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Platelets are non-nucleated cells that play central roles in the processes of hemostasis,
innate immunity, and inflammation; however, several reports show that these distinct func-
tions are more closely linked than initially thought. Platelets express numerous receptors
and contain hundreds of secretory products. These receptors and secretory products are
instrumental to the platelet functional responses.The capacity of platelets to secrete copi-
ous amounts of cytokines, chemokines, and related molecules appears intimately related
to the role of the platelet in inflammation. Platelets exhibit non-self-infectious danger detec-
tion molecules on their surfaces, including those belonging to the “toll-like receptor” family,
as well as pathogen sensors of other natures (Ig- or complement receptors, etc.). These
receptors permit platelets to both bind infectious agents and deliver differential signals
leading to the secretion of cytokines/chemokines, under the control of specific intracellular
regulatory pathways. In contrast, dysfunctional receptors or dysregulation of the intracellu-
lar pathway may increase the susceptibility to pathological inflammation. Physiological vs.
pathological inflammation is tightly controlled by the sensors of danger expressed in rest-
ing, as well as in activated, platelets. These sensors, referred to as pathogen recognition
receptors, primarily sense danger signals termed pathogen associated molecular patterns.
As platelets are found in inflamed tissues and are involved in auto-immune disorders, it is
possible that they can also be stimulated by internal pathogens. In such cases, platelets can
also sense danger signals using damage associated molecular patterns (DAMPs). Some
of the most significant DAMP family members are the alarmins, to which the Siglec family
of molecules belongs.This review examines the role of platelets in anti-infection immunity
via their TLRs and Siglec receptors.

Keywords: platelets, innate immunity, cytokine/chemokine, inflammation,TLR, Siglec

INTRODUCTION
It is well accepted that blood platelets play a principal role in
primary hemostasis. Since more than 50 years, they have been
used therapeutically as transfused blood products (1), and platelet
extracts have been used for their healing properties, especially
in ophthalmology (2). Platelet concentrate transfusions were
considered necessary in a number of situations (e.g., central
thrombocytopenia in preference to peripheral thrombocytopenia;
thrombopathy associated with bleeding; severe bleeding or risk
of bleeding) (3). However, transfusion hazards and, at minimum,
discomfort, are common (4), leading the medical community to
question this therapy.

Traditionally, hemostasis and thrombosis have been considered
difficult to understand for non-specialists. However, there is a gen-
eral understanding that human platelet antigen (HPA) polymor-
phisms can complicate the post-transfusion situation in throm-
bopathies, such as von Willebrand disease (4) and pregnancies
and deliveries [notably regarding fetal neonatal allo-immunization
(FNAIT) (5)], along with allo-immunization to HLA class I
antigens responsible for transfusion refractoriness (6).

Now, however, it is recognized that platelets have a complex
role in the whole process of hemostasis and thrombosis (7).
As the platelet proteome started to be investigated, it became
clear that platelets contain proteins beyond those with hemosta-
tic functions, including angiogenic factors, growth factors, pro-
inflammatory factors, anti-inflammatory factors, and biological
response modifiers (BRMs) (8).

AN OVERVIEW OF THE MAIN PLATELET RECEPTORS
Platelets play a vital role in hemostasis, especially primary hemo-
stasis, and subsequently in vascular repair (9). Platelet membrane
integrins interact with the subendothelial matrix of a damaged
vascular wall, leading to their activation and subsequent creation
of a platelet thrombus together by fibrinogen (Fg) to close the
vascular lesion and terminate blood loss (10).

Activated platelets liberate arachidonic acid from membrane
phospholipids, which in turn is converted to thromboxane A2

(TxA2). As a consequence, TxA2 is secreted and acts on TP
receptors on the cell surface of other platelets, leading to fur-
ther platelet activation. The TP receptor belongs to the major
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agonist receptor family seven transmembrane G-protein coupled
receptors (GPCRs).

Granule contents are released from activated platelets. The
dense granules contain important agonists like ADP and sero-
tonin. ADP is a significant amplifier of initial platelet aggregation
(11). It interacts with specific extracellular membrane receptors to
induce intracellular signaling. There are two classes of receptors
for ADP, P2Y1 and P2Y12, which belong to the GPCR family (12)
and P2× 1, which belongs to the ADP/ATP determined calcium
channel family of purinergic receptors (13, 14). Engagement of
the TP receptor by TxA2 and P2Y1 by ADP lead to the hydrol-
ysis of phosphatidylinositol-4,5 bisphosphate by phospholipase
C (PLC), leading to the generation of diacylglycerol (DAG) and
inositol triphosphate (IP3) (15). DAG and IP3 stimulate protein
kinase C and cause release of calcium from the dense tubular
system, respectively, which in turn are responsible for many of
the final event associated with platelet activation, including the
exocytosis of platelet granules. ADP interacts with calcium acti-
vated pathway. P2Y12 receptor has been reported to potentiate
platelet secretion and be involved in“sustained irreversible platelet
aggregation” (12).

Platelets express a class of cell surface protease-activated recep-
tors (PARs), which are members of the GPCR family and activated
by thrombin. Human platelets only express PAR1 and PAR4, not
PAR2 and PAR3 (16). PAR1 is also the most abundant PAR,
expressing about 2500 copies per platelet and is, therefore, pre-
dominant for thrombin mediated platelet activation. PAR1 is a
highly glycosylated protein that consist of 425 amino acids and
has a molecular weight of 70 kDa. PAR4 on the other hand,
the last PAR to be discovered, consists of 397 amino acids (17).
The PAR1 activating peptide SFLLRN and PAR4 activating pep-
tide AYPGKF are synthetic peptides with the same sequence as
their respectively N-terminal after cleavage. They are widely used

in research because they effectively and specific activate their
receptors (18).

Interestingly, several hemostatic receptors, in addition being the
subject of genetic polymorphisms leading to variant HPAs, bind
to infectious pathogens (Figure 1).

Platelets also express receptors that indirectly bind infectious
pathogens: Complement (C) Rs and Fc-Ig-Rcs (Table 1).

The apparently complex relationships between platelets and
infectious pathogens, as well as the involvement of platelets during
sepsis, which have been the subject of recent reviews (10, 27–33),
led a number of groups to examine the possibility that platelets
have dedicated roles in innate immunity and foremost in pathogen
sensing. Those groups almost simultaneously described, both in
mice and humans, the presence and then the functionality of toll-
like receptors (TLRs) on (TLR2/TLR1/TLR6 and TLR4±TLR9)
and in platelets (TLR9) (19, 23, 24, 34–36). It is only recently that
TLR3 (37) and TLR7 (38) have also been identified. This discovery
allowed a paradigm change in the understanding of platelet phys-
iopathology, putting platelets in a continuum of immunity, at the
crossroad of innate and adaptive immunity (10, 35, 39–41).

By contrast, Montrucchio et al. (42) demonstrated that platelets
neither bind FITC-LPS nor express the LPS-receptors CD14 and
toll-like receptor 4 (TLR4); in contrast, LPS primed monocytes –
and to a lesser extent polymorphonuclear neutrophils – proved to
adhere to platelets. Next, both platelet–leukocyte interactions and
platelet aggregation (in whole blood) were inhibited by blockade
of CD14 and TLR4.

It must also be noticed that the Sabroe team observed no mod-
ulation in platelet response after engagement of TLR1 and TLR4
(43), no platelet aggregation, no increase in CD62p on the platelets
surface, and no increase in intra-platelet Ca2+ levels after stimu-
lation by “natural” ligands of TLR2 (e.g., Pam3CSK4) or TLR4
(e.g., LPS); this allowed them to conclude that agonists of platelet

FIGURE 1 | Platelet immune receptors. CLEC-2, C-type lectin-like type II
transmembrane receptor; CR-2, complement receptor type 2; CCR-1, CCR-3,
and CCR-4, C–C chemokine receptor type 1, 3, and 4, respectively; CXCR-4,
C-X-C chemokine receptor type 4; DC-SIGN, dendritic cell-specific intercellular

adhesion molecule-3-grabbing non-integrin; GP-VI, glycoprotein VI; CAR,
coxsackie adenovirus receptor; s.a, Staphylococcus aureus; s.g,
Streptococcus gordonii ; s.s, Streptococcus sanguinis; s.e, Staphylococcus
epidermidis. Adapted from Ref. (10, 19–23).
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Table 1 | Platelet–bacteria interactions adapted from Ref. (24–26).

Platelet receptors Bacteria/fungi Bacterial

proteins

Intermediary

plasma

molecules

GP-IIb–IIIa S. epidermidis SdrG Fg

S. Aureus FnbpA/B Fibronectin

S. Aureus FnbpA/B Fg

S. Aureus ClfA Fibronectin

S. Aureus ClfA Fg

S. Aureus IsdB Direct

S pyogenes M1 Fg

S gordonii PadA Direct

S. lugdunensis Fbl Fg

GP-Iba S. sanguis SrpA Direct

S. gordonii GspB/Hsa Direct

S. Aureus Protein A vWF

H. pylori ? vWF

FCγRIIa S. Aureus FnbpA/B IgG

S. Aureus ClfA IgG

TLR2 S. pneumoniae ? Direct

? Lipoprotein Direct

TLR4 E. coli LPS Direct

gC1q-R S. sanguinis ? C1

TLR Fungi ? Complement

Protease-activated

receptors

Fungi ? Complement

ClfA, clumping factor A; Fnbp, fibronectin-binding protein; Fg, Fibrinogen; GspB,

glycosylated streptococcal protein B; Hsa, hemagglutinin salivary antigen; IsdB,

iron-regulated surface determinant B; LPS, lipopolysaccharide; PadA, platelet

adhesion binding protein A; SdrG, serine–aspartate repeat G; SrpA, serine-rich

protein A; TLR, toll-like receptor; VWF, von Willebrand factor; ?, undefined.

TLRs have no direct effect on platelet activation. This was rather
puzzling because agonists of TLR2 and TLR4 are acknowledged to
play a significant role in diseases such as atherosclerosis; a mecha-
nism other than the direct activation of platelets is believed to be
involved.

Similar data have been observed by Jayachandran et al. (44)
who attempted to determine whether LPS affects platelet pheno-
type after TLR4 engagement. After injecting knockout (KO) mice
for the TLR4 coding gene with a non-lethal dose of LPS (0.2 mg/kg
IV), they demonstrated that the platelets in TLR4 KO mice are less
abundant than in normal mice, contain less RNA, and express less
CD62p upon thrombin exposure. However, platelets from TLR4
KO mice do neither aggregate nor secrete adenosine triphosphate
upon thrombin stimulation. One week after injection (which is the
time required for a full turnover of the platelet pool), the num-
ber of circulating platelets, the CD62p expression, and the platelet
aggregation had increased; consequently, the platelet phenotype
observed 1 week after exposure to LPS appears independent on
TLR4. It is concluded that the 1-week lasting effect of LPS is related
to the megakaryocytes themselves and the platelets they produce,
rather than to the already circulating platelets (44).

Platelets, already identified as secretors of pro-inflammatory
cytokines, chemokines, and BRMs, such as soluble-CD40-Ligand

(sCD40L)/sCD154, were revisited for their role in inflammation
(45–48).

Initially, platelet linked-inflammation was recognized in
pathologies, such as transfusion associated hazards or adverse
events, however, further work also identified platelets in peripheral
pathologies, such as in cardio-vascular disease and atheroma-
plaque formation, inflammatory bowel disease, and arthritis (20,
27, 41, 49–58). This identified the role of platelets in patholog-
ical inflammation; however, a role for platelets in physiologi-
cal inflammation, as this concept potentially established in the
immunology landscape (59, 60), remained ill-defined. A series
of dedicated studies aimed at stimulating platelets with a vari-
ety of defined activators with small differences demonstrated that
platelets, despite being non-nucleated, are capable of mobilizing a
signalosome differentially, and to secrete discrete panels of BRMs
upon activator-dependent stimulation. Platelets appear to have the
ability to decipher between vessel endothelial cell injuries eliciting
hemostatic responses and between distinct infectious pathogen
moieties; however, both types of receptors can be engaged in par-
allel as – for example – responses to TLR2 engagement on platelets
involves PAR1 (61, 62).

In summary, the newly proposed paradigm on platelet patho-
physiology is that platelets are equipped with multiple receptors
aimed at sensing their environment; basically, the principal danger
that can be sensed by circulating platelets is created by endothelial
damage. Under normal situations, platelets can repair this damage
by eliciting a local micro-inflammatory response aimed at recruit-
ing repairing and healing molecules. In addition, platelets can also
sense, under certain circumstances, other potential dangers, such
as infectious pathogens harboring Pathogen Associated Molecular
Patterns (PAMPs). Therefore, platelets can be regarded as sen-
tinels of danger, especially at the vascular level. Platelets are thus
involved along the spectrum of inflammation, from physiology to
pathology.

Platelets are engaged in complex relationships with leuko-
cytes [all types (63–66)], notably with polymorphonuclear cells
(PMNCs – formally known as neutrophils), both in physiology
and pathology (67–73). It has recently been shown that platelets
express a (or the) triggering receptor expressed on myeloid cells
1 (TREM1)-receptor which, when engaged by a protein expressed
on neutrophils, TRIM1, increases the activation of these cells
and modulates the inflammatory response by augmenting both
IL-8 secretion and the production of reactive oxygen species
(ROS) (74).

Further studies identified that platelets were capable of leaving
the circulation (they were initially thought to be strictly contained
in the blood flux), especially by being “cargoed” by leukocytes
(66, 75, 76), and to participate in peripheral pathology [by them-
selves and by microparticles (PMPs) shed from their membrane
(77–79). The capacity of platelets to sense damaged tissues was
then addressed and proved to depend on platelet expression of
damage associated molecular patterns (DAMP)-sensors] (80, 81).
Moreover, Varki et al. (82) proposed “self-associated molecu-
lar patterns” (SAMPs), which would be recognized by intrinsic
inhibitory receptors, to maintain the baseline non-activated state
of innate immune cells and dampen their reactivity following an
immune response. To detect such SAMPs, there must be cognate
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Self-PRRs (SPPRs). The first-studied example was factor H and the
second are the Siglec (sialic acid recognizing Ig-like lectins), which
have N-terminal V-set Ig-like domains that recognize sialic acids
and often have tyrosine-based inhibitory signaling motifs within
their cytosolic tails (83–87). Siglec molecules (Siglec-7, 9, and 11)
are now acknowledged as controlling platelet apoptosis (88).

THE PLATELET TOLL-LIKE RECEPTORS
BACKGROUND ON TLRs
Toll-like receptors are expressed either on the external surfaces or
in the cytoplasms of a wide variety of cells involved in immune
processes, and are, to a large extent, involved in natural (or
innate) immunity. In particular, TLRs are membrane receptors
for pathogens known to play a major role in phagocytosis and
inflammation.

It should also be noted that TLRs have endogenous ligands with
the capacity to cause, or accelerate, inflammation; these include
heat shock proteins (HSP) 60 and 70, Fg, and a diverse products
of apoptotic cells (89).

Toll-like receptor expression was initially discovered on
immune cells (Table 2), such as macrophages, dendritics cells
(DCs), and, later, in B-lymphocytes, as well as some categories of T
lymphocytes. These receptors are key-players in the defense of the
body, as they form the interface between recognition of the danger
signal (pathogenic or endogenous) and initiation of various types
of immune response (inflammation, release of molecules involved
in inducing adaptive response). The example that best emphasizes
their importance is the activation of TLRs present on the sur-
face of DCs. The signaling pathways concerned lead to the release
of pro-inflammatory cytokines as well as the “up-regulation” of

Table 2 | Summary of known mammalianTLRs and Siglecs.

Name Expression Ligands – Sialic acid

linkage specificity

Name Expression Ligands

S
ig

le
c-

fa
m

ily
p

ro
te

in
s

in
h

u
m

an
s

Siglec-1 (CD169) Mac α2,3 > α2,6

T
LR

-f
am

ily
p

ro
te

in
s

in
h

u
m

an
s

TLR1 B, Mo, Mac, DCs, Plt Multiple triacyl lipopeptides

Siglec-2 (CD22) B α2,6 TLR2 Mo, Mac, N, MyDCs, Mc, Plt Multiple glycolipids

Multiple lipopeptides

Multiple lipoproteins

Lipoteichoic acid

HSP70

Zymosan (beta-glucan)

Siglec-3 (CD33) Mo, MyP α2,6 > α2,3 TLR3 DC, B, Plt Double-stranded RNA

Poly I:C

Siglec-4 (MAG) OligoD, Schw α2,3 > α2,6 TLR4 Mo, Mac, N, MyDCs, Mc, B,

IE, Plt

Lipopolysaccharide heat shock

proteins

Fg

Heparan sulfate fragments

Hyaluronic acid fragments

Nickel

Various opioid drugs

Siglec-5 (CD170) N, Mo, B α2,3 TLR5 Mo, Mac, DC, IE Bacterial flagellin

Profilin

Siglec-6 (CD327) Troph, B α2,6 TLR6 Mo, Mac, B, Mc, Plt Diacyl lipopeptides

Siglec-7 (CD328) NK, Mo, Plt α2,8 > α2,6 > α2,3 TLR7 Mo, Mac, pDC, B, Plt Imidazoquinoline loxoribin (a

guanosine analog)

Bropirimine

Single-stranded RNA

Siglec-8 Eo, Ba α2,3 > α2,6 TLR8 Mo, Mac, DC, Mc Small synthetic compounds;

single-stranded RNA

Siglec-9 (CD329) Mo, N, DC, NK, Plt α2,3= α2,6 (prefers

sulfated residues)

TLR9 Mo, Mac, pDC, B, Plt Unmethylated CpG

oligodeoxynucleotide DNA

Siglec-10 B, Mo, Eo α2,3= α2,6 TLR10 Unknown Unknown

Siglec-11 Mac, Plt α2,8 TLR11 Mo, Mac, LC, KC, UBE Profilin

Siglec-14 ND α2,6 TLR12 NE, pDC, DC, Mac Profilin

Siglec-15 ND ND TLR13 Mo, Mac, DC Bacterial ribosomal RNA sequence

“CGGAAAGACC”

Toll-like receptors and Siglecs bind different ligands and are expressed by different types of leukocytes or other cell types. Human B, B cells; Ba, basophils; cDCs, con-

ventional dendritic cells; Eo, eosinophils; GRB2, growth-factor-receptor-bound protein 2; ITIM, immunoreceptor tyrosine-based inhibitory motif; Mac, macrophages;

Mo, monocytes; MyP, myeloid progenitors; N, neutrophils; ND, not determined; NK, natural killer cells; OligoD, oligodendrocytes; pDCs, plasmacytoid dendritic cells;

Schw, Schwann cells; Troph, trophoblasts; Plt, platelets, My DC, Myeloid dendritic cells; Mc, Mast cells; IE, Intestinal epithelium; liver cells, LC; kidney cells, KC;

Urinary Bladder Epithelium, UBE; Neurons, NE. Adapted from Ref. (10, 35, 84, 86–88, 91–97).
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molecules that potentiate the function of Ag presentation (class
II CMH, IL-12, CD80) and consequently the activation of T
lymphocytes (90).

Toll-like receptors are also expressed by cells considered non-
immune but which occupy the interface between the outside
environment and the immune system, in particular fibroblasts and
epithelial cells (98).

Toll-like receptors are type 1 transmembrane proteins possess-
ing: (i) leucine-rich ectodomains folded into β-sheets, enabling the
interaction with PAMPs; (ii) a transmembrane domain; and (iii)
a cytoplasmic “Toll-interleukin-1 receptor” (TIR) domain that is
fundamental to signal transduction. To date, 10 TLRs have been
identified in humans and 13 in mice; TLR12 and TLR13 have not
been identified in the former but the latter (89). Of note, TLR11
has the unique feature of possessing a sequence recognized as a
stop codon by human transcription machinery; Toxoplasma pro-
filin, a ligand of murine TLR11, is recognized by humans and a
truncated, but functional, form of TLR11 is, therefore, presumed
to exist in the human (99).

The PAMPs recognized by TLRs are lipids, lipoproteins, pro-
teins, or nucleic acids derived from bacteria, viruses, fungi, or par-
asites. Moreover, PAMPs can be recognized by TLRs in various cel-
lular compartments, including the plasma membrane, endosomes,
lysosomes, and endolysosomes (89). After engagement, each TLR

triggers its own distinctive biological response, which is specific for
the PAMP recognized. These differences were identified by the dis-
covery of various adaptive molecules that bind to the TIR domain;
these include the “Myeloid differentiation primary response gene
(88)”(MyD88), TIRAP, TIR-domain-containing adapter-inducing
interferon-beta (TRIF), and TRAM. These adaptors activate a vari-
ety of signaling pathways. Refer to Figure 2 for a more detailed
description of TLR-signaling pathways.

High mobility group box 1 (HMGB1) is a protein that in
humans that is encoded by the HMGB1 gene. Platelets bind to
HMGB1 but the cell surface receptor mediating this interaction is
less documented. Platelets express previously recognized HMGB1
receptors TLR2/4/9, RAGE, transmembrane proteoglycans, and
anionic lipids. Whether these structures mediate HMGB1 binding
to platelets has not been much studied.

Recently, Yu et al. (100) evidenced a mechanism by which
platelets promote tumor cell metastasis and suggest TLR4 – and
its endogenous ligand HMGB1 (alarmin HMGB1) – as tar-
gets for antimetastatic therapies. The Manfredi’s team reported
that activated platelets present HMGB1 to neutrophils and
commit them to autophagy and neutrophil extracellular trap
(NET) generation (101); further, the abundantly produced ROS
dramatically increased the ability of extracellular HMGB1 to
activate blood leukocytes (102). Moreover, Vogel et al. (103),

FIGURE 2 |TheTLR signaling pathway and modulation effector
molecules. Depending upon the TLR involved, the nuclear translocation
of transcription factors occurs, including the “nuclear factor kappa B”
(NFκB) in early and late stages (all TLRs), AP-1 (all except TLR 3), the

“interferon regulation factor” (IRF)-3 (TLR3 and TLR4) and IRF-7
(TLR7/8/9). These pathways lead to inflammatory cytokine synthesis, or
at least secretion in the case of platelets, as well as the production of
interferon type 1 (IFN1).
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demonstrated that migration of mesenchymal stem cells (MSC)
to apoptotic cardiac myocytes and fibroblasts was driven by hepa-
tocyte growth factor (HGF), and platelet activation was followed
by HMGB1/TLR4-dependent downregulation of HGF receptor
MET on MSC, thereby impairing HGF-driven MSC recruitment.

Toll-like receptors are vital to immunity. However, inappro-
priate responses can, alternatively, trigger chronic and acute
inflammation as well as auto-immune illnesses (triggered by the
recognition of endogenous ligands) (104).

TLR EXPRESSION ON/IN MEGAKARYOCYTES AND PLATELETS
Identification in megakaryocytes
Megakaryocytes (MK) have been shown to contain mRNA, which
codes for TLRs, consistent with these receptors being continu-
ously expressed in MK lineage cells rather than captured through
the circulation (34, 35, 62). Moreover, several studies have shown
TLR expression both on human megakaryocyte lineage cells (34)
and on the MK of mice or isolated from human donors (62, 105),
suggesting the origin of platelet TLR expression.

Toll-like receptor 4 expression increases during the MK matura-
tion process. The kinetics of expression of this receptor is similar to
that of CD41 (106). Similarly, TLR9 shows a considerable increase
in the number of transcripts from day five of MK differentiation
in pro-platelets (105).

In contrast to the burgeoning studies into the role of platelet
TLRs, few studies have been conducted on the functional role of
TLRs on MKs. Two studies (44, 106) have shown that TLR4−/−

mice have defects in their circulating and reticulated platelet
counts compared with wild-type mice, suggesting that TLR4 could
play a role in thrombocytopoiesis. Recent studies have shown that
hematopoiesis is not a stereotypical phenomenon; rather, it can
be activated by an inflammatory environment (107). The TLR4
of hematopoietic precursors may be involved in this regulation.
This hypothesis appears to be confirmed by a study showing that
mice stimulated by a TLR4 ligand, at a non-lethal dose, have a
higher number of platelets compared with untreated mice (44).
An increase in the number of encoding transcripts has also been
noted for TLR1 and TLR6 in MKs grown in the presence of IFNγ

in both a dose-dependent and a time-dependent manner (107).
This could be a mechanism that enables newly formed platelets to
be more numerous, augments the amount of their TLRs and plays
a more active anti-infectious role as a result.

Early identification on/in platelets
In 2004, Shiraki et al. demonstrated the presence of TLR1 and
TLR6 on platelet surfaces and their possible involvement in the
process of atherosclerosis (34). Studies conducted that same year
by our team complemented these findings with the discovery
of TLR2, TLR4, and TLR9 on both the human platelet surface
membrane and in the cytoplasm; further these TLRs could be
modulated, based on the state of platelet activation (106, 108, 109)
(Figure 3).

Platelet TLR expression has also been observed in rodents (62),
which are a widely used model for the study of these molecules; the

FIGURE 3 | Platelets express several functional toll-like receptors (TLRs), such asTLR2,TLR3,TLR4,TLR7, andTLR9, which may potentially link innate
immunity.
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characterization of TLRs has also been investigated on the surface
of in chicken thrombocytes (110).

Function of TLR4 in platelets
Toll-like receptor 4 is the most abundantly expressed TLR on
platelets (111). Several groups have examined its function in
humans and mice (10, 19, 35, 106, 109).

Lipopolysaccharides (LPS), a major component of the mem-
brane of Gram-negative bacteria, are ligands of TLR4. On eukary-
otic cells, TLR4 forms a complex with the MD-2 molecule, thus
enabling binding to LPS. Other proteins contribute to LPS binding,
such as the “LPS Binding Protein” (LBP) and CD14 (98, 112).

The engagement of platelet TLR4 by LPS significantly increases
the number of spliced mRNA encoding tissue factor (TF), which
are then translated into functional proteins (113). LPS has been
shown to cause severe thrombocytopenia in murine models, with
a 60% decrease in the platelet count 4 h after treatment with LPS,
compared with a 20% decrease in TLR4 KO mice (106). These
results, therefore, suggest that platelet TLR4 is functional in vivo.
The reduction in circulating platelets after LPS binding can have
two causes: (i) an accumulation of platelets in the lungs (along
with the otherwise described neutrophil sequestration) (52) and
(ii) an increase in their destruction by phagocytosis (114, 115).

The signaling through TLR in general and TLR4 in particular,
in platelets has also been examined. Specifically in platelets, the
associated intracellular signaling pathways are less clear than in
nucleated cells, as the purpose and function of these transcrip-
tion factors has to be further elucidated. However, the engage-
ment of platelet TLR4 potentiates signaling pathways tradition-
ally detected in platelets. A notable example is the LPS dose-
responsive increase in cGMP (116). Inhibition of PKG signaling
blocks TLR4-dependent platelet responses, suggesting that cGMP
is involved in TRL4-dependent activation (117). MyD88 expres-
sion has also been demonstrated in platelets at levels comparable
to that obtained with leukocytes (117). Moreover, LPS-induced
aggregation was not observed in MyD88-deficient mice or using
salting-out processes in immunomodulatory factors (117). As is
the case with other cell types, MyD88 is required for transmission
of the signal emitted by TLR4 in platelets. It may be proposed,
therefore, that either there is the creation of a link with other
signaling pathways or the initiation of a TLR pathway specific
to platelets. This suggestion is based on our observations that in
addition to MyD88, platelets express most of the molecules tra-
ditionally involved in signal transduction, such as TRIF, MyD88,
TBK-1, IRAK-1, JNKs, MAPk, TRAF3, TRAF6, IRF-3, IKK-i, IκB-
α, and NF-kB p65 (111). For an identical amount of protein
extracts, the expression of certain molecules is at times even
stronger in platelets than in PBMCs. The level of signal trans-
duction molecules in platelets is quite abundant, in amount that
would be usable for intracellular signaling in platelets; the pre-
cise meaning of such abundant levels of, i.e., NF-kB in platelets
is questioned. This would explain why we showed a difference
in platelet activation depending on whether a smooth-type or a
rough-type LPS is used as the stimulant. Studies in leukocytes
revealed that smooth-type LPS stimulates only the MyD88 path-
way while rough-type LPS, owing to its high affinity, has the ability
to activate both pathways. While this distinguishing mechanism

is present in platelets, the activation of each of these pathways
proved to be associated with differential cytokine release (118).
TRAF6 has a key role in signaling via platelet TLR4, leading pos-
sibly to de novo synthesis of IL1-β. In fact, direct stimulation
of TRAF-6 produces splicing five times thicker than is obtained
in platelets stimulated by LPS. TRAF-6 activation is followed by
phosphorylation of Akt and JNK (119). These phosphorylation
events are sufficient to initiate the splicing of mRNA encoding
IL-1β. Consequently, a derivation of the TLR4 pathway by TRAF6
occurs, allowing the signal to pass through the Akt and MAP kinase
pathways.

Several studies have reported that TLR4 expression varies
depending on the state of activation of the platelet (23, 109, 120)
(Figure 3). Platelet stimulation by thrombin leads to increased
TLR4 expression, which, in synergistic combination with mem-
brane CD62P, enables improved LPS binding (120). The fact that
platelets have an intracellular pool of TLRs (108) may account
for the receptor’s translocation to the surface during activation.
Even while the LPS does not apparently induce platelet aggrega-
tion, it nonetheless potentiates the response triggered by very small
concentrations of thrombin and collagen. Our group has shown
that TLR4 engagement potentiates the activation of cGMP, bridg-
ing activation and aggregation; however, when used at high doses,
LPS appears to induce aggregation by itself (57).

As in eukaryotic cells, the function of platelet TLR4 is supported
by one or more plasma molecules; the addition of recombinant
CD14 to washed platelets, as well as LBP, allows optimal activation
to be restored (119–121). CD14, and possibly also MD-2, could
be borrowed by platelets in the environment. This is, however,
somehow disputed (57).

Several studies have examined the effect of platelet TLR4
engagement on the salting-out of immunomodulatory molecules.
For example, Aslam et al. demonstrated that the administration
of Escherichia coli O111 LPS to mice leads to an increase in the
serum levels of “Tumor necrosis factor” (TNF)-α, mainly derived
from platelets (109). Our team used similar LPS to stimulate
in vitro purified platelets obtained from healthy blood donors; we
observed a modulation of certain molecules: some were increased
(sCD40L and PF4) while others remained unchanged (sCD62P,
IL-8, EGF, and TGF) or were even reduced (RANTES, angiogenin,
and PDGF-AB) (122). Platelets thus have a highly regulated system
for the release of cytokines.

Furthermore, it has been shown that platelets can distinguish
between two types of LPS, referred to as “smooth” and “rough,”
and to adapt their cytokine response accordingly. In this way, only
the smooth-type LPS molecules significantly inhibit the secretion
of PDGF-AB (118). In contrast, rough-type LPS, unlike smooth-
type LPS, potentiates the production of PMPs as well as platelet
aggregation induced by the PAR1 agonists SFLLRN (123). The
differences in activation can also be seen in the ability of the super-
natants obtained to activate peripheral blood mononuclear cells
(PBMCs) (118).

Function of TLR2 in platelets
The functional role of platelet TLR2 has not been as widely exam-
ined as TLR4. However, TLR2 is a highly inflammatory receptor
that can recognize a very large number of PAMPs.
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Among these ligands are, inter alia, bacterial lipopeptides,
peptidoglycan, and lipoteichoic acid from Gram-positive bacte-
ria, microbacterial lipoarabinomannan, yeast zymosan, and even
viral hemagglutinin (89). TLR2 forms heterodimers with TLR1
or TLR6: the TLR2/TLR1 complex preferentially binds triacy-
lated lipopeptides (Gram-negative bacteria and mycoplasma),
and the TLR2-TLR6 complex binds diacylated lipopeptides of
Gram-positive bacteria and mycoplasma.

Structural studies are consistent with the mechanism for such
discrimination involving the presence of a hydrophobic channel
present on the TLR1 but not on the TLR6 (89).

The engagement of platelet TLR2 has also been reported to
stimulate the splicing of mRNA encoding IL-1β (121). However,
this synthetic lipopeptide is less effective than LPS, though just as
effective as thrombin. The splicing of mRNA encoding IL-1β can,
therefore, be regulated differently depending on the TLR activated.

Regarding the signaling pathway, TLR2 uses MyD88 to com-
mence its signaling cascade (124). Platelet TLR2 also has the ability
to trigger the activation of signaling proteins normally involved
downstream of hemostatic receptors. Morello et al. demonstrated
that platelet TLR2s were functional and showed that the PI3K/Akt
pathway (already detected in platelets, downstream of αIIbβ3)
plays a role in platelet aggregation, adhesion, and secretion (125).
They further demonstrated that in immune cells, TLR2 has the
ability to interact with the p85 sub-unit of PI3K (126), suggesting
the involvement of this pathway after TLR2 engagement, inde-
pendently of the MyD88 pathway. The use of a specific inhibitor
of PI3K (LY294002) prior to stimulation by Pam3CSK4 signifi-
cantly reduces the effects generated by the engagement of platelet
TLR2 (i.e., the aggregation, adhesion and membrane expression
of CD62P, platelet-neutrophil complex formation, αIIbβ3 activa-
tion, as well as oxygen radicals) (127). LY294002 also significantly
diminishes, but does not completely inhibit, the formation of
platelet:neutrophil aggregates, suggesting that platelets can use
alternate pathways besides TLR2 and 4. Other studies showed
that during platelet stimulation by Aggregatibacter actinomycetem
comitans Y4 and Porphyromonas gingivalis, the salting-out of
sCD40L resulting from TLR2 engagement is regulated by PI3K
(128). However, PI3K is not the only pathway involved in the
release of soluble factors induced by TLR2 engagement. In fact,
the use of a PLC inhibitor, U73122, prevents CD40L from being
expressed on the platelet surface in a manner similar to that
observed when the PI3K pathway is blocked (128). PLC is clas-
sically identified in the platelets as acting downstream of PAR and
GP-VI receptors, leading to degranulation and the generation of
TxA2.

Phospholipase C and P3IK pathways are, therefore, not only
activated by hemostatic stimulation but also following TLR2
engagement. However, phosphorylation kinetics differs depending
on the type of stimulation involved (129). In this way, stimulation
by thrombin induces a rapid and substantial phosphorylation of
Akt, p38, and Erk. In contrast, stimulation by Pam3CSK4 induces
a more gradual phosphorylation of Akt and p38, suggesting that
it takes longer for the mechanisms to occur and that platelet
inflammatory responses take place over time rather than rapidly.
The large majority of experimental studies to stimulate TLR2
on platelets use Pam3CSK4, a triacylated ligand that causes the

dimerization of TLR2 with TLR1. The use of MALP-2, a diacylated
ligand that makes use of the TLR2/6 heterodimer, does not allow
platelet activation (124). In addition, the preincubation of platelets
with MALP-2 reduces and even inhibits the effect of Pam3CSK4.
The engagement of TLR2 and TLR6 is believed rather to have an
antagonist effect on platelet activation and could act as a regulator
in platelet activation during bacterial invasion by simply blocking
access to TLR2.

The first demonstration of platelet TLR2 function, in vivo as
well as ex vivo, was reported in 2009 by Blair et al. (127). The stim-
ulation of platelets by Pam3CSK4, a synthetic ligand mimicking
bacterial lipopeptide, caused activation involving an “inside-out”
αIIbβ3 signaling, aggregation, and platelet adhesion to collagen,
CD62P release and generation of reactive oxygen derivatives.
These phenomena were either blocked by a TLR2 antagonist
antibody or absent in tlr2−/− KO mice, demonstrating the engage-
ment of the receptor. Another study on the functional role of
platelet TLR2 showed that Pam3CSK4 also controls increases in
platelet intracellular Ca2+ concentrations, the release of ATP,
and the synthesis of TxA2 (124). These observations are consis-
tent with a role for platelet TLR2 as a thrombo-inflammatory
receptor. Even where the ultimate thrombotic purpose is sim-
ilar to that of classic stimulation (ADP, Fg, collagen, etc.), the
intracellular mechanisms activated are quite distinct, particu-
larly with regard to the phosphorylation of signaling molecules
(PI3K and MAPK pathways) and protein–protein interactions
(mainly in the case of the FXIIIa protein involved in platelet
remodeling). Compared with hemostatic stimulation, there are
also differences in the release of granular proteins (Fg, throm-
bospondin, PF4) which can be released or sequestered during
TLR2 stimulation (130).

Apart from the thrombotic function of the platelet TLR2, this
receptor can also induce an inflammatory response by platelets.
Bacterial stimulation of platelets by periodontopathogens (A.
actinomycetemcomitans and P. gingivalis) demonstrated that
sCD40L is released independently of TLR2. Furthermore, patients
who have undergone restorative dental procedures had a signif-
icantly higher level of circulating sCD40L than healthy control
subjects (128).

It has been observed, moreover, that mice infected with P. gin-
givalis displayed a higher proportion of platelet-neutrophil com-
plexes than uninfected mice or TLR2(−/−) mice, suggesting that
platelet TLR2 is involved in the formation of platelet-neutrophil
aggregates (127).

Assinger et al. confirmed these observations and showed
that this increase in platelet–neutrophil complexes is accom-
panied by a rise in neutrophil-mediated phagocytosis of peri-
odontopathogens, which requires TLR2 to be functional (131).
Platelet TLR2 is thought to be a prerequisite to the activation
of the latter, which are then believed to transmit a signal acti-
vating the neutrophils and making them suitable for phago-
cytosis. The particular signal can involve ligand:receptor pairs
(CD62P/PSGL-1, CD40L/CD40, GP-IIb–IIIa/CD11b) or platelet
cytokines.

Similarly, it has recently been observed that platelets pro-
mote the clearance of Staphylococcus aureus and Bacillus cereus
by Kupffer cells.
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When absorbed by these liver macrophages, such bacteria are
thought to be rapidly engulfed by a platelet aggregate, predisposing
them to destruction. The formation of aggregates would involve
the participation of platelet GP-Ib and vWF on Kupffer cells (32).

The release of histones from cells in apoptosis is associated
with microvascular thrombosis. In citrated PRP, the presence of
histones has been proven to stimulate thrombin generation, inde-
pendent of dose, with noticeable effects from 10 µg/ml (132).
When an anti-TLR2 monoclonal antibody is used prior to stimula-
tion by histones, the procoagulant profile of platelets [membrane
expression of phosphatidylserine (PS), CD62P, and coagulation
factor V] is reduced. Under the same conditions, TLR2 blockade
leads to a reduction of about 50% in the salting-out of throm-
bin and increases the salting-out time for the remaining 50% by
40 minutes (Figure 3).

Platelet TLR2 is, therefore, involved in histone-induced throm-
bin generation. These results reaffirm the importance of platelet
TLR2 in a thrombo-inflammatory response. Inversely, this
response can be considered beneficial to the host in cases where
the agent that induces cell apoptosis becomes trapped in the fibrin
network.

Function of TLR9 in platelets
Studies conducted on the role of platelet TLRs rarely address the
subject of TLR9. In eukaryotic cells, TLR9 recognizes unmethy-
lated 2′-deoxyribo (cytidine-phosphate guanosine) DNA motifs,
commonly referred to as CpG motifs, which are found specifically
in bacteria, parasites, and viruses. The location of TLR9 is limited
to the endosomes in eukaryotic cells, enabling it to recognize the
internal constituents of pathogens, which are often released after
they are endocytosed (89, 133).

Platelet TLR9 is also found in cell cytosol and cell membranes
(108). Activated platelets overexpress this receptor, either after
stimulation by a CpG motif (105) or by thrombin (109).

A recent study on human and murine platelets showed that
intra-platelet TLR9 is distributed in a specific, previously uniden-
tified, sub-compartment known as the T granule, which has dense
appearance under an electron micrograph (105, 134). This distri-
bution of TLR9 is thought to occur during pro-platelet formation.
T granules also contain VAMP7 and VAMP8 proteins, which are
involved in directing TLR9 to the membrane. The process by which
platelets internalize the CpG/TLR9 complex appears to be similar
to that described for other cell types (105, 134).

Platelet TLR9 was recently reported as binding carboxy-alkyl-
pyrrole, a product derived from the combination of polyun-
saturated fatty acid oxidation products and protein products,
considered a danger signal in cases of oxidative stress (135). In
platelets, this joining together triggers aggregation and degranu-
lation. Therefore, in platelets TLR9 appears to function as sensors
of internal danger signals rather than external ones (Figure 3).

It is only recently that TLR3 (37) and TLR7 (38) have also
been identified (Figure 3). Human platelets express TLR3 and
are capable of responding to poly I:C, suggesting that these cells
might influence the immune innate response when detecting viral
dsRNA (37). Infection with encephalomyocarditis virus (EMCV)
rapidly reduces platelet count, and this response is attributed to
platelet Toll-like receptor 7 (TLR7) (38).

THE SIGLEC: SENSORS OF PATHOGENS NEWLY
ACKNOWLEDGED ON PLATELETS
BACKGROUND ON SIGLEC MOLECULES
Siglec molecules belong to the large family of Ig-like lectins (84,
87, 96), which are categorized in two main families (Table 2).
They are type I transmembrane proteins comprising three regions
(84, 86, 136). First, the extracellular region has a “V-set” N-
terminal Ig domain containing an arginine residue that forms
a saline bridge with the carboxylate group of sialic acid, which
enables specific binding with this molecule and a number vary-
ing between 1 and 16 in the “C2-set” domain (97, 136). Sec-
ond, the transmembrane region allows the signal to be trans-
mitted to the third region, the intracellular region of the recep-
tor, which contains an immunoreceptor tyrosine-based inhibitory
motif (ITIM) close to the membrane, and an ITIM-like motif,
which is more distal from the membrane. Certain Siglec mol-
ecules, such as sialoadhesins (137), Siglec-H (138), Siglec-14
(139), Siglec-15 (140), and Siglec-16, do not have an intracellular
region (141).

The primary function of CD33r Siglec (3, 5–11, 14, 16) is to rec-
ognize “self” molecules in order to regulate host immune response
by the engagement of inhibitory ITIM-like intra-cytoplasmic mol-
ecules. Siglec principally recognize and bind sialylated glycans and
gangliosides.

Siglec molecules have arginine residues that can form a saline
bridge with the carboxylate group of sialic acid enabling them to
bind in a specific way (136). In their basal state, Siglec are bound
with ligands and are, therefore, expressed on the same cell (cis
interaction); thus their binding sites are generally masked (84,
95). The interaction is, therefore, predominantly a cis interaction
(95). However, trans interaction may compete with cis interac-
tion when the sialylated (trans) glycan ligands are attached to
glycoproteins and glycolipids, which gives them higher affinity
[for example, PAMP structures (LPS or bacterial peptidoglycan)
or gangliosides] (96). Furthermore, the cis interaction sites can be
cleaved by sialidase [a component of certain pathogens like Vibrio
cholerae, Clostridium perfringen, and Arthobacter ureafacien (96,
97)], or unmasked following cell activation, which enables Siglec
to have trans interactions (142).

The gangliosides formed from glycosphingolipids are bound to
Siglec with a very high affinity (143). The affinity of CD33r Siglec
is different for each ganglioside depending on their structure; for
example, Siglec-7 and Siglec-9 are selective in targeting B-series
gangliosides containing the 2,8-disialyl residue (GalNAc or Glc-
NAc), such as GQ1b, GT1b, GD2, and GD3, while Siglec-8 appears
to have low affinity with these gangliosides (143–146).

The main known function of Siglec molecules are:

(i) the regulation of innate immune responses by balancing
(down: cis ligation; up: trans-ligation) the defense against a
number of infectious pathogens that use sialic acid to disguise
themselves in an attempt to escape elimination by the infected
body;

(ii) the negative regulation of the B-cell receptors (by co-
engagement of two main Siglec: CD22 and Siglec-10 [Human;
-G in the mouse; no cluster of differentiation assigned so
far] (84, 87, 95, 96, 143, 147) and of T-cell receptors [by
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co-engagement of three main Siglec: 7, 9 and 1 [siaload-
hesin] (136)].

Siglec molecules operate by phosphorylating principally
ITIM/ITIM-like motifs in their intracellular tails, or – exception-
ally (Siglec-H and -15) – by mobilizing DAP12. Thus, Siglec appear
in general essential to preventing excessive innate and adaptive
immune responses and maintaining homeostasy and tolerance.

SIGLEC AND PLATELETS
A substantial expression of Siglec-7 has been identified very
recently (by our group) on platelet surfaces, with more stored on
platelet α-granule membranes. Furthermore, surface membrane
expression of Siglec-7 is significantly increased after platelet acti-
vation, in a manner similar to the activation-induced membrane
expression of CD62P. Indeed the kinetics of Siglec-7 expression on
the platelet membrane of closely resembles that of CD62P.

There is also a significant amount of Siglec-7 in the supernatant
in both control and TRAP-activated platelets, consistent with the
cleavage, or direct salting-out, of Siglec-7 from platelet α-granules.
However, Siglec-7 cleavage does not correlate with a reduction in
its expression on the platelet membrane, as is the case for CD62P.
A probable explanation for this apparent reduction in concentra-
tion over time may be the degradation induced by endogenous
proteases.

The engagement of Siglec-7 by its specific ligand, GD2 gan-
glioside (as well as GD3 and GT1b), does not induce activation,
aggregation, or platelet secretion, but leads to platelet apoptosis by
the intrinsic and an extra-mitochondrial pathway. Similarly, Mar-
tini et al. demonstrated that platelet incubation with exogenous
GD3 had no effect on platelet morphology, nor function, nor on
ADP-induced platelet aggregation (148). The authors also indi-
cated that GD3 functions like a second-messenger molecule that
augments CD32 expression (FcgRII, platelet FcR isoform); it then
binds to this receptor, leading to platelet adhesion on the suben-
dothelial matrix (148). In our study, however, the apoptogenic
effects of GD2 on platelets were independent on the engagement of
CD32, whereas reduced in the presence of specific antibodies that
block Siglec-7. This shows that Siglec-7 engagement is essential
for GD2-induced platelet apoptosis. Inhibitors of NADPH oxi-
dase, PI3k and PKC, but not of NF-kB prevented. The engagement
of the P2Y1 platelet receptor and of the GP-IIb–IIIa integrin is
required for a fully functional Siglec-7.

Platelet apoptosis induced by Siglec-7 engagement is prob-
ably a mechanism for negatively regulating platelet inflamma-
tory responses. This mechanism would limit excessive reactions
responsible for the destruction of tissues and cells due to inflam-
mation and in this way promotes the healing of wounds. Stored
platelets (with the purpose of being used for transfusion purposes)
display apoptosis markers that increase independently on activa-
tion (149–151). This is a significant aspect of storage damage that
reduces the viability and number of platelets in PCs following
prolonged storage. Platelet apoptosis can potentially have negative
effects in PC recipients, such as reduced function and altered cor-
rected count increment (CCI) (149); probable adverse effects due
to the pro-inflammatory and pro-thrombotic properties of PMPs
generated during apoptosis are also likely (152).

The mechanisms of Siglec-7 translocation to human platelet
membranes and its subsequent cleavage are still unaddressed (88)
and require further studies. It would be interesting, first, to dis-
cover whether this increase is an advance event for triggering
platelet activation or whether it is secondary, occurring after
platelet activation in order to negatively control inflammatory
response following this process (autoregulation). Second, it will
be important to determine whether cleavage of soluble Siglec-7 is
associated with such translocation. Little is known of the role of
soluble Siglec-7 in inflammatory reactions,particularly in immune
cells, ECs and platelets, or of the importance of the physiology and
platelet interactions at work in the immune system.

In addition, it would be interesting to be able to determine
whether Siglec-7 engagement is also specifically linked to platelet
recognition of DAMPs. In other words, it would be valuable
to examine whether platelet Siglec-7 distinguish several PAMPs
(infectious pathogens). Moreover, it would be interesting to inves-
tigate platelet Siglec-7 response after DAMP activation (generated
either during PAMP-induced inflammatory reactions or due to
intra-platelet oxidative stress linked to preparation and/or stor-
age conditions) and how their inflammatory response is mod-
ulated. Several studies show that by expressing a very large
number of receptors, among them TLRs, GPCRs, RTKs, inte-
grins, and CK/CH receptors, platelets appear to have the ability
to differentiate between a hemostatic stimulus or an infectious

Table 3 | Modulation ofTLR function by Siglecs adapted from Ref. (95,

155, 156).

Molecules TLR ligands

used

Cell

type

Observed phenotype

CD22 TLR3, 4, 7,

and 9

B Enhanced proliferation of CD22 KO

B cells

Siglec-G TLR3, 4, 7,

and 9

B Enhanced proliferation of Siglec-G

KO B cells

HMGB1 DC Enhanced TNF-α production in

Siglec-G KO DCs

Siglec-E TLR4 Mac Reduced IL-12 production by

cross-linking with Abs

Siglec-H TLR9 pDC Reduced IFN-α production by

cross-linking with Abs

Siglec-5 TLR2, 3, 4,

and 9

Mac Reduced TNF-α and enhanced IL-10

production by over-expression

Siglec-9 TLR2, 3, 4,

and 9

Mac Reduced TNF-α and enhanced IL-10

production by over-expression

Siglec-11 TLR4 Mac Reduced IL-1β transcript by

cross-linking with Abs

Siglec-14 TLR4 Mac Augmented TNF-α production by

over-expression

CD33/Siglec-3 TLR4/CD14 imDCs Reduced the phosphorylation of

NF-κB

Siglec-9 TLR2 Mac Siglecs exhibit lectin-dependent

changes in cellular localization,

which may be partly linked to its

control mechanism that increases

the production of IL-10
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FIGURE 4 | Sialidase interrupts the Siglec-G inhibitory function that
suppressesTLR signaling by DAMPs/PAMPs. (A) CD24 forms trimolecular
complex with DAMPs/SAMPs and Siglec G that inhibits activation of TLR.

(B) Pathogen-encoded sialidases cleave sialic acids on CD24 from interacting
with Siglec G, leading to induce the inflammation/adaptive immunity/tissue
damage. Adapted from Ref. (95, 142, 157).

stimulus, and endogenous danger signals (DAMPs) and exogenous
ones (PAMPs). This method of differentially detecting pathogens
produces variations in membrane expression of adhesion mol-
ecules, activation molecules, and especially in the salting-out of
platelet granule contents and their secretion kinetics, leading to
various platelet responses, such as hemostatic, inflammatory, or
reparative (35, 118, 122, 153, 154). Furthermore, it would be
interesting to study Siglec-7 in the platelet signalosome in the pres-
ence of various stimuli, including hemostatic stimuli (as shown
in the appendix), infectious agents (PAMPs), or DAMPs. To this
effect, numerous studies are considered to complement the char-
acterization of the functional role of platelet Siglec, including
Siglec-7.

Siglec molecules contribute to the negative regulation of the
intracellular pathways stimulated following TLR/NLR engage-
ment. This serves to prevent excessive immune responses after
activation of these receptors (96). The regulation and activation
of cells after TLR engagement is different for each cell type (95).
This inhibitory function of Siglec is used by pathogens to imi-
tate the structure of their ligands, which initiates an immune
response favorable to their survival within the host. Recent studies
show that, when Siglec molecules are neutralized by blocking anti-
bodies, TLR signaling is significantly modified; this suggests that
the density of Siglec expression near to TLRs can influence the
function of these receptors (95). The location (on membranes or
endosomes) where Siglec sensors are expressed can also modulate
innate immune response in the host following TLR engagement
(Table 3). Siglec molecules are normally expressed on immune
cells that contribute to regulation of the innate immune system
(96). PRRs can recognize “self” (DAMP) and “non-self” (PAMP)
danger signals in order to trigger inflammatory reactions. The

engagement of these receptors after engagement by DAMPs can
also reduce inflammation and promote the repair and healing of
wounds (142). Chen et al. originally illustrated the mechanism by
which Siglec-10/Siglec-G enables innate immunity cells to distin-
guish DAMPs and PAMPs in order to set up an immune response
that can defend against pathogens, while at the same time pre-
serving the integrity of tissue at the end of the post-infection
defense process. They showed that the interaction between CD24
and human Siglec-10 (murine Siglec-G) can reduce inflammatory
response induced by DAMPs of the HMGB1 and HSP70 types,
but not in the presence of certain PAMPs (LPS and PolyI:C which
activate TLR4 and TLR3, respectively). The glycoprotein CD24
actually has the ability to form a complex of Siglec-10/Siglec-G
and DAMP, which inhibits TLR/NLR activation by inhibiting ITIM
motifs (Figure 4). However, certain infectious pathogens like Vib-
rio cholerae, Clostridium perfringen, and Arthobacter ureafacien (96,
142), which have a sialidase, can cleave the bond between Siglec
sensors and CD24; in this case, the distinction between the DAMP
and PAMP signals will, as a result, not be effective.

CONCLUSION
As a conclusion, analyzing platelet responses to PRR agonist stim-
ulation in whole blood, platelet-rich plasma and in transfusion
platelets concentrate would help clarify the relative contributions
of platelets on inflammatory process. How can the small platelet,
without a nucleus, be so intelligent?
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