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INTRODUCTION

miR-21 is one of the most highly expressed members of the small non-coding microRNA
family in many mammalian cell types. Its expression is further enhanced in many diseased
states including solid tumors, cardiac injury, and inflamed tissue. While the induction of
miR-21 by inflammatory stimuli cells has been well documented in both hematopoietic
cells of the immune system (particularly monocytes/macrophages but also dendritic and
T-cells) and non-hematopoietic tumorigenic cells, the exact functional outcome of this ele-
vated miR-21 is less obvious. Recent studies have confirmed a key role for miR-21 in
the resolution of inflammation and in negatively regulating the pro-inflammatory response
induced by many of the same stimuli that trigger miR-21 induction itself. In particular, miR-
21 has emerged as a key mediator of the anti-inflammatory response in macrophages. This
suggests that miR-21 inhibition in leukocytes will promote inflammation and may enhance
current therapies for defective immune responses such as cancer, mycobacterial vaccines,
or Th2-associated allergic inflammation. At the same time, miR-21 has been shown to
promote inflammatory mediators in non-hematopoietic cells resulting in neoplastic trans-
formation. This review will focus on functional studies of miR-21 during inflammation, which
is complicated by the numerous molecular targets and processes that have emerged as
miR-21 sensitive. It may be that the exact functional outcome of miR-21 is determined by
multiple features including the cell type affected, the inducing signal, the transcriptomic
profile of the cell, which ultimately affect the availability and ability to engage different
target mMRNAs and bring about its unigue responses. Reviewing this data may illustrate
that RNA-based oligonucleotide therapies for different diseases based upon miR-21 may
have to target the unique and operative miBRNA:mRNA interactions’ functionally active in
disease.
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context of its dysregulation in disease including cancer and inflam-

Micro-RNA-21 (miR-21) is an abundantly expressed microRNA
in mammalian cells of multiple types (1-3). Its up-regulation is
associated with many cancers, including those derived from both
solid tissue (4, 5) and leukemic origin (6-9). The generation of a
conditional miR-21 “knock-in” mouse confirmed that it functions
as an oncogene with its overexpression resulting in malignant B-
cell lymphoma (10). Functional studies performed in epithelia-,
hepatocyte-, and glial cell-derived cell lines confirm that miR-
21 regulates processes connected to cell growth, migration, and
invasion (11-16), providing a mechanism for miR-21-mediated
transformation of somatic cells. However, miR-21 is also expressed
in hematopoietic cells of the immune system including B/T-cells,
monocytes, macrophages, and dendritic cells (DCs). Activation of
the immune system is strongly associated with tumor progression
but also with surveying, responding to, and eliminating tumors
as they arise. How increased miR-21 in these cell types facilitates
tumor progression, as well as orchestrating the general immune
response to pathogens and autoantigens in inflammatory disease,
remains unclear. In this review, I will attempt to highlight some of
the key findings on miR-21’s role in immunity and place this in the

mation. I present a model of miR-21 as a key switch in immune
circuits, controlling the balance between initial pro-inflammatory
and later immuno-regulatory, anti-inflammatory responses, — dys-
regulation of which contributes to pathogenesis of inflammatory
diseases including cancer and infection.

miR-21 EXPRESSION AND INDUCTION IN HEMATOPOIETIC
CELLS

IMMUNE CELL MATURATION

Initial efforts to profile miRNA expression during hematopoiesis
revealed that while miR-21 is moderately expressed in hematopoi-
etic progenitors, its expression increases significantly as various
cell types mature to an “active” state, including bone marrow-
derived mast-cells (17), neutrophils (18), and activated T-cells
of various lineages (19, 20). High miR-21 levels are therefore a
marker of immune cell activation, although whether or not this
reflects a cause or consequence of activation remained to be deter-
mined. It was found that miR-21 expression is RNA polymerase
II-dependent and derived from a primary transcript that is both
capped and polyadenylated (21). Similar to regular protein-coding
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mRNAs, miR-21 expression is dynamically regulated by complex
signaling pathways and can be enhanced by extracellular sig-
nals during immune cell development. The myeloid precursor
cell type, the monocyte, which can be differentiated into various
mature cells depending upon the extracellular signals received,
shows increased expression of miR-21 during activation. This was
first demonstrated by the study of Kashashima et al. (22), where
TPA (also known as PMA) was used to differentiate monocytes
toward macrophages. Since then, studies showing treatment of
monocytes with all-trans retinoic acid to generate neutrophils
(18), GM-CSF/IL-4 treatment to generate immature DCs (23, 24),
and treatment with LPS (a TLR4 specific mimetic of bacterial
endotoxin) to generate activated macrophages (25, 26), as well
as LPS-mediated B-cell activation (3), all revealed significant up-
regulation of miR-21. Table 1 lists these examples alongside many
other immunologically relevant examples, but their detailed dis-
cussion is beyond the scope of this review. However, taken together,
these data confirm that miR-21 serves as an important marker of
immune cell activation in multiple contexts.

TURNING THE CIRCUIT “ON" — INDUCTION OF miR-21 BY
INFLAMMATORY STIMULI

Like regular Pol-II-regulated protein-coding mRNAs, which are
regulated by a diverse array of signal-specific transcription factors
that bind unique sites at the promoter region, miR-21 exhibits
diversity in the signals, transcription factors,and proposed binding
sites that regulate its expression in diverse contexts. Unlike, reg-
ular Pol-II-regulated protein coding-genes and like all miRNAs,
miR-21 is subject to an additional layer of post-transcriptional
regulation before the mature 20 nt bioactive form is generated.
This involves processing of both the precursor and mature duplex
miRNA from the primary miRNA transcript (pri-miR-21), carried
out by the nuclear enzyme Drosha and its cytosolic counterpart,
Dicer. Many of the induction studies of miR-21 by extracellu-
lar signals including TPA/PMA, LPS, IL-6, and TGF-B/BMP have
shown it to be a later event in their respective signaling pathways

(25, 27-29). Expression analysis downstream of oncogene Ras-
induced signaling, which drives miR-21 through AP-1, has shown
that the appearance of mature bioactive miR-21 is delayed relative
to the generation of pri-miR-21 (33). Although a dearth of studies
have defined the role of various transcription factors in the induc-
tion of miR-21, including NFkB in LPS-induced miR-21 (25, 30),
AP-1 in PMA-mediated up-regulation (27), and STAT-3 for IL-6-
induced miR-21 (28), the complexity of the predicted promoter
region of pri-miR-21 (27, 28) and the occurrence of alternative
transcription start sites (34) suggest that the regulation of miR-21
transcription is not straight forward.

Several studies place miR-21 among the group of miRNAs
whose post-transcriptional processing requires extra co-factors,
notably the RNA helicase protein p68, which aids cleavage of the
pri-miRNA transcript by Drosha (35). Although processing of
mature miR-21 relative to other miRs may be differentially reg-
ulated by the inherent sequence differences of the miR-21 primary
transcript recognized by Drosha/Dicer, a further layer of com-
plexity is added when it is considered that the enzymes involved
in miR-21 biogenesis are themselves regulated by extracellular sig-
nals, as shown in the study of TGF-/BMP-mediated induction of
mature miR-21. Here SMADS, a key intracellular adapter protein
activated by TGF-f signaling, bound to the primary miR-21 tran-
script and recruited p68 to promote Drosha-mediated cleavage
during TGF- signalling (29).

Interestingly, in a study of miR-21 induction in a model of
colon carcinoma epithelial-mesenchymal transition (EMT), com-
bined treatment with TGF-B and TNF induced pri-miR-21 and
at a later stage, the appearance of the Drosha cleavage product,
precursor-miR-21 stem-loop (32). This latter event required de
novo protein synthesis and is indicative of an additional regula-
tory step to organize the temporal and cell-specific induction of
miR-21. This important finding may be applicable to immune
cells, which rapidly induce many cytokines and secreted factors,
such as IL-6 or TNE, that have the potential to feed back and drive
later events in the cell.

Table 1| Select examples of miR-21 induction by inflammatory stimuli.

Signal Cell type Result Transcriptional Post-transcriptional Reference
control regulation

PMA Monocyte Macrophage differentiation AP-1, NFIB (22, 27)
Retinoic acid Monocyte Neutrophil differentiation (18)

I-6 Multiple myeloma STAT-3 (28)

TGF BMP Vascular smooth muscle Contractile phenotype - p68, SMAD6 (29)

LPS B-cells, macrophages Il-10 production NF«B (3)(25, 30)
GM-CSF/IL4 Monocyte MD-DC (23, 24)
GM-CSF/IL-6, TGFB Bone marrow precursors MDSC (31)
TGFB/TNF Colon carcinoma culture EMT + + (32)

MD-DC, monocyte-derived dendritic cells, MDSC, myeloid-derived suppressor cells; EMT, epithelial-mesenchymal transition.
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The story of miR-21 regulation grows even more complex when
we consider the impact of other non-coding RNAs on its expres-
sion. A recent study illustrated that miR-21 is in fact regulated by a
member of the long non-coding RNA family, GAS5 (36). Although
IncRNAs can regulate genes at the transcriptional level, they also
hold the potential to act as miRNA sponges — mopping up exces-
sive mature 20 nt miRNAs and preventing them from engaging
their mRNA targets. Therefore, GAS5 may in fact represent an
important negative regulator of miR-21 activity, although this has
yet to be examined in immune cells.

EXPRESSION IN DISEASED TISSUE

Coincident with its induction in various immune cell types ex
vivo, in vivo studies of diseased tissue often demonstrate increased
expression of miR-21 relative to healthy control tissue. This has
been shown in various models of allergic airway inflammation
(26, 37), psoriasis and atopic eczema (38), osteoarthritis (39), and
human atherosclerotic tissue (40), many of which are character-
ized by infiltration of immunocytes including macrophages, DCs,
and T/B-cells. One can conclude from these studies and studies
of miR-21 expression in cancerous tissue that increased miR-21
may act as a general biomarker of diseased tissue and in particular
inflammation-associated diseases.

In a similar fashion, many studies of circulating miRNA pro-
files have implicated miR-21 as a secreted biomarker of disease
due to its association with exosomes — small cell-derived vesicles
whose cargo contains stable small RNAs including miRNA (41).
Exosomes have been implicated as a mechanism of cell-to-cell
communication and in this way act as classic immunomodula-
tors. The fact that miR-21 is found in many exosomes including
tumor-derived and immunocyte-derived (42, 43) supports a role
for miR-21 as a key modulator of immune processes.

Few studies thus far have implicated the specific cell type
responsible for the increased miR-21 expression in vivo. How-
ever, a recent study of miR-21 expression in gastric cancer found
increased stromal, but not tumor cell, miR-21 to be strongly linked
to clinical-pathological features of disease (44). In vivo analysis
of mice challenged with Aspergillus fumigatus to model airway
inflammation showed that miR-21 was induced in cells of the
monocyte/macrophage lineage (26).

INFERRING FUNCTION FROM EXPRESSION/INDUCTION STUDIES

miR-21 is induced by many pro-inflammatory stimuli, both
PAMPs and DAMPs, which trigger the inflammatory circuit and
power up the cells of the immune system for action, illustrated
in Figure 1A (immediate early response). However, the question
remains as to what exact processes in this circuit this induced
miR-21 regulates. The delayed induction of miR-21 in inflamma-
tory reactions suggests that miR-21 may in fact negatively regulate
the process of inflammation and be an important switch for the
resolution of inflammation and maintenance of homeostasis, in
essence counteracting the circuit, functioning as a trip-switch to
turn off the often-damaging excessive pro-inflammatory response.

“MAKING THE SWITCH” — FEEDBACK OF miR-21 AS A NOVEL
REGULATOR OF INFLAMMATORY RESPONSES

The notion that miR-21 serves to limit inflammation and promote
resolution should be supported by profiling studies of macrophage

subsets; however, little induction of miR-21 is seen in alternatively-
activated macrophages treated with IL-4 or IL-10 alone (45, 46).
This supports the theory that an initial damage or danger signal
needs to occur, which promotes an early pro-inflammatory stim-
ulus such as NF«kB or AP-1 to trigger miR-21. This ensures that
miR-21 induction is appropriately activated to counteract damage
triggered by infection. Recently, enhanced miR-21 expression was
reported when LPS-treated macrophages were treated with apop-
totic cells (47). This event fueled miR-21 expression to a greater
extent, which was associated with decreased pro-inflammatory
responses and the resolution of inflammation. Additionally, in
an in vivo murine model of peritonitis, high level of miR-21 was
reported, which was increased further following treatment with
Resolvin D1, a lipid mediator that promotes resolution of inflam-
mation (48). In this respect, damage or infection can be seen as the
fuel that fires miR-21 expression and only when these have been
appropriately sensed will miR-21 be appropriately up-regulated to
counteract this, illustrated in Figure 1B (early response). This con-
trol mechanism ensures that miR-21 and its associated processes
are not wastefully induced but “switched on” at appropriate times —
when required to change the direction of the circuit and affect
the balance of the inflammatory reaction to promote healing,
resolution, and a return to homeostasis.

Ultimately, however, the function of a particular miRNA can-
not be solely inferred from studies of its induction but must be
deduced through studies of its activity also — namely, the specific
mRNA targets it represses in any given context. For many miRNAs,
bioinformatics analysis has aided the prediction and discovery of
relevant mRNA targets. This computational-based approach has
been less successful for miR-21, with many possible mRNA targets
verified through various innovative techniques in cancer, inflam-
mation, and other contexts, all of which will not be discussed here.
Instead, I will limit the discussion to those identified targets and
processes affected by miR-21, which tell us most about its role
in immune responses (illustrated in Figure 1C — late inflamma-
tory response) and discuss how these may promote the negative
regulation of the inflammatory circuit, illustrated in Figure 1D
(resolution phase).

PDCD4 AND CYTOKINE PRODUCTION

Our initial studies manipulating miR-21 during LPS signaling
found that it had a unique effect on the levels of the anti-
inflammatory cytokine IL-10, not observed for other cytokines.
This was linked to the regulation of a proposed negative regulator
of IL-10 production, PDCD4, loss of which was shown to pro-
tect from LPS lethality (25). Although the mechanism whereby
PDCD4 regulates IL-10 and other cytokines remain an area of
active investigation (49, 50), other groups have demonstrated that
the miR-21/PDCD4 axis represents a key target for immunoreg-
ulation in multiple contexts, namely in protecting from type 1
diabetes (51), asa target for the endogenous danger ligand decorin-
1 (52) and in regulating T-cell activation and polarization in
SLE (53).

Recently the miR-21/PDCD4 axis was shown to play a key role
in the process of efferocytosis (47) — the digestion and elimination
of dead or dying cells by phagocytes, including macrophages, often
associated with the induction of anti-inflammatory “clean-up”
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FIGURE 1 | The role played by miR-21 regulating output of
immune responses over time. (A) Immediate early response:
production of proinflammatory cytokines (TNF/IL-12). (B) Early
response: feedback from TNF production, uptake of dying cells,
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genes such as IL-10. Das et al. demonstrate that miR-21 levels are
enhanced further in LPS-activated macrophages due to the uptake
and internalization of apoptotic cells and, importantly, this process
regulates IL-10 induction through PDCD4.

PTEN/PI3K SIGNALING
This study by Das et al. also clearly demonstrates a role for miR-21
in the regulation of TNF production, which separately from the
miR-21/PDCD4 axis, is regulated by an additional miR-21 target
gene, PTEN (47). A key intracellular kinase, PTEN is an impor-
tant regulator of the PI3K/Akt pathway, which functions in many
different cell types, each with unique functions and outcomes, but
most strongly being pro-survival (54). It is not surprising then that
elimination of PTEN, a negative regulator of PI3K activity, by dys-
regulated miR-21 would promote growth and survival in dividing
somatic cells leading to malignant transformation (15, 55).

PTEN and PI3K signaling pathways have also been recently
linked to macrophage phenotype and differentiation of func-
tional subsets. Recently, studies of PTEN-deficient animals show

more alternatively-activated macrophages in various models of
polarization including Kuppfer cells, serving to protect from
liver ischemia—reperfusion injury (56), as well as peritoneal
macrophages marker expression (56, 57). The classical M2 marker
Argl, which is a key target for PI3K/Akt1 signaling, was found
at much higher levels in these cells (57). Sahin et al. went on
to demonstrate that this increased Argl expression resulted from
activation of CEBPP and STAT-3, as well as negative regulation
of NFkB activity. Thus, miR-21 induction forms part of a key
feedback circuit to limit excessive NFkB activity, turn off TNF
production, and thereby transform the activated macrophage into
a more reparative, “clean-up” cell, with key processes such as
efferocytosis of dying cells, enhancing and promoting induction
of this important immune modulator.

TNF PRODUCTION

TNF has been associated with cell death and more recently
high levels of TNF have been implicated in the death process
observed in inflammatory macrophages labeled “necropoptosis”
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(58). Negative regulation of TNF levels by miR-21 therefore may
not just help dampen down excessive inflammation but may also
explain the effects of miR-21 on cell proliferation, migration, inva-
sion, and transformation associated with excessive miR-21 levels
and cancer. Strikingly, reciprocal regulation of miR-21 and TNF
may in fact constitute an autoregulatory loop with evidence accu-
mulating that TNF can promote miR-21 biogenesis (32) as well as
the turnover of PDCD4 in macrophages (50). Moreover, the switch
toward an anti-inflammatory, M2-like phenotype, and general
immuno-regulatory environment, characterized by elevated IL-
10 protein and increased Argl macrophage expression consistent
with decreased TNE, which is associated with increased miR-21
(illustrated in Figure 1), may also account for poor immune
responses against tumor-cells characteristic of tumor-associated
macrophages (TAMs) found in cancer-induced stroma. Thus, stro-
mal miR-21 induction (44) may constitute a pathogenic step in the
biogenesis of cancer that leads to associated immunosuppression
facilitating tumor growth and dissemination.

IL-12 AND ANTIGEN-PRESENTING CELLS

The recent description of miR-21-deficient animals with profound
defects in Th2 responses and skewing toward a Th1 response fol-
lowing administration of the OVA antigen (59) not only confirms
the importance of miR-21 in directing T-cell polarization through
its effects on innate antigen-presenting cells but also identifies
T-cells and the adaptive immune response as a key target of miR-
21 activity in immunity. Importantly, this study builds on earlier
work (26) confirming an important target mRNA for miR-21;
the IL-12p35 mRNA. IL-12, which acts as a strong inducer of
Th1 responses and drives IFNy production, is tightly controlled
and in fact the p35 subunit is found at much lower levels in DCs
and macrophages than its IL-12p70 partner, p40 (60). The find-
ing that miR-21 can fine-tune its expression with big effects on
subsequent immune responses in vivo, highlights the importance
of this tiny 7 nt base-pair interaction. By directing the develop-
ment of an appropriate T-cell response, this interaction again
supports the notion that miR-21 controls the balance of pro-
and anti-inflammatory responses. Accordingly, in diseases where
miR-21 expression is dysregulated, this balance is altered with sub-
sequent effects on innate but also adaptive immune cells, resulting
in pathogenesis.

IMPACT OF DYSREGULATED miR-21 ON IMMUNE
RESPONSES

INFLAMMATORY DISEASES

If miR-21 does indeed represent a key switch in the transition
from a pro-inflammatory to an anti-inflammatory response, it
stands to reason that at times, this key control point will become
dysregulated with impact on the overall immune response, alter-
ing the control and balance of the whole circuit, which mani-
fests as disease. As mentioned above, elevated miR-21 has been
reported in many disease states. On the one hand, increased
miR-21 expression is associated with conditions characterized by
impaired immune responses including asthma (26), psoriasis (38),
cancer (5), and importantly chronic bacterial or viral infections
(61-66) (discussed below). Many of these conditions are associ-
ated with reprograming of pro-inflammatory M1 macrophages

and/or Th1-cells and the appearance of regulatory immune cells
including M2 macrophages, Th2, or regulatory T-cells. Therefore,
miR-21 dysregulation by different triggers (DAMPs or PAMPs)
may in fact promote disease pathogenesis by promoting an
anti-inflammatory, immunosuppressive environment.

Conversely, increased miR-21 expression has also been reported
in diseases fueled by chronic inflammation including colitis (67),
atherosclerosis (40), type 2 diabetes (68), and SLE (53). In these
cases, triggering a regulatory response through miR-21 would be
beneficial, yet this is not manifested in the inflammatory envi-
ronment of these diseased tissues. miR-21 up-regulation may
simply be a marker of increased inflammation in these tissues,
induced by the “fire” of the pro-inflammatory milieu. Curiously,
ablation of miR-21 in some of these models, including coli-
tis (67) and psoriasis (69), has actually been shown to offer
protection from disease, indicating that miR-21 activity is pro-
moting inflammation in these cases. In some cancer models,
miR-21 expression itself is associated with inflammatory activa-
tion. It can promote NFkB activation in breast cancer cells (70)
and TNF and IFNy production in activated T-cells (71). Here,
miR-21 is clearly acting to induce inflammation in transformed
tumor-cells and activated T-cells rather than suppress inflam-
mation in infected or activated macrophages. Differences in its
function may relate to the different target mRNAs engaged in each
cell type. Alternatively, miR-21 may augment general inflamma-
tion — both pro- and anti-inflammatory (50), with the reported
effects on macrophage output observed after miR-21 modulation
simply being reflective of other cues/signals in these cells at the
same time.

TUMOR PROMOTING ACTIVITY

Undoubtedly, miR-21 overexpression drives transformation of
somatic cells and promotes tumorigenesis through effects on cel-
lular growth, migration, and invasion (11-16). It is likely that the
tumor microenvironment itself is also affected by miR-21 activ-
ity. As highlighted above, TAMs, which are re-programed from
initial tumoricidal macrophages recruited to the site to immuno-
permissive M2-like macrophages, are key cell types within the
tumor microenvironment where miR-21 may be exerting pro-
tumorigenic effects. Secretion of miR-21 from tumor-cell-derived
exosomes or up-regulation of miR-21 in TAMs by tumor-derived
pro-inflammatory products such as IL-6 or TNF, may participate
in TAM reprograming and thereby facilitate growth, intravasation,
and spread of tumor cells.

At the same time, as tumor-cells develop, intrinsic miR-21 may
shape their responsiveness to therapy resulting in a more aggres-
sive tumor phenotype. Alongside another immuno-responsive
miRNA, miR-146, which functions as a negative regulator of
TLR signaling pathways (72), miR-21 has been associated with
chemoresistant ovarian epithelial cells (73). Importantly, these
cells are characterized by low MyD88 expression and this key
pro-inflammatory signaling protein has emerged as a key target
for both miR-146 and miR-21. Low MyD88 expression in these
aggressive cancer cells argues that TLR/IL-1 signaling may promote
anti-cancer responses at this stage of disease and again dysregu-
lation of miR-21 in the tumor acts to promote pathogenesis of
disease progression.
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INFECTION

As miR-21 regulates immune responses, it stands to reason that
its induction may represent a target for subversion by invading
pathogens in the ever-evolving arms race between the mammalian
immune system and microbes. Indeed, many studies have char-
acterized the rapid induction of miR-21 following infection of
macrophages and other cells with microbes, including the pio-
neering work by Cameron et al. This study demonstrated that
EBV induces miR-21 during latency, linking this miRNA with
viral persistence (61). In a similar manner, infection of hepato-
cytes with either HBV or HCV was recently shown to induce
miR-21 (62, 65), and in addition to promoting viral replication
by enhancing growth and survival of the infected cell, miR-
21 induction also modulates the host response in favor of the
virus. Interestingly, signaling components of the TLR system
(MyD88 and IRAK) have emerged from these studies as targets for
miR-21 with the downstream consequence of decreased induc-
tion of anti-viral interferon-o during infection (62). Similarly,
infection of renal cells with pseudorabies virus (PRV) induces
miR-21, which targets mRNA for the important host chemokine
CXCL10/IP-10 (63).

Studies of pathogen-induced miR-21 not only tell us more
about the important immune-relevant target mRNAs for miR-
21 but also about immune evasion strategies employed by the
pathogen. For example, mycobacterial species, which persist and
replicate in macrophages by successfully interfering with host
responses, have been shown to induce miR-21. This subse-
quently targets multiple components of key pathways required
for mycobacterial containment, including vitamin-D-dependent
induction of anti-microbial peptides and the induction of pro-
inflammatory cytokines including IL-1, TNF, IL-12, and IFNy
(64, 66). In particular, the finding that the avirulent mycobac-
terial strain BCG, used with mixed success to vaccinate against
tuberculosis worldwide, induces miR-21 to escape immune
responses (66), supports the notion that blocking miR-21 may
in fact boost immunity and therefore temporal and specific
inhibition of miR-21 may be an ideal candidate for vaccine
development.

REWIRING THE CIRCUIT — miR-21 AS AN ATTRACTIVE
TARGET FOR THERAPEUTIC INTERVENTION?

With interest in antisense technology increasing due to improved
delivery techniques, specific targeting and more -effective
chemistries emerging, programs to target miR-21 in disease are
being developed (74). Published studies have shown beneficial
effects in various models although the exact mechanism con-
tributing to this remains unclear. These studies are listed in
Table 2, which highlights differences and commonalities in the
methodologies and approaches used. Although effects of silencing
miR-21 using antisense technology to counteract cardiac fibrob-
last remodeling in response to stress (75) were not reproducible
in miR-21-deficient mice (76), there remains interest in block-
ing miR-21’s pro-fibrogenic activity particularly in response to
ischemic—reperfusion injury (77). Early studies using anti-miR
technology to block interstitial fibrosis demonstrated that pro-
tection from disease was generated through modulation of the
key metabolic sensor, and miR-21 target, PPARa (78). However, it
remains possible that miR-21 can exert some of its pro-fibrogenic
activities through regulation of inflammatory signaling pathways
such asIL-10 and TGF-f. Antisense to miR-21 has also been shown
to reduce disease in two models of chronic inflammatory disease —
psoriasis and SLE, with miR-21 inhibition in these cases apparently
reducing inflammation, through effects on T- and B-cell activation
and proliferation (in the SLE model) (79) and through negative
regulation of MMP activity and TNF production (in the inflamed
epidermis in the psoriasis model) (69).

Recent basic science studies attempting to understand miR-
21’s complex biology better, are affecting targeting strategies and
the development of miR-21 modulators for disease. Intriguingly,
a study of miR-21 overexpression in hepatocytes observed differ-
ences in mRNA target engagement dependent upon the degree
of overexpression, correlating with dysregulation of miR-21 in
diseased tissue (81). This confirms that miR-21 behaves differ-
ently under various circumstances, including the level of miR-21
up-regulation itself and will affect strategies to target miR-21 in
diseased tissue. With the widespread availability of advanced tran-
scriptomic technologies, we may need to move toward a closer

Table 2 | Published studies employing antisense to miR-21 to block disease.

Disease model Oligonucleotide technology = Treatment Result mRNA targets Reference Company
Cardiac hypertrophy ~ AntagomiR — cholesterol Daily — 3 days, Protection — less cardiac ~ SPRY (75) Alnylam
modified 80 mg/kg damage and fibrosis Pharma
Anti-miR — sugar modified As above Protection (80) Regulus
phosphothiorate backbone Therapeutics
LNA (8-mer) As above No difference (76, 80)
Renal fibrosis Anti-miR— Daily — 3 days Protection — decreased PPARa (78) Regulus
20 mg/kg interstitial fibrosis Therapeutics
SLE Locked nucleic acid (LNA) 12 weeks (Prime Protection — decreased Not defined (79) Santaris
+ 3-weekly) splenomegaly Pharma
25mg/kg
Psoriasis LNA Protection TIMP3 (69) Sataris Pharma
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examination of elevated miR-21 and its impact upon the host
cell transcriptome to get a clearer picture of the exact processes
regulated by this particular miRNA.

As with any therapy designed to alter the balance of immune
responses, the possibility of off-target effects or predisposition to
other conditions, perhaps those characterized by chronic inflam-
mation, exists. With greater understanding of miR-21 regulation
and function, we may be able to tailor RNA-therapies and avoid
off-target consequences. Furthermore, the notion of targeting spe-
cific miRNA:mRNA interactions via morpholino technology may
avoid the deleterious effects of broad inhibition of miR-21 (82) and
more specific delivery technologies such as B-glucan microparti-
cles, which hone specifically to macrophages could be utilized to
limit the effects of inhibition to a specific target cell-type (83).
The transience and high turnover of RNA itself may help limit the
effects of antisense treatment to the short-term. At the same time,
caution needs to be erred when inhibiting an miRNA as ubiquitous
and promiscuous as miR-21. Indeed, the area of miR-21 turnover
and decay itself remains an unexplored area and its study may
enhance our understanding of the role of miR-21 in immune
responses, providing alternative means to antisense technology
for limiting its expression in vivo.

ADAPTIVE IMMUNITY
Thus far, this review has concerned itself with miR-21 induction in
cells of the innate immune system. However, as alluded to earlier,
miR-21 is also found in both T and B-cells and its role in these
cells is the subject of much investigation. Thus, employment of
strategies to target miR-21 for modulation of immune responses
requires anticipation of the effects on these cell types also.
Profiling studies of T-cells indicate that miR-21 is induced and
acts as a marker of activated T-cells (19, 20), promoting survival
and activation of these cells (84—86). In this way, miR-21 induction
serves as a means to stratify naive from activated T-cells, possibly
assisting in the co-ordination of T-cell memory. Despite its expres-
sion across multiple T-cell subsets, intrinsic miR-21 can also affect
T-cell polarization. Naive T-cells transfected with miR-21 develop
amore Th2/Treg phenotype (87) and this may be due to engaging
different targets expressed in response to various other polarizing
signals including BCL-6. T-cell miR-21 may also play an impor-
tant role regulating tolerance to self, as demonstrated by studies
showing exaggerated miR-21 induction in activated T-cells from
PD1-deficient mice (88). These studies highlight the dual roles
that T-cells play in regulating immune responses. While they must
promote pro-inflammatory responses and eliminate infected cells,
they must also orchestrate clearance of infection and promote
resolution. T-cell miR-21 seems treads a fine line in balancing
these processes and may become dysregulated during cases of
autoimmunity.

CONCLUSION

Over the last 10years, much effort has been placed in profil-
ing the miR-nome of various cells under different conditions.
From this, miR-21 has emerged as important miRNA both highly
expressed and dynamically regulated in various cell types. Since
then, identification of miR-21 function has been complicated not
only by the possibility for many mRNA target interactions but
also by its complex regulation in response to extracellular signals.

The possibility has emerged that miR-21 can regulate numerous
processes involved in correct cell function, survival, and prolifer-
ation, which if interrupted, can predispose to cellular transforma-
tion. However, it has also been linked to key processes involved in
inflammation, detecting and responding to disturbances in home-
ostasis throughout the body, and orchestrating these responses
appropriately. miR-21 therefore plays a dynamic role in inflamma-
tory responses. Unlike other mediators, its presence is not solely
characteristic of a pro-inflammatory or an immunosuppressive
state, but is acting as a key signal mediating the balance and tran-
sition between both states. In essence, miR-21 induction can be
seen as a “molecular rheostat” regulating the inflammatory switch.
This makes it a novel and attractive target for therapeutic inter-
vention and enhanced knowledge of its specific mRNA targets,
as well as the signaling pathways and cellular processes regulated
by miR-21, can only enhance its usefulness and attractiveness in
this area.
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