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Germline genetic mutations underlie various primary immunodeficiency (PID) diseases.
Patients with rare PID diseases (like most non-PID patients and healthy individuals) carry, on
average, 20,000 rare and common coding variants detected by high-throughput sequenc-
ing. It is thus a major challenge to select only a few candidate disease-causing variants
for experimental testing. One of the tools commonly used in the pipeline for estimating a
potential PID-candidate gene is to test whether the specific gene is included in the list of
genes that were already experimentally validated as PID-causing in previous studies. How-
ever, this approach is limited because it cannot detect the PID-causing mutation(s) in the
many PID patients carrying causal mutations of as yet unidentified PID-causing genes. In
this study, we expanded in silico the list of potential PID-causing candidate genes from 229
to 3,110. We first identified the top 1% of human genes predicted by the human genes
connectome to be biologically close to the 229 known PID genes. We then further nar
rowed down the list of genes by retaining only the most biologically relevant genes, with
functionally enriched gene ontology biological categories similar to those for the known
PID genes. We validated this prediction by showing that 17 of the 21 novel PID genes
published since the last IUIS classification fall into this group of 3,110 genes (p < 10~7). The
resulting new extended list of 3,110 predicted PID genes should be useful for the discovery
of novel PID genes in patients.
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INTRODUCTION

Germline mutations are being found to underlie an increasing
number of primary immunodeficiency (PID) diseases. With cur-
rent advances, and the improved quality and decreasing cost
of high-throughput sequencing (HTS), it is now possible to
detect the full set of gene variants in PID patients, through
techniques such as whole-exome sequencing (WES) or whole-
genome sequencing (WGS). The genome of each patient con-
tains about 20,000 coding variants and hundreds of thousands
of non-coding variants (1-3). It is not straightforward to iden-
tify the PID-causing gene from the HTS data for a patient (4,
5), and the most widely used approach involves selecting known
disease-causing genes as candidate genes for further investiga-
tion. Thus, in this approach, variants are identified as candi-
date PID-causing genes only if they concern genes already listed
among those known to cause PIDs (229 such genes have been
identified to date) (6, 7). This approach is simple to imple-
ment, but is likely to miss the true PID-causing gene in many
PID patients, as novel PID genes (i.e., not already included
among the 229 genes known to cause PIDs) would potentially
be ignored. Alternatively, the investigator would face the non-
trivial task of inferring relevant PID-candidate genes from a list
of hundreds following rigorous variant-level filtering, mostly by

estimating potential biological functional relatedness to the known
PID genes.

To tackle the above problem, we recently described the human
gene connectome (HGC)! as the set of biological distances and
routes (i.e., genes located between two genes) between all human
genes, predicted in silico by a shortest distance algorithm applied
to the full human genome network, conceptually similar to GPS
navigation (5). The HGC and its associated user-friendly server
(8) could be used to detect new candidate PID-causing genes, by
ranking all genes harboring variants in PID patients on the basis of
their biological proximity to already known PID genes, assuming
the most highly ranked genes to be the most likely to cause PIDs.

However, a list of novel potential PID-causing gene candidates,
rigorously identified on the basis of biological relevance to the
PID phenotype (both by HGC-predicted biological distance to
PID-causing genes and by the relevance of the candidate gene’s
biological function to PID), would be useful and easy for most
PID investigators to use. As the HGC-predicted gene candidates
may include some false positives, due to the prediction algorithm
being based on protein—protein binding interactions rather than
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biological functions associated with the gene, it is important to fil-
ter gene lists further, according to biological relevance, at the final
stage of in silico prediction.

We generated a list of in silico-predicted novel PID-causing
gene candidates, which we describe here. We first determined the
biological clustering level of all PID genes, then used the HGC to
extract the top 1% of all human genes biologically closest to all
known PID genes. Finally, we selected as PID gene candidates only
those genes with relevant biological functions, similar to those of
known PID genes. We also show that the list of novel PID-causing
gene candidates generated contains 17 of 21 recently reported PID-
causing genes (not included in the database used for prediction
purposes in this study).

MATERIALS AND METHODS

BIOLOGICAL PROXIMITY OF PID GENES: STATISTICAL SIMULATIONS
We determined whether the 229 known PID-causing genes (6)
were significantly closer to each other, biologically, than to other
genes, by estimating the biological distances between all these
genes (a total of 22,366 biological distance values) with the HGC
and associated server (5, 8)2. We then randomly sampled one mil-
lion biological distances from the set of all human genes (9), and
determined, for both the PID and all-gene sets, the proportion of
distances falling into the following categories: (1) small biological
distances (<10); (2) small-medium biological distances (between
10 and 20, 20 being the median biological distance between all
human genes); (3) medium-large biological distances (between 20
and 30); (4) large-very large biological distances (between 30 and
40); and (5) very large-extremely large biological distances (>40).
We then compared the biological density of PID genes with that
of other human genes, by first calculating the median distance
between all 229 known PID genes, and then simulating sets of 229
randomly chosen genes, calculating the median distance between
these genes, and estimating a p-value by determining the pro-
portion of simulated random gene sets with a median biological
distance smaller than that for the known PID genes.

INITIAL EXTRACTION OF NOVEL PID-CANDIDATE GENES

We used, as an input, the connectomes (see text footnote 1) of
the 229 known PID-causing genes (6), a gene-specific connec-
tome being defined as the set of all human genes ranked according
to their biological proximity to the gene of interest. From these
229 gene-specific connectomes, we extracted only the genes in the
top 1% of all human genes by p-value, to obtain an initial list of
29,885 genes. We then processed the novel candidate gene data in
two steps, to prevent redundancy: (1) we removed all the predicted
genes already in the list of 229 known PID-causing genes; and (2)
we retained only one instance per novel PID-candidate gene. These
two filtering steps decreased the list to 5,012 non-redundant genes.

FILTERING OF PID GENE CANDIDATES BY FUNCTIONAL ENRICHMENT

We then narrowed the list of genes down to those of biological
relevance, by hypothesizing that a novel PID-causing gene would
be likely to have a biological function similar to those of already

Zhttp://hgc.rockefeller.edu/

known PID genes. For example, the gene CPN2 was predicted by
the HGC biological distance to PID core gene IKBKG to be a PID
candidate. However, CPN2 has the biological function of protein
stabilization, which is not a biological function that is enriched in
known PID genes; therefore, CPN2 could plausibly be removed
from the initial list of PID-candidate genes. We therefore first used
DAVID (10) to estimate the gene ontology (GO) biological func-
tional enrichment of all known 229 PID genes. We selected only
those functions for which p < 0.05 (a total of 462 GO terms). We
then applied DAVID GO biological terms analysis (11) to the PID
gene candidates, and selected only genes associated with at least
1 of the 462 PID GO terms. This resulted in a final list of 3,110
in silico-predicted novel candidate PID genes.

PHYLOGENY OF KNOWN AND ESTIMATED NOVEL PID GENES

The biological-interrelatedness between the 229 known PID genes
and the 3,110 candidate PID genes predicted in this study was
estimated with the functional genomics alignment (FGA) phy-
logeny (5). We first created a biological distance matrix between
all known and predicted PID genes; we then applied a neighbor-
joining algorithm, in the R statistical programing language APE
(12) (analyses of phylogenetics and evolution) package nj func-
tion. Finally, we plotted a phylogenetic fan-shaped tree based on
HGC-predicted biological distances between known and predicted
PID genes, using the plot function of the APE package (12).

GENERATION AND PLOTTING OF GENE NETWORKS

For visual depiction of the distribution of the 229 currently known
PID genes within the full human genome, we used the predicted
HGC biological distance between all human genes, selecting only
direct biological connections (5, 13) between genes, to lower
the complexity of the network. We then used the NetworkX
python package for complex network analyses and visualizations
(14), applying the spring layout function, which estimates the
localization of each gene in a two-dimensional space with the
Fruchterman—Reingold force-directed algorithm (15). The nodes
of known PID genes were plotted three times larger than those of
the other human genes.

COMPUTING RESOURCES AND PROGRAMING LANGUAGES

This project was performed on a Mac Pro machine with 12 cores
and 128 GB RAM. Biological distances between genes were cal-
culated by the HGC and server. Data extraction, statistical simu-
lations, and network analyses and visualizations were performed
with the Python programing language. FGA phylogenetic analy-
ses and visualizations were performed with the R programing
language for statistical computing’. The programs and online
server used in this study (in particular for ranking candidate genes
by biological distance from core genes and FGA trees genera-
tion) are freely available to non-commercial users with step-by-
step instruction at http://lab.rockefeller.edu/casanova/HGC and
http://hgc.rockefeller.edu, and the scripts for the minor technical
procedures in this study are all available from the authors upon
request.

3http://www.r-project.org
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RESULTS biological distance between human genes, we found that PID genes
DISTRIBUTION OF PID GENES WITHIN THE WHOLE HUMAN GENOME tend to be in the central hub of the human genome network, with
We calculated and plotted the network of all 229 known PID-  only a small minority in the central hub’s periphery and none in
causing genes related to 50 PID syndromes (6) in the context of the  the extreme periphery of the whole human genome. PID genes
full human genome (Figure 1). Using the HGC-predicted direct are forming several tightly intra-related sub-clusters (i.e., in most

FIGURE 1 | The human genome and PID gene network. This figure shows all 229 known PID-causing genes (red) together with all 14,131 human
protein-coding genes for which HGC-predicted biological distance information was available.
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cases, a PID gene will have as a close functional neighbor at least
one other PID gene) across a diversity of biological mechanisms,
demonstrating the variety of genetic pathways underlying PIDs.

SMALL BIOLOGICAL DISTANCES BETWEEN PID GENES

We tested the hypothesis that PID genes are functionally close to
each other (which would be the prerequisite for identifying candi-
date PID genes on the basis of biological proximity), by comparing
the biological distances between PID genes and all human genes,
in terms of the proportions of biological distances assigned to
five categories, from the smallest to the largest (Figure 2). Most
intra-PID gene distances belonged to the very small-to-medium
categories (28.4 and 53.6%, respectively), the proportion of PID
genes falling into these categories being larger than for all human
genes (7.7 and 40.0%, respectively).

We found that the median biological distance between known
PID genes was 12.1, whereas that between simulated sets of 229
random genes was 20.4. None of the simulated sets of ran-
dom genes had a median smaller than that of known PID genes
(p<1077), consistent with the hypothesis of tight functional
interrelatedness between PID genes. While it was expected that
genes belonging to the same pathway would display small bio-
logical distances between each other, confirming this hypothesis
makes it possible to infer novel PID genes based on HGC-predicted
biological distance to core PID genes.

INITIAL ASSESSMENT OF NOVEL PID GENES

Based on the demonstration that PID genes display close biolog-
ical proximity, we hypothesized that currently unidentified PID
genes would be located at a small biological distance from known
PID genes. We therefore acquired the gene-specific connectomes
of all 229 known PID-associated genes and extracted only those for
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FIGURE 2 | Comparison of biological distances between PID genes and
all human genes. Biological distances between PID genes (red) and all
human genes (gray), according to the proportion of distances in five
categories: (1) small biological distance (<10); (2) small-medium biological
distance (between 10 and 20); (3) medium-large biological distance
(between 20 and 30); (4) large-very large biological distance (between 30
and 40); and (6) extremely large biological distance (>40).

which p < 0.01 for connection to the respective PID gene (29,885
gene occurrences, many genes occur more than once due to their
close biological distance to more than one known PID gene). We
then removed redundant genes, and genes from the set of 229
known PID genes. This left us with 5,012 non-redundant genes
not previously identified as PID genes.

FINAL SET OF PROPOSED NOVEL PID-CANDIDATE GENES

We hypothesized that most of the novel PID genes would be likely
to have biological functions similar to those of known PID genes.
We therefore used DAVID (10) to assess the functional enrichment,
by biological GO, of all known PID genes. We retained only GO
terms (11) for which p < 0.01 (Table SI in Supplementary Mate-
rial). We then applied biological GO terms analysis to the 5,012
candidate genes identified as described above, and extracted only
those with a biological function already identified among known
PID genes. This generated a final list of 3,110 in silico-predicted
novel candidate PID genes, identified on the basis of biological
distance from known PID genes and a similar biological function,
and described in terms of their relatedness to their biologically
closest PID gene (Table S2 in Supplementary Material). We then
carried out hierarchical clustering of all known and predicted PID
genes (5, 12). This analysis showed that the candidate PID genes
identified in this study were evenly distributed over the whole
range of known PID genes (Figure 3), while they form together
a network that is tightly itra-related biologically and functionally
(median biological distance of 11.0, compared to 20.4 between two
random human genes, p < 1077).

ASSESSING THE PREDICTIVE POWER OF NOVEL PID-CANDIDATE
GENES

We retrospectively demonstrated the utility of this approach for
identifying novel candidate PID genes, with 21 PID genes that were
recently shown experimentally to cause PIDs (7, 16-38). None
were included in the list of 229 known PID genes used in this
study. Seventeen of these 21 genes were included in our list of pro-
posed 3,110 novel PID-candidate genes, with p < 107 (estimated
by random sampling computer simulations). Moreover, similar
prediction rate of 17 of 21 is achieved with the extended list of
5,012 candidates, demonstrating the usefulness of the PID gene
candidates short-listing procedure presented in this study. Table 1
describes these 17 genes in terms of their relatedness to the PID
gene from the connectome of which they were identified.

DISCUSSION

We describe here an extended list of 3,110 novel PID-candidate
genes, initially predicted in silico with the HGC biological distance
concept, then on the basis of the relevance of their biological func-
tion. We showed that PID genes (6) were significantly closer to each
other biologically than other human genes. We then extracted the
1% of genes biologically closest to the known PID genes and fur-
ther retained only those genes with a biological function similar
to those known to display enrichment among PID genes. We gen-
erated a final in silico-predicted set of 3,110 human genes, which
may be considered reliable candidate PID genes. In other words,
we predict that there will be a high proportion of PID-causing
genes among these 3,110 genes. We then demonstrated that 17
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FIGURE 3 | Functional genomic alignment phylogeny of known PID genes and novel PID-candidate genes. A phylogenetic tree of biological distances
generated by the functional genomic alignment method, showing hierarchical clustering of all known (red) and predicted (blue) PID genes.
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Table 1 | New PID genes predicted from the list of novel PID-candidate genes.

Predicted Known Biological distance Rank of p-Value (percentile) Route between

PID gene PID gene between candidate candidate of candidate in candidate and
candidate candidate and known in known known known

BCL10 CARDM1 1.001 1 0.00007 CARD11 <> BCL10
IRF7 MYD88 1.001 1 0.00007 MYD88 < IRF7

IL21 IL21R 1.001 1 0.00007 IL21TR < IL21

CTLA4 ICOS 1.616 3 0.00021 ICOS < CTLA4

STING (TMEM173) TBK1 1.001 3 0.00021 TBK1 < TMEM173
NFKB1 NFKBIA 1.001 4 0.00028 NFKBIA <> NFKB1
NLRC4 NOD2 1.183 5 0.00035 NOD2 < NLRC4

NIK (MAP3K14) CD40 1.064 8 0.00057 CD40 < MAP3K1

TPP1 TINF2 1.191 18 0.00127 TINF2 <TPP1

JAGN1 (JAG1) CHD7 2.387 27 0.00191 CHD7 < JAG1
TGFBR2 C8B 6.441 27 0.00191 C8B < CLU < TGFBR2
TGFBR1 C8B 6.441 28 0.00198 C8B <> CLU <> TGFBR1
INO80 ACTB 1.5682 35 0.00248 ACTB < INO80
DOCK2 RAC2 1.610 35 0.00248 RAC2 < DOCK2
STAT4 STAT3 1.104 35 0.00248 STAT3 <> STAT4

ADA2 (TADA2A) TBX1 7.228 83 0.00587 TBX1 <> C110rf30 <> TADA2A
IFIH1 FADD 4.141 87 0.00616 FADD < MAVS < IFIH1

Showing the 17 (of 21) PID genes recently reported and identified in the list of PID-candidate genes described in this study.

of 21 newly discovered PID genes were present in our proposed
list of PID-candidate genes. We plan to use this list, together with
the list of 229 known PID genes, in investigations of the HTS
data for PID patients. A hit for one of these genes in this analysis
would be associated with a higher likelihood of the gene being
PID-causing.

It is important to note that as in any high-throughput genome-
wide analysis, the choice of input data, algorithm, and even small
fine-tuning is likely to strongly affect the outcome. However, we
attempted here to provide a reliable prediction where false neg-
atives (i.e., true PID genes that are not in the final provided list
of candidate genes) are minimized — an aim that is expected to
be achieved by following a biologically plausible hypothesis of
the tight intra-relatedness of PID genes, together with having a
small number of false positives, achieved by estimating the bio-
logical relevance of the gene candidates. The main limitation of
the approach described in this study is that it is still expected to
contain a large number of false positives: although the final list
of 3,110 genes removes about 85% of irrelevant protein-coding
genes, the function of a large proportion of human genes is poorly
understood. Future advances in characterizing the functions of
human genes and updates to genome-wide curated databases of
gene ontologies and biological/genetic pathways should signifi-
cantly improve the predictive power of our (and other in silico)
described methodology.

The procedures described here could be used to infer novel
disease gene candidates for other disease groups. For example, as
information about known cancer driver genes is available (39)4,

4http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/

an extended list of cancer gene candidates could potentially be
identified by HGC-predicted biological distance analysis of known
cancer genes, to generate a final list of predicted novel candidates
on the basis of biological function relevance. We stress that the
predicted gene candidates (for PID and other diseases) should not
be used for the purpose of excluding irrelevant genes, but rather
to help investigators to identify novel disease-causing candidate
genes. Moreover, as in any other in silico prediction methodology,
in order for a mutation in a candidate gene to be confirmed as
disease-causing, it must be verified by experimental immunolog-
ical and genetic approaches, due to the complex nature of genetic
disease pathogenesis, which in many cases involves phenotypic
heterogeneity and incomplete penetrance, which current in sil-
ico methods cannot predict. We believe that rigorous use of the
extended in silico-predicted list of candidate PID genes would
increase the rate of novel PID-gene discovery in high throughput
sequencing studies (40).
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SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at http://journal.frontiersin.org/article/10.3389/fimmu.
2015.00142

Table S1 | Functional enrichment of known PID genes. Biological GO
enrichment categories (p < 0.05) for the 229 known PID genes. Other
categories include GO accession term and number, fold-enrichment for the PID
gene set for the specific GO term, and set of known PID genes for the specific
GO term.

Table S2 | Proposed novel candidate PID genes. The end result of this study is
shown in 3,110 novel candidate PID-causing genes predicted in silico (column
A). Column B corresponds to the known PID gene closest to the predicted novel

PID gene. Other categories, by column: (C) biological distance between the
known and predicted PID genes; (D) the rank of the predicted PID gene in the
connectome of the known PID gene; (E) p-value for biological proximity of the

predicted PID gene in the connectome of the known PID gene; (F) the predicted
route (i.e., the genes on the shortest predicted route) between the known and
predicted PID genes; and (G) the degrees of separation (i.e., the number of
direct connections on the route) between the known and predicted

PID genes.
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