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A number of factors are recognized to influence immune responses to vaccinations includ-
ing age, gender, the dose, and quality of the antigen used, the number of doses given,
the route of administration, and the nutritional status of the recipient. Additionally, several
immunogenetic studies have identified associations between polymorphisms in genes
encoding immune response proteins, both innate and adaptive, and variation in responses
to vaccines. Variants in the genes encoding Toll-like receptors, HLA molecules, cytokines,
and cytokine receptors have associated with heterogeneity of responses to a wide range of
vaccines including measles, hepatitis B, influenza A, BCG, Haemophilus influenzae type b,
and certain Neisseria meningitidis serotypes, amongst others. However, the vast majority
of these studies have been conducted in older children and adults and there are very few
data available from studies conducted in infants. This paper reviews the evidence to date
that host genes influencing vaccines responses in these older population and identifies a
large gap in our understanding of the genetic regulation of responses in early life. Given
the high mortality from infection in early life and the challenges of developing vaccines that
generate effective immune responses in the context of the developing immune system

further research on infant populations is required.
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INTRODUCTION
Although infant and under-5 mortality rates are reducing,
nonetheless 6.6 million children died in 2012 (1). Infectious dis-
eases were responsible for approximately half of these deaths and
the majority occurred in low or middle income countries (LMICs).
There are no reliable data on morbidity for children at the global
level so the burden of disability such as deafness and epilepsy
following meningitis, for example, is unknown but likely to be
high. Whilst vaccines are now available for many infections and
increasingly administered in developing countries, there remains
an urgent need to develop or improve vaccines for this age group.
The reasons for this are multiple: there are no vaccines yet for
some important infections such as malaria and respiratory syncy-
tial virus; vaccines for other diseases need improving or replacing
(e.g., BCG); global differences in microbial epidemiology may
render effective vaccines developed in one region ineffective in
another [e.g., the human papillomavirus (2)]; finally vaccines that
do not cover all strains of a pathogen may drive changes in the
microbiological epidemiology (or resistance to the strains that are
included) that may render the vaccine ineffective. This has been
widely discussed in the context of the pneumococcal vaccines (3).
However, despite these challenges, alongside the biological chal-
lenges of developing vaccines for infants with immature immune
systems that contribute to their increased susceptibility to infec-
tion in the first place, there are strong reasons to investigate
immune responses in the age group. In order to inform the devel-
opment of novel or improved vaccines better understanding of the
essential pathways involved in immunity to various pathogens is

key. Genetics has over the years proved to be a useful tool with
which to dissect out immune responses. Genetic studies of the
monogenic primary immunodeficiencies revealed critical roles for
anumber of genes in protective immunity (e.g., mutations in genes
encoding components of the interferon-gamma/interleukin-12/23
pathways predispose to disseminated non-tuberculous mycobac-
terial infections, highlight the important of this pathway in
mycobacterial immunity more broadly (4, 5).

ROLE OF HOST GENETICS IN THE REGULATION OF VACCINE
IMMUNE RESPONSES

Most immune responses, like many biological responses, show
wide-ranging inter-individual variation within in a population,
whether in response to vaccination or natural infection. For exam-
ple, interferon-gamma (IFN-g) responses following neonatal BGC
in the Gambia follow a normal distribution (6) and 68% of varia-
tion in in vitro tumor necrosis factor (TNF) responses to microbial
components measured in whole blood samples collected from
a Ugandan population was genetic (7). Such patterns indicate a
multifactorial etiology where both genes and environmental fac-
tors interact. Heritability studies can then be used to estimate the
magnitude of genetic contribution to this phenotypic variation.
It should be remembered however, that heritability estimates are
specific to the population that was studied and they do not indi-
cate how many genes may be involved or what the underlying
genetic model is, i.e., whether there one major gene whose effects
are modified by a few minor genes, or many genes each with a
minor impact. Studies have shown that responses to a number of
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Table 1 | A summary of studies that have demonstrated heritable immune responses to vaccines.

Study Study site and age group  Vaccine Immune response studied Heritability (%) (95% Cl)
Newport et al. (8) The Gambia, infant BCG IFN-g/PPD 41 (10-71)
twins I13/PPD 46 (5-75)
IFN-g/KMTB 39 (3-71)
I-13/HSP65 50 (29-67)
Hepatitis B Anti-HBs Ab conc. 77 (63-85)
Tetanus Anti-TT Ab conc. 44 (16-70)
I13/TT 64(50-75)
Polio Neutralizing Ab conc. 60 (43-73)
Diphtheria Anti-DT Ab conc. 49 (17-77)
Pertussis IFN-g/PER 53 (35-67)
IFN-g/FHA 65 (50-76)
IL-13/PT 57 (40-71)
N/A Total IgG conc. 78 (67-85)
Hohler et al. (9) Germany, adult twins Hepatitis B Anti-HBs Ab conc 61 (41-81)
Yan et al. (10) China, 1-yearold twins Hepatitis B Anti-HBs Ab conc 91 (76-97)
Lee etal. (11) Gambia, infant twins Hib Anti-PRP Ab conc. 51 (95 Cl: 32-66),
Klein et al. (14) United States, 12-to Varicella Anti-VZV Ab conc. 45 (15-75)
23-month-old siblings
Tan etal. (17) United States, Measles Anti-measles Ab conc 88.5 (52.4)
2-18yearold twins Mumps Anti-mumps Ab conc 38.8 (1.6)
Rubella Anti-rubella Ab conc 45.7 (4.9)

Konradsen et al. (12); Denmark, Adult twins

Konradsen et al. (13) (Pneumovax R)

Pneumococcal polysaccharide

8 specific I1gG F-test values between
anti-pneumococcal Ab 2.94 and 711
concs

Cl, confidence intervals; BCG, Bacille Calmette-Guerin, IFN-g, interferon-gamma; PPD, purified protein derivatives, I-13, interleukin-13; KMTB, killed Mycobacterium

tuberculosis; HSP65, heat shock protein 65; HBs, hepatitis B surface antigen; Ab, antibody, conc., concentration; TT, tetanus toxin; DT, diphtheria toxin; PER, pertactin;

FHA, filamentous hemagglutinin, PT, pertussis toxin; IgG, immunoglobulin G; Hib, Haemophilus influenzae type b, PRF, polyribosyl ribitol phosphate; VZV, varicella

Zoster virus.

(1) Only lower confidence intervals were reported in this study, (2) The F-test was used in this study to compare intrapair correlations between monozygous and

dizygous twins. An F-test score of >2.86 is considered significant — in this case the antibody responses following pneumococcal vaccination were significantly more

highly correlated in the MZ twin pairs when compared to the DZ twin pairs.

vaccines are heritable. These include BCG (8), hepatitis B virus
(8—10), Haemophilus influenzae type b (11), tetanus toxoid (8),
pneumococcal polysaccharide vaccine (12, 13), varicella vaccine
(14), measles, mumps, and rubella (15, 16). Selected data from
these studies are presented in more detail in Table 1.

GENE IDENTIFICATION

There have been many scientific advances in genetics, genomics,
and the accompanying technology to allow high throughput data
generation that are being widely applied in the hunt for genes that
regulate vaccine responses. Historically, before the human genome

sequence was available — which in turn led to genome-wide asso-
ciation studies (GWAS), whole genome sequencing (WGS), whole
exome sequencing (WES), and gene expression profiling to men-
tion a few — most investigators used a candidate gene approach
to detect genetic variations associated with immune responses.
The frequencies of allele variants within a gene hypothesized
to be involved in response regulation were correlated with the
magnitude of the immune response following vaccination within
populations. Many associations have been reported and a selection
summarized in Table 2, which is by no means comprehensive but
intended to give a range of the studies that have been done, the
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Table 2 | Some reported associations between variants in candidate
genes and immune responses to vaccines.

Vaccine to which immune Gene(s) associated Reference
response was measured with vaccine response
Measles HLA, TLR2-6, DDX58, (22-25)
OAS1, ADAR
Hepatitis B IFNG, MAPKS, ILT0RA (20, 26-31)
ITGAL, IL4, IL4R, IL10,
HLA, TNF IL12B
Conjugated pneumococcal IL4, IL4RA, IL13 (32)
Group C meningococcal TLR3, CD44 (33)
Influenza HLA (34)
Hib TIRAP, (35)
Hepatitis A IL10 (36)
Rubella HLA, LTA, TNF, LST1 (37, 38)
Diphtheria IL10 (28)
Tetanus IL4RA (28)
BCG TLR1, TLR6 (19)

HLA, human leukocyte antigen; TLR, toll like receptor; DDX58, dead box polypep-
tide 58; OAS1, 2-prime, 5-prime oligoadenylate synthetase 1; ADAR, RNA-specific
adenosine aeaminase; IFNG, interferon gamma, MAPKS8, mitogen-activated pro-
tein kinase 8; ITGAL, integrin alpha L, IL, interleukin, Il-4R, interleukin-4 receptor;
TNF, tumor necrosis factor, Il-12B, interleukin-12 beta chain, CD44, cluster of dif-
ferentiation 44, I[-4RA, interleukin-4 receptor alpha chain; TIRAR, TIR-containing
adaptor protein; LTA, lymphotoxin; LST1, leukocyte specific transcript 1.

vaccines studied and the number of putative genes identified. It
can be seen that more studies have been published for some vac-
cines such as measles [reviewed by Haralambieva et al. (18)] and
hepatitis B, but it is important to realize that there is publication
bias for genetic association studies and negative findings are less
frequently reported. With the exception of the BCG study, which
used T cell cytokine responses as the phenotype, all the studies
included in Table 2 use antibody responses as the phenotype with
the goals of trying to understand why vaccines are poorly immuno-
genic in some but not all individuals and to identify genetic factors
associated with persistence often immune response. Of note, all
except two the studies included in Table 2 were conducted in
older children and adults. The BCG study was conducted in South
African neonates (19) and one of the studies showing an associ-
ation between Class II HLA and failure to respond to hepatitis B
vaccination was conducted in neonates in Italy (20). A more com-
prehensive systematic review of the link between genetic variation
and variability in vaccine responses identified over 2500 poten-
tially relevant studies in the initial search (in July 2013) of which
70 were considered in more detail and 34 fully analyzed (21). How-
ever, it should be noted that only one of the studies reviewed was
conducted in infants.

One of the limitations of the candidate gene population asso-
ciation approach in the past has been that often studies were small

and therefore underpowered, especially if numerous genetic vari-
ants were being tested in the same small cohort. Furthermore,
results were rarely reproducible between groups and populations.
There are a few exceptions: for example meta-analyses for hepati-
tis B vaccine responses found evidence that variants in class II
HLA and interleukin-4 (IL-4) were significantly associated with
antibody responses (31, 39). As technology advanced it became
possible to test multiple candidate gene variants in much larger
sample sizes and large scale experiments such as that by Davila
et al. became possible (29). In this study, 6091 single-nucleotide
polymorphisms (SNPs) in 914 immune response genes were typed
in 918 Indonesian people in a search for variants associated with
hepatitis B vaccination responses. Previous associations with class
II HLA were confirmed and a new association was identified with
a SNP in the FOXP]I gene, a transcription factor involved in B-cell
development.

Asthefield further developed, and the human genome sequence
was first published (40), then the extent of variation within it
was captured (41), it became possible to systematically interro-
gate genetic variants (mainly SNPs) across the genome and results
could then be analyzed against phenotype data — this was the
introduction of the GWAS. There was also a need to develop
capacity to store and statistically analyze such large datasets. Over
500,000 SNPs could be typed in several thousand individuals (42)
to identify novel diseases susceptibility loci.

A number of GWAS studies have been undertaken or are under-
way for childhood vaccines including MMR (43). In this study,
SNPs in two genes were associated with the magnitude of IFN-g
responses to rubella vaccination in school age children. Although
not part of Expanded Program on Immunization schedules for
children, GWAS have been conducted to detect associations with
immune responses to smallpox vaccination, where significant
associations were identified within a number of cytokine gene
variants (44, 45), and anthrax vaccination where suggestive rather
than significant associations was found with SNPs located with the
HLA class II loci, the mex-3 homolog C (MEX3C) gene and the
splA/ryanodine receptor domain and suppressor of cytokine sig-
naling (SOCS) box containing 1 (SPSBI) gene (46). Genome-wide
linkage studies identified three loci on three different chromo-
somes found to be linked to BCG responses in a Gambian twin
cohort described elsewhere (8) and a GWAS has been undertaken
in this cohort as well.

Looking forward, technology has developed in other parallel
disciplines (or other “omics” as they are increasingly referred to)
allowing a much more integrated and holistic approach toward
the goal of developing new and more effective vaccines that work
in everyone. Indeed, the term vaccinomics was coined by Poland
and colleagues to capture the range of technologies now avail-
able to investigate the complex biological system responsible for
providing protective immunity (47).

Genome-wide expression profiling took studies to the next
level, investigating the activity of the genome rather than the inher-
ent genome variation, i.e., which genes are “switched on” in any
given situation such as stimulation post vaccination. In one study,
microarray transcriptional profiling was used to assess responses
to yellow fever vaccine (48). Sixty five of the 97 differentially
regulated genes that were studied were shown to correlate with
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antibody and CD8 T cell specific responses and a subset of these
could predict the response to vaccination. Lu et al. used a com-
bination of transcriptional and epigenetic profiling to study both
gene expression and methylation patterns in 25 infants who had
received hepatitis B vaccine and were know to be either high or
low responders according to their antibody responses (49). This
study showed that modifications through hypo/hypermethylation,
down regulation, and post transcriptional control were asso-
ciated with low response to hepatitis B vaccine. There is also
scope to harness in silico advances in bioinformatics, compu-
tational modeling and pathway analysis to enable the predic-
tion of signature immune responses reviewed in more detail by
Poland et al. (50).

Cutting edge technology is also being applied to enable more
detailed and sophisticated phenotyping of the immune response
to vaccination, which is currently relatively crude, involving the
measurement of antibody levels and for some vaccines cellular
responses through measuring cytokine levels. A recent study used
high throughput sequencing technologies to characterize in detail
the B-cell receptor repertoires in adults who had received a con-
jugated Hib/MenC/tetanus vaccine (51). This approach allowed
the identification of antigen specific sequences that could be rep-
resent a welcome improvement in the ability to measure vaccine
immunogenicity in a meaningful way.

CONCLUSION

There is good evidence that host genetic factors are important, but
not sole, determinants of responses to vaccination. Initial genetic
epidemiology studies demonstrated many responses were herita-
ble, and using the genetic tools available at the time a number of
groups went on to show associations between candidate genes and
specific responses. Momentum in the field increased exponentially
in the last decade or so due to advances in scientific methodology
and supporting technology, which has allowed large scale inter-
rogative studies. The studies referred to above by Querec et al.,
Lu et al,, and Truck et al. illustrate the potential new technologies
bring toward unraveling the complexities of immune responses
to vaccines and it is likely that the field will advance rapidly. This
has obvious implications for the development of better vaccines,
and equivalent studies in infectious diseases for which there are
no vaccines could help identify pathways critical to the immune
responses that could be targeted in vaccine development.
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