33 is cleaved by caspases-3/7, leading to inactivation of its
pro-inflammatory properties. For this reason, IL-33 is considered
an endogenous danger signal or alarmin (202). The only known
receptor for IL-33 is ST2 (200). The ST2 gene is now known to
encode at least three isoforms of ST2 proteins: the transmembrane
form known as ST2L, variant ST2 (ST2V) that is mainly present in
human gut (203), and secreted soluble ST2 (sST2), which serves
as a decoy receptor for IL-33 to prevent IL-33 binding to and
signaling through ST2L (204, 205). The strongest sST2 mRNA
expression was detected in heart and lung tissues (206), the car-
diovascular system, endothelial cells (207), cardiac myocytes, and
fibroblasts (208). The secretory capacity of these cells for sST2 is
enhanced by pro-inflammatory cytokines (TNF-α, IL-1β) or LPS
(206). sST2 levels in serum were correlated with acute myocar-
dial infarction (209) and pulmonary fibrosis (210). Recently, high
levels of plasma sST2 were shown to be a risk factor of GVHD
in patients after allogeneic HSCT; patients who were resistant to
treatment showed elevated levels of sST2 and had higher mor-
tality regardless of the grade of GVHD (140). This finding may
allow physicians to predict disease and apply interventions earlier.
It may also represent a novel therapeutic opportunity in GVHD
and other related diseases.

ORGAN-SPECIFIC TISSUE DAMAGE FOLLOWING HSCT
SKIN
Frequently, the first presentation of GVHD involves the skin, typ-
ically manifesting initially as palmar and acral erythema, resem-
bling a sunburn reaction, or an acute symmetric morbilliform
eruption (211). The histopathology of GVHD is a lichenoid
inflammatory process of the epidermis with variable numbers
of lymphocytes arranged in a linear fashion along the base-
ment membrane zone. The hallmark change is dead cells con-
sisting of apoptotic keratinocytes, with tightly adherent lym-
phocytes observed in the epidermis with associated vacuolar
interface changes (212). High-dose radiation activates skin DCs,
which upregulates the expression of HLA-DR, adhesion mol-
ecules, co-stimulatory molecules (213), and PRRs, producing
inflammatory cytokines and danger signals that contribute to
skin GVHD by mediating memory T-cell recruitment to the skin
(214). In cells undergoing programed cell death, activation of
caspase-3 occurs as a downstream event that links both extrin-
sic (death receptor-mediated) and intrinsic (mitochondrial- or
DNA damage-mediated) apoptotic pathways, which means that
the presence of caspase-3 in the cell will not only identify it as apop-
totic but also will indicate that the apoptotic machinery is involved
in the premature demise of target cells. Labeling GVHD lesional
skin using antibodies that recognize cleaved caspase-3 (215) iden-
tified apoptotic keratinocytes located at the base of rete ridges.
Significant elevation of elafin plasma concentrations in patients
with skin GVHD is due to keratinocyte damage (60).

GI TRACT AND LIVER
Gut tissue damage may be the first consequence of transplant
conditioning and could be of particular significance for GVHD
for two main reasons: the transplant conditioning regimen may
deplete and/or alter the microbiota and epithelial barrier dam-
age could allow for increased bacterial translocation, specifically

in the gut. It is assumed that these processes lead to an increase
in inflammation and exacerbate epithelial insult, as shown in an
IBD model (216). Certain commensals such as Bifidobacterium
strains may protect the host by improving the intestinal barrier.
Bifidobacterium have carbohydrate transporters that can gener-
ate short-chain fatty acids, particularly acetate, which promotes
defense functions in host epithelial cells in the distal colon (217).
Recent GVHD studies have begun to analyze the dynamics of the
gut flora during HSCT and how the innate immune receptors that
recognize microbes may contribute to GVHD pathogenesis. In an
experimental irradiation-independent non-myeloablative HSCT
model, a gut microbial shift toward pro-inflammatory bacterial
species was seen in mice that develop GVHD (136). It is still
unclear whether the microbial changes in the gut are the cause
or the result of GVHD, and whether these bacterial populations
reflect endogenous microflora or overgrowth of pathogenic organ-
isms due to the elimination of benign microbes. Endotoxin is a
constituent of normal bowel flora that has the ability to stimu-
late the release of inflammatory cytokines that are known to be
important mediators of clinical GVHD and most likely permeate
the systemic circulation through the intestinal barrier, which is dis-
rupted by the conditioning treatment (218). Also, microbial super
antigens may activate B-cells by direct stimulation of MHC class II
molecules (219). The early phases of changes in the GI tract have
been described in animal models that do not use chemotherapy or
radiation to condition the host; therefore, direct comparisons to
clinical GVHD after bone marrow transplantation are not possible.
The initial proliferative phase results in increased crypt cell mitotic
activity, crypt lengthening, and the presence of intraepithelial lym-
phocytes. In experimental systems, this phase seems to be linked to
IFN-γ production (220), which increases MHC class II expression
and gut permeability by altering tight junction integrity and may
modulate crypt stem-cell turnover (221). The histologic features
of the GI tract in clinical GVHD and experimental GVHD after
myeloablative conditioning are consistent with the destructive and
atrophic phases, characterized by villus blunting, lamina propria
inflammation, crypt destruction (with crypt stem-cell loss), and
mucosal atrophy (222). Cytotoxic T lymphocytes do not appear
to play a dominant role in experimental GVHD of the GI tract
(215, 223–225), despite the ability of intraepithelial lymphocytes
to induce Fas-mediated apoptosis of host-type tumor cells (226).
It is clear, when these findings are considered in aggregate, that
cytokines and cellular effectors combine to produce the specific
damage to target organs as well as the systemic toxicity of acute
GVHD. Furthermore, the absence of GVHD toxicity in other vis-
ceral organs, such as the kidney (currently debated), argues against
circulating cytokines as the sole cause of tissue-specific damage.
The infiltrates seen in GVHD target organs are generally thought
to consist of T-cells responding to alloantigens presented by host
tissues. LPS leakage through the skin or mucosa may act as an
adjuvant to the antigens expressed in these tissues, attracting and
activating alloreactive donor T-cells. In BMT models, LPS levels
increase progressively during the first 4 weeks post-BMT. These
levels lead to aggravated disease severity through TLR4 signaling,
which induces inflammatory cytokine production. Deficiency of
TLR4 on donor bone marrow cells reduces colonic GVHD severity.
Interestingly, this reduction in GVHD severity was accompanied
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with a decrease of IL-23 levels. On the other hand, mice receiving
allogeneic bone marrow from IL-23 knockout mice demonstrated
less colonic pathology, and low levels of colonic LPS compared
to wild-type controls. Interestingly, IL-17 was not detectable in
the colon, while IFN-γ was markedly increased, in association
with the LPS/IL-23 feedback loop (227). In consequence, IFN-γ
activated macrophages after exposure to LPS release a significant
amounts of inflammatory cytokines in GI tract but not in other
target organs of GVHD (218). IL-23 could also enhance host IL-
22-producing type 3 innate lymphoid cells (ILC3s) and promote
gut recovery after conditioning. Alloreaction generated by donor
T-cells damages the gut stem-cell compartment and eliminates
recipient IL-22 producing ILC3, which are the main source of IL-
22 in the gut and are known to protect intestinal stem cells (228).
A deficiency in ILC3s leads to severe liver and GI GVHD and
increases mortality. Moreover, a recent clinical study showed clear
correlation between activation and expansion of intestinal ILC3s
and the absence of acute GVHD (229). Figure 4 shows a hypothet-
ical model for the roles of IL-23 in GI GVHD. Thus, reductions
in the doses of chemoradiotherapy to condition bone marrow
transplant recipients have reduced the incidence of GVHD, as
demonstrated in experimental models (230, 231). This reduction
is the result of reduced priming of mononuclear cells by lower
doses of total body irradiation (TBI) and subsequent reductions
in TNF-α production (224). Intestinal and liver tissue damage
leads to the release of soluble mediators that correlate positively
with GI and liver GVHD pathology. Significant augmentation of
liver epithelial marker cytokeratin-18 protein (CK18) (232) has
been demonstrated in serum from patients with hepatic and GI

GVHD. Interestingly, CK18 levels begin to increase before the clin-
ical manifestation of GVHD in some patients. Also, CK18 levels
were correlated with bilirubin (liver function marker) levels. This
correlation is specific to hepato-intestinal GVHD (233). RegIIIα
levels were also significantly increased in patients with GI GVHD
as mentioned above (105, 234). It is well known that Reg proteins
act downstream of IL-22, which protects the function of intestinal
mucosa, intestinal stem cells, and ILC3s (235, 236).

THYMUS
Donor CD8 T-cells can damage medullary epithelial cells in the
thymus and cause the generation of donor alloreactive CD4 T-
cells (237), which suggests that GVHD autoimmunity can appear
during acute GVHD after allogeneic HSCT. The thymic epithelial
damage caused by anti-host reactive T-cells impairs negative selec-
tion in the thymus, consequently leading to the presence of autore-
active T-cells in the periphery (211, 238, 239). These autoreactive
T-cells are specific and able to recognize both self (donor) and host
MHC class II antigens. Thus, they may participate in acute allo-
geneic GVHD and are thought to underlie the pathophysiology of
chronic GVHD with its clinical autoimmune manifestations (214,
238). Animal studies revealed that the presence of the thymus is
required for the development of autologous GVHD,based on com-
parisons with thymectomized rats before transplantation (240).
The thymus is a primary target organ of GVHD. Thymus toxicity
is generated further by regimen preparation (radiation) and age-
associated thymus toxicities, resulting in thymus dysfunction and
GVHD-induced damage of lymphopoietic microenvironments.
However, keratinocyte growth factor (KGF) has promising effects

FIGURE 4 | Roles of IL-23 in GI GVHD. Conditioning induces IL-23
production and LPS release from the GI tract. LPS and IL-23 act together to
prime APCs to activate alloreactive T-cells. Activated T-cells produce IFN-γ and
other inflammatory cytokines, resulting in the elimination of ILC3 and damage

of the intestinal stem cells. This leads to more gut injury and GI GVHD (left). In
the absence of alloreactive donor T-cells, IL-23 stimulates ILC3 to release
IL-22, which protects the intestinal stem-cell compartment and promotes gut
recovery from conditioning damage (right).
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for preventing GVHD-mediated thymic damage (241). Reduced
thymic function is detrimental for thymopoiesis recovery, and
insufficient recovery of thymopoiesis is directly linked to oppor-
tunistic infections and adverse clinical outcomes in recipients
(242). Thymic GVHD damages the architecture and composi-
tion of the thymic environment (243). In the thymus stromal and
epithelial cells, growth factors are produced locally including IL-7
and stem-cell factor (SCF), as are chemokines involved in T-cell
precursor migration such as CCL9 and CCL21. Thymic GVHD
affects T-cell renewal and differentiation, and in humans, it has
been reported that when thymic function is transiently impaired
in young patients because of acute GVHD, there are decreases in
TCR-β chain rearrangement circles (244, 245).

ORAL
The overall incidence of oral complications after bone marrow
transplantation is 80%. Most oral complications are resolved
in autologous HSCT within 6 months post-transplantation. Oral
complications in allogeneic transplantation include mucositis,oral
dryness, taste change, and infection, and all symptoms are asso-
ciated with GVHD (246–248). These oral changes are painful
and impair patients’ quality of life (249, 250). The initiation of
oral mucositis is induced by DNA and non-DNA damage caused
by ROS generated by damaged basal epithelial cells, endothe-
lial cells, and submucosal cells, in particular (251). This leads
to NF-κB activation, inducing adhesion molecule expression,
and MAPK and COX2 activation, resulting in the generation of
IL-1β, IL-6, and TNF-α (252–254). This reinforces NF-κB acti-
vation and amplifies the response via the over-production of
inflammatory cytokines (255–259). Perturbation in the immune
response to the microbiota leads to spontaneous inflammation,
and vice versa, changes in microbiota diversity are associated
with pro-inflammatory states (260, 261). In HSCT recipients,
substitution with coagulase-negative Staphylococci for Strepto-
cocci is associated with oral mucositis (137). It was suggested
that subcutaneous administration of IL-11 reduces the severity
of oral mucositis by maintaining keratin production in epithelial
cells and reducing mucosal pro-inflammatory cytokine expres-
sion (262). However, it causes severe fluid retention and early
mortality in clinical trials (263). Administration of TGF-β3 prior
to chemotherapy down-regulates epithelial cell expansion and
reduces oral mucositis in hamsters (264). KGF promotes upregu-
lation of Bcl2 and cell survival (265) as well as upregulates IL-13
that attenuates TNF-α (266). KGF has beneficial effects on oral
mucositis prevention in high-dose chemotherapy and TBI-treated
patients (259, 267).

THERAPEUTIC APPROACHES TO TARGET DANGER SIGNALS
Since the late 1980s, different therapeutic approaches have been
established to overcome GVHD (268, 269). These classical ther-
apeutic strategies target only donor T-cells by inhibition or even
depletion and may impact the immune reconstitution and graft-
versus-leukemia effect. Recent therapeutic strategies have focused
on PAMPs and/or DAMPs released by the host after tissue damage,
which are the first triggers of activation of host APCs and donor
T-cells. Therefore, targeting PAMPs and DAMPs may not impair
donor cell function, immune reconstitution, or anti-tumoral

activity. Here, we highlight therapeutic strategies targeting danger
signal or alarmins.

SIGLEC-G LIGAND
Recently, it has been shown that conditioning inhibits the expres-
sion of Siglec-G, which could be activated by HMGB-1. The
absence of Siglec-G ligand (CD24) increases susceptibility to
GVHD in mice because of the response to DAMPs, but not PAMPs.
Administration of CD24 fusion protein led to a reduction in
GVHD severity and mortality. This approach reveals the impor-
tance of targeting DAMPs separately from exogenous PAMPs in
GVHD therapy (39).

ALPHA-1 ANTITRYPSIN
Heparan sulfate, as described above, is detected in patient sera
following HSCT. Murine studies showed that heparan sulfate lev-
els are reduced significantly upon the use of the elastase inhibitor
alpha-1 antitrypsin (270), and this reduction in heparan sulfate
was correlated with reduced GVHD severity in murine models.
The alteration of heparan sulfate in mice treated with alpha-
1 antitrypsin subsequently led to a reduction in inflammatory
cytokines such as TNF-α and IL-1β and enhanced IL-10 pro-
duction and Treg expansion. Another study showed that alpha-1
antitrypsin treatment suppresses IL-32 expression in T-cells (271).
Clinical trials using alpha-1 antitrypsin as GVHD prophylaxis are
currently underway.

ILC3s
Many recent studies have emphasized the importance of RORγt
ILCs in regulating mucosal immune responses via the control of
intestinal microflora expansion and composition and regulation of
CD4 T-cells (272). Depletion of Nfil3 in mice dramatically impairs
the number of IL-22-producing ILC3s, which resulted in compro-
mised innate intestinal immune defense against bacterial infection
(273). IL-22-producing ILC3s have a beneficial impact on gut pro-
tection in metabolic disorders, improving insulin sensitivity as
well as preserving the gut mucosal barrier and endocrine function
(274). As mentioned before, IL-22-producing ILC3s have a cru-
cial role in reducing epithelial and intestinal stem-cell damage and
reducing GVHD severity and mortality (228). The same research
group has demonstrated that daily administration of IL-22 for
3 weeks starting 1 week post-transplantation increases the survival
and function of host radio-resistant ILC3s, subsequently reducing
apoptosis in host intestinal stem cells and reducing GVHD severity
through preservation of host cells from damage without com-
promising immune function or reconstitution (275). This makes
IL-22 administration one of most promising therapies for GI
GVHD. The transcription factor aryl hydrocarbon receptor (AhR)
is highly expressed in ILC3s and is required for ILC3 development
(276), particularly IL-22-producing ILC3s (277). Thus, using small
molecules that activate AhR might be a promising future thera-
peutic strategy in preventing GI GVHD and ameliorating immune
functions post-transplantation as well.

IL-1 RECEPTOR ANTAGONIST
Blockade of IL-1 with IL-1 receptor antagonist significantly
reduces mortality from experimental GVHD and enhances

Frontiers in Immunology | Alloimmunity and Transplantation January 2015 | Volume 6 | Article 14 | 10

http://www.frontiersin.org/Alloimmunity_and_Transplantation
http://www.frontiersin.org/Alloimmunity_and_Transplantation/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ramadan and Paczesny Danger signal in hematopoietic stem-cell transplantation

engraftment of HSCs (278). In a clinical trial, IL-1 receptor
antagonist reduced the severity of GVHD (279), but when used as
prophylaxis, no significant impact on GVHD was observed (280).

ANTI-ST2 OR IL-33
A high level of sST2 is a risk factor for GVHD (140), with lev-
els of sST2 positively correlating with high rates of mortality in
patients with GVHD. Other studies reported that sST2 is associ-
ated with cardiovascular mortality. sST2 concentrations have been
linked with inflammatory markers (281), and sST2 has been asso-
ciated with disease severity in pulmonary arterial hypertension
(282). sST2 is rapidly synthesized and released by endothelial cells
in inflammatory conditions and in the setting of tissue damage
(207). sST2 acts as a decoy receptor for IL-33, inhibiting signaling
through membrane ST2 (ST2L) (283). In murine models, expo-
sure of murine T-cells to sST2 inhibits TH2 cytokine production
and shifts the cells toward a TH1 response (283). It is possible
that high levels of sST2 after tissue damage induced by condition-
ing leads to activation of donor T-cells toward a type 1 response,
thereby increasing GVHD responses. It is also possible that inhi-
bition of sST2 decreases this phenomenon and thus increases type
2 T-cell responses. Another possible therapeutic approach would
be to increase the expression of ST2L and make it more available
for IL-33 binding and signaling. Both strategies should not impair
the immune response of donor cells, but will work by limiting the
effects of host tissue damage, opening new robust therapy options
for GVHD.

MESENCHYMAL STEM CELLS
Mesenchymal stem cells (MSCs) are multipotent mesenchymal
stromal cells with fibroblastic-like morphology that can differen-
tiate into bone, cartilage, or fat cells (284). These cells have the
capacity for non-specific immunosuppression and immunomod-

ulation. It has been shown that infusion of MSCs in high-risk
major-mismatched transplant recipients reduces the incidence of
life-threatening GVHD (285, 286). Recent clinical studies showed
that weekly infusion of MSCs with a fixed dose for 3 weeks reduced
significantly the severity of the disease; specifically, patients with
steroid-refectory acute GVHD experienced a complete response.
Clinical response was correlated with a significant decline in
RegIIIα and elafin GVHD biomarkers (287).

ANTI-TLRs
The expression of PRRs at the epithelial surfaces is equally impor-
tant as that in immune cells in combating or facilitating entry of
organisms into the body, including bacterial translocation from
the gut after irradiation (288). Activation of PRRs results in addi-
tional vascular damage and infiltration of inflammatory cells that
creates a cascade of lesions in a pro-oxidant microenvironment,
aggravating tissue damage and causing a “danger” zone (289). An
antagonist of LPS, the TLR4 ligand, results in reduced intestinal
damage and GVHD severity without altering donor T-cell activity
to the host antigen (133). Novel anti-TLR antibodies particu-
larly anti-TLR4 and anti-TLR2 are being developed (290) and will
soon represent a novel class of potential therapeutics for GVHD
treatment.

CHRONIC GVHD AND DANGER SIGNALS
Graft-versus-host disease studies have led to a decrease of early
mortality in related-allogeneic HSCTs, but late long-term morbid-
ity and mortality caused by chronic GVHD remains a major chal-
lenge (291). The pathogenesis of chronic GVHD is complex and
poorly understood, but is likely to involve dysfunction of tolerance
determining mechanisms similar to classic autoimmune diseases.
Figure 5 summarizes some of the knowledge of the pathophysi-
ology of chronic GVHD. Briefly, negative selection in the thymus

FIGURE 5 | Pathogenesis of chronic GVHD. The thymic epithelial cells
(TECs) are damaged by alloreactive T-cells leading to impaired negative
selection. In addition, alloreactive B- and T-cells cross talk leading to sBAFF
release and production of alloantibodies by plasma cells. At the same time,

cytokines and chemokines produced by B- and T-cells activate macrophages
and monocytes. Together, antibodies and TGFβ induce fibroblasts proliferation
and activation as well as collagen production, which results in fibrosis in
target organs such as the lungs.
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is impaired because of thymic epithelial cell (TEC) damage after
allogeneic reaction. In addition, the cross talk between alloreactive
T-cells and B-cells enhances B-cell activating factor (BAFF) release
and production of alloantibodies, which, together with cytokines
and chemokines produced by T-cells and B-cells, activates
macrophages and induces proliferation and activation of fibroblast
and collagen production, resulting in tissue fibrosis. Very few stud-
ies showed a direct impact of PAMPs or DAMPs in chronic GVHD.
It has been shown that LPS enhances peribronchiolar fibrosis in
synergy with TH17 production and leads to chronic pulmonary
GVHD (292). However, a clear indirect effect is the altered T- and
B-cell homeostasis. Patients with chronic GVHD showed inverted
ratio of CD4:CD8 (293). CD4+ regulatory T-cell frequency was
dramatically decreased in these patients comparing to patients
without active chronic GVHD. This reduction in Tregs:Tcon ratio
was explained as following: (i) Tregs acquire a predominately effec-
tor memory phenotype (294), (ii) under lymphopenia-induced
expansion, CD4+ Tregs proliferate more than conventional T-
cells, which increases Treg susceptibility to Fas-mediated apoptosis
(295), and (iii) progressive loss of Aire expression by TEC, which
is crucial for naive Treg generation (294). In chronic GVHD, crit-
ical breakdown in peripheral B-cell tolerance was shown. Among
patients with cGVHD, BAFF reaches a persistently high level (296).
Chronic exposure to BAFF results in elevated basal expression of
the proximal signaling components B-cell linker protein (BLNK)
and Syk, which may contribute to increased responsiveness of
BCR stimulation (297). Murine models of cGVHD also provided
insights showing that unrestrained T follicular helper cells and
germinal center B-cells are abnormally increased and strongly cor-
relate with the development of cGVHD (298). Together, chronic
GVHD is likely caused by a lack of central tolerance involving
thymus dysfunction, disequilibrium of T-reg/Tcon balance, and
alloantibodies generated by alloreactive B-cells.

IN A NUTSHELL: PAMPs AND DAMPs IN THE PATHOGENESIS
OF ACUTE GVHD
Allogeneic HSCT conditioning elicits the first signal of tissue dam-
age by releasing PAMPs, such as intestinal microflora and LPS,
and DAMPs, such as S100 proteins, uric acid, HSP, and ATP. These
PAMPs and DAMPs are then detected by host innate immune cells,
including non-hematopoietic APCs, through PRRs (TLRs and
NLRs) leading to downstream signaling through NF-κB, upregu-
lating co-stimulatory molecules, and producing the inflammatory
cytokines TNF-α, IL-12, and IL-6. Stimulation of allogeneic donor
T-cells by activated host APCs in the proinflammatory environ-
ment leads to T-cells expansion and polarization toward TH1,TC1,
TH17, and TC17, the key mediators of GVHD pathogenesis. These
T-cells produce more inflammatory cytokines, such as IFN-γ,
TNF-α, and IL-17, leading to increased tissue damage. As a conse-
quence of damage exacerbation, more DAMPs are released from
damaged tissue, such as elafin in skin GVHD, Reg3α in GI GVHD,
or soluble ST2, and again newly amplify type 1 response of T-cells
creating more severe pathogenicity as shown in Figure 1. Impor-
tantly, these molecules can serve as biomarkers for GVHD diagno-
sis and severity. These molecules may also represent a novel class of
therapeutics for GVHD with the possible advantage of not altering
the immune reconstitution and T-cell responses against tumors.
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