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Dendritic cells (DCs) initiate and orient immune responses and comprise several subsets
that display distinct phenotypes and properties. Most of our knowledge of DC subsets
biology is based on mouse studies. In the past few years, the alignment of the human
DC network with the mouse DC network has been the focus of much attention. Although
comparative phenotypic and transcriptomic analysis have shown a high level of homology
between mouse and human DC subsets, significant differences in phenotype and function
have also been evidenced. Here, we review recent advances in our understanding of the
human DC network and discuss some remaining gaps and future challenges of the human
DC field.
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INTRODUCTION
Dendritic cells (DCs) have long been known to be the most effi-
cient antigen-presenting cells. It is now well established that DCs
are a heterogeneous population composed of several subsets that
can be distinguished by their phenotype, location, and functional
properties (1). Due to their remarkable ability to stimulate T cells,
DCs have become in the past decade attractive therapeutic targets.
However, most of our knowledge of DC subsets biology was gained
from mouse studies, and cross-species differences could hinder the
successful translation to humans of major discoveries made in the
mouse. In the past few years, a number of studies have tackled
the analysis of human DC subsets. In this review, we summarize
recent advances and highlight some of the outstanding questions
that remain to be addressed.

HOW TO DEFINE DC SUBSETS IN HUMANS?
Historically, human DC subsets have been defined based on a small
number of phenotypic markers, within the population of MHC
class II+ lineage-negative cells. In blood, DCs have been divided
into two main groups: plasmacytoid DCs (pDC) and “myeloid”
or “classical” DCs (cDCs). cDCs can be further separated into
two subsets that are usually referred to as BDCA1/CD1c+ DCs
and BDCA3/CD141+ DCs (2). These three DC populations are
also found in all lymphoid organs and represent resident DCs
(3–6). In skin, liver, lung, and intestine, two main populations of
CD1c+CD1a+ DCs and CD141+Clec9A+ DCs have been iden-
tified (7–12). Tissue DCs can migrate through the lymph to the
draining lymph nodes where these migratory DCs display a mature
phenotype (4, 13, 14). Additional DC subsets have been described
in mucosal tissues: Langerhans cells (LCs) and CD14+ DCs (15,
16) in skin and vaginal mucosa, and CD103−CD172a+ DCs in the
intestine (10). Finally, a population of “inflammatory” DCs with a
distinct phenotype can also be found in inflamed tissues (17, 18).

Although surface markers are useful for the characterization of
DC subsets (Table 1), phenotypic analysis has proven insufficient
on its own to define DC subsets. Indeed, some phenotypic markers
are not specific of a given DC subset or their expression can

change upon activation, potentially leading to misinterpretation.
For instance, CD141 is upregulated upon activation on pDC and
CD1c+ DCs (19) and is also expressed by tissue CD14+ DCs
(20). Clec9A, which is restricted to CD141+ DCs, is downregu-
lated rapidly during DC maturation (21). Another hurdle is the
promiscuous expression of some markers on macrophages and
monocytes, such as CD14 or CD64. Recently, CD14+CD1clow

cells in the skin were re-defined as macrophages (22). However,
the identity of tissue CD14+CD1chigh cells remains uncertain, we
refer to these cells as CD14+ DCs throughout this review.

The analysis of key DC properties can help assessing the DC
identity of a potential subset. Hallmark properties include den-
dritic morphology, migratory capacity, and ability to stimulate
naive T cells. These properties have been used to distinguish
macrophages from DCs in the skin (22, 23) and inflammatory
fluids (17), or monocytes from DCs in the blood (24).

Finally, gene expression signatures have emerged from tran-
scriptomic studies and can be a useful tool to confirm DC identity,
to assign a population to a known DC subset, or to define a new
one. Lineage-negative CD16+ blood cells were initially termed
CD16+ DCs, but transcriptomic analysis showed that they are a
subset of monocytes (25). Similarly, 6-sulfo LacNac/Slan+ blood
cells were termed Slan+ DCs, but comparative transcriptomic
analysis identified them as a subpopulation of CD16+ monocytes
(24). Recently,dermal CD14+CD1clow cells were found to be closer
in their gene expression to macrophages than to DCs (22). Tran-
scriptomic analysis has also been used to assess the proximity of
tissue DC subsets with their blood counterparts for skin (8) or
intestinal DCs (10).

WHAT IS THE ONTOGENY OF HUMAN DC SUBSETS?
Addressing human DC ontogeny is challenging, but in vitro cul-
ture models, clinical observations, and comparative transcrip-
tomic analysis have provided substantial insight. Human DCs are
constantly replenished from bone marrow precursors as shown
by the replacement of dermal DCs after hematopoietic stem
cell transplantation (23) and the loss of blood DCs after bone
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Table 1 | Phenotypic markers for human DC subsets.

Surface marker pDC Blood/

resident

CD1c DC

Blood/

resident

CD141 DC

Tissue/migratory

CD1c CD1a DC

Tissue/migratory

CD141 Clec9A DC

Tissue/

migratory

CD14 DC

Inflammatory

DC

Langerhans

cells

HLA-DR + + + + + + + +

CD11c − ++ + ++ + ++ ++ +

CD123 + − − − − − − −

BDCA2/CD303 + − − − − − − −

BDCA4/CD304 + − − − − ? ? −

Clec9A − − + Immature − + − − −

Low mature

BDCA3/CD141 − + Immature ++ + Immature ++ + ? −

+Mature ++Mature ++Mature

XCR1 − − + − + − − −

CX3CR1 ? + Blood − +/− − + ? +/−

? Lymphoid organs

BDCA1/CD1c − + − + − + + +

Sirp-α/CD172a − + − + − + + +

CD11b − − Blood − + − + + +

+ Lymphoid organs

MR/CD206 − − − + − + ++ −

CD14 − − − − − + + −

FcεRI − + − ? − ? + −

CD1a − − − +/− − − + ++

CD64 − + − + − ? + ?

Langerin/CD207 − − − +/− − − − +

EpCAM/CD326 − − − − − − − +

E-cadherin − − − − − − − +

+/−, reported in some tissues. ?, not reported.

marrow suppression induced by preparative cytotoxic therapy
(22). Patients carrying mutations in GATA2 or IRF8 lack all blood
DC subsets, consistent with a common origin (26, 27). Several
lines of evidence indicate that Flt3-L is required for the genera-
tion and/or maintenance of most DC subsets: injection of Flt3-L
to human volunteers increases the number of blood DC subsets
(28, 29); pDCs, CD1c+ DCs, and CD141+ DCs equivalents can
be derived in vitro by culturing CD34+ hematopoietic precursors
with Flt3-L (30–32); levels of serum Flt3-L are elevated in patients
affected by mutations in GATA2 or IRF8 (26, 27). The importance
of other cytokines in DC differentiation or homeostasis in vivo
is unclear. Recently, a committed DC progenitor (CDP) has been
identified in bone marrow and cord blood, but was absent from
adult blood and tonsils (33). In an in vitro culture model, these
CDP give rise only to pDC and cDCs,via an intermediate precursor
restricted to CD1c+ DCs and CD141+ DCs (29, 33). This pre-cDC
is present in adult bone marrow, blood, and tonsils (29). Whether
pre-cDC differentiate into cDCs in the blood or lymphoid organs
and tissues remains to be addressed.

The ontogeny of migratory DCs also remains to be better char-
acterized. Of note, patients affected with a mutation in GATA2
retain normal numbers of epidermal LC (27), showing that LC
represent a distinct lineage from pDCs and cDCs. The obser-
vations that LC remained of donor origin 10 years after hand

allograft and that they could proliferate in situ indicate that LC
can self-renew in tissues (34). In addition, transcriptomic analysis
shows that intestinal CD103−CD172a+ DCs (10) and inflamma-
tory DCs (17) express monocyte gene signatures, suggesting that
these DC subsets derive from monocytes rather than a common
DC precursor.

Cross-species comparative transcriptomic analysis suggest that
pDCs, CD1c+ DCs, and CD141+ DCs represent distinct bona
fide lineages, as homologies have been evidenced with the well-
defined mouse DC subsets pDCs, CD11b+ DCs, and CD8+ DCs,
respectively (8, 10, 25). Regarding the molecular ontogeny, in vitro
culture models indicate that the transcription factors E2-2 and
Batf3 drive the differentiation of pDCs and CD141+ DCs, respec-
tively (35–37). Of note, Batf3 silencing in humanized mice was
not sufficient to inhibit CD141+ DC differentiation (37), which
might be due to molecular compensation by related transcription
factors as shown in Batf3-deficient mice (38). It has been proposed
that CD1c+ DCs depend on IRF4 based on its preferential expres-
sion in CD1c+ DCs (10, 39), however this remains to be formally
proven.

Another unresolved matter is the relationship of blood cDCs
and their lymphoid organ and tissue counterparts. It has been
suggested that blood CD1c+ DCs and CD141+ DCs repre-
sent a precursor form of cDC subsets (4, 8, 40), but a direct
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precursor–progeny relationship remains unclear. Consistent with
the idea that they are not terminally differentiated, blood CD1c+

DCs and CD141+ DCs become competent for cross-presentation
only after activation, whereas lymphoid organ DCs cross-present
without the need for activation (41). Moreover, blood CD1c+ DCs
retain some plasticity as they can differentiate ex vivo into LC-like
cells, while tonsil CD1c+ DCs cannot (42, 43).

IS THERE A FUNCTIONAL SPECIALIZATION OF HUMAN DC
SUBSETS?
PATHOGEN RECOGNITION
Among the variety of pathogen-recognition receptors,TLR expres-
sion by DC subsets (either mRNA or protein expression) has been
the most studied. pDC express TLR1, TLR6, TLR7, TLR9, and
TLR10, resident CD1c+ DCs express TLR1, TLR2, TLR4, TLR5,
TLR6, and TLR8, and resident CD141+ DCs express TLR1, TLR3,
TLR6, TLR8, and TLR10 (3, 5, 44–46). Skin LC express TLR1,
TLR2, TLR3, TLR6, TLR7 and vaginal mucosa LC express TLR8
in addition (15, 47, 48), skin and vaginal mucosa CD1a+ DCs
express TLR6 and TLR8 while the expression of other TLR is less
clear, and skin and vaginal mucosa CD14+ DCs express TLR1,
TLR2, TLR4, TLR6, and TLR8 (15, 49). C-type lectin receptors are
also important pathogen-recognition receptors, some of which
have been reported to be differentially expressed by DC subsets
by transcriptomic analysis (17, 49–52). Receptors whose differen-
tial expression among DC subsets has been confirmed at protein
level include Clec9A on CD141+ DCs, BDCA2/CD303 on pDC,
ClecSF14/CD301 on CD1c+ DCs, Langerin/CD207 on LC, and
Clec10a and LOX-1 on CD14+ DCs (5, 19, 49, 53, 54).

Differential expression of pathogen-recognition receptors can
confer functional specialization to DC subsets for the response to
pathogens (46, 55, 56) or vaccines (57).

Much work remains to be done to characterize the expression
pattern of intracellular pathogen-recognition receptors in resident
and migratory DC subsets. It has been reported so far that vaginal
mucosa and skin LC, CD1a+ DCs, and CD14+ DCs, all express
MDA-5, while only CD14+ DCs express RIG-I (15, 49).

CYTOKINE SECRETION
Blood and lymphoid organ pDC have long been known to be the
best producers of type I interferon (58–60). CD141+ DCs from
blood and from humanized mice spleen have also been reported
to be the most potent for type I interferon production after TLR3
stimulation (5, 61). More recently, blood and liver CD141+ DCs
were shown to selectively secrete type III interferon after activation
with TLR3 ligand or Hepatitis C virus (56, 62, 63).

Because cytokine secretion by a given DC subset vary depend-
ing on the stimulus used (45), it can be difficult to determine
bona fide specialization for cytokine secretion. Accumulating evi-
dence indicates that blood CD1c+ DCs are the best producers of
IL-12p70, as shown by stimulation with TLR2, TLR3, and TLR8
ligands (40, 45, 46). Whether CD1c+ DCs from tissues are also
specialized for IL-12p70 secretion needs to be confirmed. Indeed,
no IL-12p70 secretion could be detected after stimulation of skin
DC subsets (8) or intestinal CD1c+ DCs (11) with several TLR-
ligands. Intestinal and lung CD1c+DCs are also the best producers
of IL-23 after TLR8 stimulation or Aspergillus fumigatus exposure,

respectively (11, 39). CD1c+ DCs from skin, intestine, and blood
are also the most potent producers of IL-10 in response to sev-
eral TLR-ligands (8, 11, 64). Skin LC and CD1a+ DCs have been
reported to be better producers of IL-15 than skin CD14+ DCs
(53, 65), but IL-15 secretion by other DC subsets has not been
analyzed yet.

CROSS-PRESENTATION AND CD8 T-CELL RESPONSES
Numerous studies have shown that blood and lymphoid organ
DC subsets can all cross-present efficiently various forms of anti-
gen (66). Spleen, lymph node, and tonsil CD1c+ and CD141+

DC subsets are equally potent for cross-presenting soluble anti-
gens, without the need for activation (4, 41, 44). When stim-
ulated with TLR-ligands that can activate both subsets, blood
CD1c+ and CD141+ DCs also display similar efficiency for cross-
presentation (40, 44, 67). However, lymphoid organ and activated
blood CD141+ DCs appear to be more efficient for the cross-
presentation of dead cell-derived antigen (5, 41, 68), which might
be due to their selective expression of necrotic cell receptors such
as Clec9A. Blood CD141+ DCs were also more efficient than
CD1c+ DCs for cross-presentation of antigens delivered to late
endocytic compartments via CD205 targeting, but were equally
potent after antigen delivery to early endocytic compartments via
CD40 (69).

Blood and lymphoid organ pDCs cross-present efficiently sol-
uble (41, 44, 67, 70, 71), viral (71–74), cell-associated antigen (67,
75), or antigen targeted to surface receptors such as CD40, DCIR,
CD205, BDCA2/CD303, or CD32 (67, 69, 76).

The ability of tissue DCs to cross-present is less well character-
ized. Skin CD1a+ DCs and LC have been shown to cross-present
when purified from skin or skin-draining lymph nodes (4, 77),
however, a subsequent study reported that skin CD141+Clec9A+

DCs are the most efficient for cross-presentation compared to
other skin DC subsets (8). Skin LC also cross-present antigen
targeted through DCIR (76). Both CD1c+ DCs and CD141+

DCs from the lung of humanized mice can cross-present (9),
but these results need to be confirmed with DCs directly purified
from human lung. The cross-presentation capacity of migratory
DCs from other tissues and of inflammatory DCs remains to be
analyzed. In addition, which DC subsets cross-present in vivo
in a physiological situation is a challenging question that is still
unaddressed.

Skin LC and CD1a+ DCs induce the differentiation of cyto-
toxic T lymphocytes (CTL) more efficiently than skin CD14+

DCs, through the secretion of IL-15 (53, 65). Activated LC also
express higher levels of CD70, which promotes CTL differentiation
(55, 77). Blood-activated CD1c+ DCs induce higher expression of
granzymes B and K by CTL than activated CD141+ DCs, due
to the selective secretion of IL-12p70 (40). Whether this special-
ization also applies to lymphoid organ and tissue CD1c+ DCs
remains to be confirmed.

CD4 T CELLS RESPONSES
The vast majority of studies have analyzed the ability of isolated
DC subsets to stimulate and polarize allogeneic naive CD4 T cells.
Blood, lymph node, or lung CD1c+ DCs and CD141+ DCs are
equally competent for Th1 polarization, either without activation
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(4, 78) or after exposure to influenza virus (78) or A. fumigatus
(39). By contrast, blood and lung CD141+DCs have been found to
be more potent inducers of Th2 polarization compared to CD1c+

DCs, with or without activation, due to the selective expression
of OX40-L (78). Lung CD1c+ DCs exposed to A. fumigatus are
more potent than CD141+ DCs for Th-17 polarization due to
their secretion of IL-23 (39), however both intestinal CD1c+ DCs
and CD141+ DCs are equally able to induce Th-17 polarization
(10). Blood pDC can induce Th1 polarization after activation
with CD40-L, influenza virus, or Sendai virus (60, 79), but induce
Th2 polarization through OX40-L after activation with IL3 (79).
Whether these observations also apply to lymphoid organ pDC,

and whether pDC can induce Th-17 polarization when adequately
activated remains to be addressed.

Skin DC subsets have been proposed to be specialized for CD4
T-cell polarization, LC, and CD1a+ DCs being especially potent
for Th2 polarization while CD14+ DCs mainly induce T follicu-
lar helper (Tfh) cells (53). This specialization is conserved after
skin DC migration to draining lymph nodes (4). The molecu-
lar mechanism underlying this functional specialization remains
unclear. Moreover, vaginal mucosa LC and CD1a+ DCs preferen-
tially induce Th2 polarization, while vaginal mucosa CD14+ DCs
are better inducers of Th1 (15). The ability of vaginal mucosa DCs
to induce Tfh has not been analyzed. In addition, skin LC have

FIGURE 1 | Functional specialization of human DC subsets.
Schematic representation of known and unknown functional
specialization of migratory and resident DC subsets, and inflammatory
DCs. Cytokines specifically expressed by a given DC subset are indicated.
The ability to present antigens to CD8 or CD4 T cells is represented with

red or blue arrows, respectively. The ability of DC subsets to induce
cytotoxic T lymphocyte (CTL) differentiation, regulatory T (Treg), or helper
T (Th) cell polarization is indicated. Question marks indicate unknown
functions and crosses indicate functions that are not performed by a given
DC subset.
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been found to be more potent than other skin DCs for the induc-
tion of IL22-secreting CD4 T cells (80, 81), while both vaginal
mucosa LC and CD1a+ DCs are equally competent (15).

Inflammatory DCs isolated from rheumatoid arthritis synovial
fluid and from tumor ascites preferentially induce Th-17 polariza-
tion through the secretion of Th-17 polarizing cytokines IL-6,
IL-23, TGFβ, and IL1-β (17). Inflammatory DCs from tumor
ascites also efficiently stimulate autologous effector CD4 T cells to
secrete IL-17 (17). The CD4 T-cell responses induced by inflam-
matory DCs from other inflammatory environments remain to be
investigated.

Finally, several DC subsets were shown to induce Treg: dermal
CD14+ DCs (20), intestinal CD1c+ DCs and CD103−CD172a+

DCs (10), tonsil pDC activated with IL3 or TLR-ligands (82),
and bacteria-exposed skin LC (83). In addition, liver DCs (7) and
TLR4-activated oral mucosa DCs (84) were proposed to promote
Treg induction through the secretion of IL-10, but whether one
subset is more potent for Treg induction has not been analyzed.
Blood Escherichia coli-activated CD1c+ DCs have also been pro-
posed to inhibit CD4 T-cell proliferation through IL-10 secretion
(64). In addition, skin LC, but not dermal CD1a+ DCs and CD14+

DCs, have been shown to stimulate the proliferation of autologous
skin-resident memory Treg (85).

Collectively, these results suggest that some CD4 T-cell
responses are the consequence of subset-intrinsic specialization,
while others are more dependent on signals from the environ-
ment or on tissue imprinting (Figure 1). The clearer observations
so far are the specialization of CD141+ DCs for Th2 polariza-
tion and of CD14+ DCs for Tfh polarization (both findings
would need to be confirmed with DCs from other tissues), and
of skin and vaginal mucosal LC and CD1a+ DCs for Th2 and
Th22 polarization. However, this specialization might be tissue-
dependent as lung CD1c+CD1a+ DCs are not potent inducers of
Th2 polarization.

CONCLUSION
Despite the technical challenges inherent to human DC work,
significant progress has been made in the past few years in the char-
acterization of human DC subsets. Important issues that will need
further exploration include the ability of DC subsets to stimulate
effector and memory T cells, the interplay between DC subsets, and
the in vivo confirmation of functional specializations observed ex
vivo. These could be achieved by the use of humanized mice mod-
els, the analysis of relevant pathological situations, or the study of
patients with mutations in relevant genes.

This knowledge will be instrumental in the design of novel
vaccines and DC-based immunotherapies.
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