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Organ transplantation is widely acknowledged as the best option for end stage failure of
vital organs. Long-term graft survival is however limited by graft rejection, a destructive
process resulting from the response of recipient’s immune system against donor-specific
alloantigens. Prevention of rejection currently relies exclusively on immunosuppressive
drugs that lack antigen specificity and therefore increase the risk for infections and can-
cers. Induction of donor-specific tolerance would provide indefinite graft survival without
morbidity and therefore represents the grail of transplant immunologists. Progresses in
the comprehension of immunoregulatory mechanisms over the last decades have paved
the way for cell therapies to induce allograft tolerance. The first part of the present article
reviews the promising results obtained in experimental models with adoptive transfer of ex
vivo-expanded regulatory CD4+T cells (CD4+Tregs) and discuss which source and speci-
ficity should be preferred for transferred CD4+ Tregs. Interestingly, B cells have recently
emerged as potent regulatory cells, able to establish a privileged crosstalk with CD4+

T cells. The second part of the present article reviews the evidences demonstrating the
crucial role of regulatory B cells in transplantation tolerance. We propose the possibility
to harness B cell regulatory functions to improve cell-based therapies aiming at inducing
allograft tolerance.
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INTRODUCTION
Organ transplantation consists in the restoration of vital physi-
ologic functions through the surgical substitution of a defective
organ by a functioning graft retrieved from a donor. Because,
the donor is from the same species but genetically different from
the recipient, immune system of the latter will inevitably rec-
ognize donor-specific antigenic determinants (i.e., alloantigens)
expressed by the graft, in particular, the highly polymorphic mol-
ecules from the human leukocyte antigen (HLA) complex. The
alloimmune response that develops against donor-specific HLA
molecules is responsible for tissue damages, which lead to the
failure of the transplanted organ, a process named “rejection.”

Prevention of graft rejection currently, exclusively, relies upon
immunosuppressive drugs, which have no antigen specificity. They
act by preventing the activation of immune effectors or blocking
cell proliferation (1), therefore, dampening immune responses.
Not surprisingly, this global immune depression is responsible
for major side effects for patients, in particular, increased risks
for infectious diseases (2), and malignancies (3). Furthermore,
because complete blockade of immune responses would kill the
patients, therapeutic immunosuppression only partially block
alloimmune responses. Although sufficient to slow down graft
destruction, therapeutic immunosuppression does not fully pre-
vent the development of chronic rejection, which remains the first
cause of allograft loss (4).

In 1953, Medawar provided the first experimental evidence of
a sustained alloantigen-specific unresponsiveness in the absence
of chronic immunosuppression: a process that he named immune
tolerance (5). Of all of the mechanisms involved in tolerance to
allografts, which include deletion, anergy, ignorance, and clonal
exhaustion, the role of active T-cell-mediated immunoregulation
was long ago identified as being crucial (6). Not surprisingly,
important efforts have therefore been developed in the clinic to
harness regulatory CD4+ T cells (CD4+ Tregs) for inducing tol-
erance in both hematopoietic cell transplantation (7–9) and solid
organ transplantation (10–13). A first strategy consists in pro-
moting the expansion of CD4+ Tregs in vivo through immune
interventions like co-stimulation blockade, alloantigen infusion,
interleukin 2. These approaches are not addressed in the present
review for the sake of brevity [for recent reviews, see Ref. (10, 12,
13)]. Alternatively, it has also been proposed to expand recipient’s
CD4+ Tregs ex vivo for retransfer as cell therapy.

Beyond CD4+ Treg, other immune players play important
roles in tolerance toward alloantigens. Some cells from the
innate immune system (i.e., tolerogenic dendritic cells, regula-
tory macrophages, myeloid-derived suppressor cells) have been
shown to display regulatory functions and their use has emerged as
another promising strategy to induce tolerance (10, 14). Recently,
the regulatory properties of B cells have also been recognized and
identified as being essential in allograft tolerance (15, 16).
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Focusing on approaches based on the adaptive immune sys-
tem, we first provide an overview of data underlying the use of
adoptive transfer of CD4+ Tregs to promote allograft tolerance.
The possibility to harness regulatory properties of B cells is then
discussed.

ADOPTIVE TRANSFER OF CD4+ Tregs TO INDUCE
ALLOGRAFT TOLERANCE
T-CELL-MEDIATED IMMUNOREGULATION
The concept of T-cell-mediated immunoregulation arose in the
early 1970s, following the seminal description by Gershon and
Kondo of thymic-derived lymphocytes able to suppress antigen-
specific immune responses (6). Although regulatory activity has
been reported for various T-cell subsets, including CD4+ IL-10-
producing type 1 regulatory cells (17) and some CD8+ T cells (18),
there is a wide consensus that T-cell mediated immunoregulation
is enriched in the CD4+ Tregs subset.

CD4+ Tregs are classically identified by the co-expression of
CD4 and interleukin-2 receptor α-chain (CD25) together with the
transcription factor Forkhead box P3 (FOXP3) (19). While the
latter is considered as the best phenotypic marker of CD4+ Tregs,
it should be noted that FOXP3 is also expressed by CD8+ Treg
and transiently in humans by non-regulatory activated T cells
(20, 21). CD4+ Tregs have many other phenotypic characteris-
tics that are non-specific and inconstant: expression of CD45RA,
latency-associated peptide (LAP), glucocorticoid-induced TNFR-
related protein (GITR), cytotoxic T-lymphocyte antigen-4 (CTLA-
4), inducible costimulatory (ICOS) receptors for interleukin 1
(CD121a/b), and low expression of IL-7 receptor-α chain (CD127)
(10, 22–25).

CD4+ Tregs are thought to exert their immunoregulatory
functions through four complementary molecular mechanisms
(26): (i) secretion of inhibitory cytokines, including interleukin-
10 (IL-10), IL-35, and transforming growth factor-beta (TGF-
β), which act on both conventional T cells and dendritic cells;
(ii) cytolysis through CD95L, granzyme, and perforin-dependent
killing mechanisms; (iii) metabolic disruption, which includes
high-affinity CD25-dependent IL-2-deprivation-mediated apop-
tosis, consumption of extra-cellular ATP by CD39and/or CD73;
and (iv) mechanisms that modulate dendritic cell maturation and/or
function such as HLA-G, lymphocyte-activation gene 3 (LAG3;
also known as CD223)–MHC-class-II mediated suppression of
DC maturation, and cytotoxic T-lymphocyte antigen-4 (CTLA4)–
CD80/CD86-mediated induction of indoleamine 2,3-dioxygenase
(IDO), which catalyzes the tryptophan degradation forming the
intermediate kinurenine with immunomodulatory properties.

NATURALLY OCCURRING VS. ADAPTIVE CD4+ Tregs
Part of CD4+ Treg efficiency comes from their ability to con-
vert “conventional” T cells into cells with suppressive properties, a
process referred to as infectious tolerance (27). One can therefore
distinguish two categories of CD4+ Tregs, which differ in their
origin, phenotype, and mode of action.

(i) Naturally occurring CD4+ Tregs or thymus-derived T reg
(tTregs) that develop from T-cell precursors with some
degree of self-reactivity during the normal process of T-cell

maturation in the thymus, and survive in the periphery and
are poised for immunoregulation.

(ii) Adaptive CD4+ Tregs that are generated extrathymically from
CD4+ CD25-T-cells, either at peripheral sites in vivo [periph-
eral Treg (pTregs)], or induced in cell culture [in vitro-induced
Treg (iTregs)] (28).

In contrast with T CD4+ Tregs, which are characterized by a
complete demethylation of CpG motifs as well as histone mod-
ifications within regions of FOXP3 locus, adaptive CD4+ Tregs
display only incomplete demethylation that is lost, along with
FOXP3 expression and suppressive activity upon restimulation
in the absence of TGF-β (29). Higher stability of the regulatory
phenotype of CD4+ tTregs suggests that they might be a bet-
ter source for cell therapy than adaptive CD4+ Tregs, which may
convert back into effectors after transfer into recipients due to
their plasticity. However, this issue may not be as straightforward
as it may seem because CD4+ tTregs are rare and difficult to sep-
arate from adaptive CD4+ Tregs alive, and also because CD4+

tTregs and adaptive CD4+ Tregs play complementary roles. In
particular, recent observations made in mice, selectively lacking
CD4+ pTregs, demonstrated their pivotal function in maternal
tolerance toward paternally inherited fetal alloantigens (30), sug-
gesting that adaptive CD4+ Tregs might be critical in the control
of alloresponse in organ transplantation. Consequently, almost all
cell therapy strategies to induce allograft tolerance rely on adoptive
transfer of a mixture of CD4+ T Tregs and p/iTregs.

WHICH SPECIFICITY FOR TRANSFERRED CD4+ Tregs?
CD4+ Tregs have been shown to maintain potent suppressive
properties after ex vivo expansion (31, 32), suggesting that this
strategy could be used to generate enough CD4+ Tregs as to alter
the balance of T effector/Tregs in recipients after adoptive trans-
fer and thus to induce tolerance to allograft. Accordingly, it was
shown in a murine model of heart allotransplantation that purified
polyclonal CD4+ Tregs, ex vivo expanded with anti-CD3/CD28
mAb-coated beads before reinfusion to recipient, efficiently pre-
vented CD4+ T cell-mediated rejection and delayed CD4+/CD8+

T cell-mediated rejection (33). Using a similar strategy in a human-
ized mouse model, Kathryn Wood’s team reported that human ex
vivo expanded polyclonal CD4+ Tregs were able to prevent the
development of vascular chronic rejection lesions (34).

Based on these promising results, a clinical trial has been
launched to evaluate the recipients’ CD4+ Tregs expanded poly-
clonaly (The ONE study: NCT021298811).

An important limitation of this approach for clinical appli-
cation is the fact that polyclonal CD4+ Tregs deliver pan-
immunosuppressive effects, and therefore do not negate all
the caveats associated with standard immunosuppression. Using
donor-specific CD4+ Tregs could allow circumventing this
problem.

Allorecognition is initiated by T cells recognizing either intact
allo-MHC molecules on donor antigen-presenting cells (APCs)
(direct pathway) or allopeptides bound to self-MHC molecules

1https://clinicaltrials.gov
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on recipient APCs (indirect pathway) (35). As for effectors, two
type of donor-specific CD4+ Tregs can therefore participate to
allograft tolerance: direct-CD4+ Tregs and indirect-CD4+ Tregs
(Figure 1).

It is traditionally accepted that direct alloreactivity represents
the driving force behind early acute graft rejection. Using donor-
derived mature APCs to generate direct-CD4+ Tregs, Sagoo et al.
reported that these “customized” CD4+ Tregs were more efficient
than polyclonal CD4+ Tregs to prevent alloimmune-mediated
injury of human skin grafts in a humanized mouse model (36).
Several independent teams (37–41) reached similar conclusions
using various protocols that all have in common the use of
allogeneic APCs for ex vivo expansion of direct-CD4+ Tregs.
These data paved the way for ongoing clinical trials aiming at
evaluating alloantigen-specific direct-CD4+ Tregs in the setting

of kidney transplantation (The ONE study: NCT02244801 and
NCT02091232; see text footnote 1).

Interestingly, Joffre et al. demonstrated in a murine model that
adoptive transfer of direct-CD4+ Tregs prevented acute rejection
but failed to prevent the development of chronic rejection lesions
on cardiac transplant (42). These findings are in line with the fact
that, while direct alloresponse rapidly subsides as donor passenger
leukocytes vanish, indirect alloresponse persists indefinitely and
promotes chronic rejection (43). The importance of the indirect
allorecognition pathway in allograft tolerance has been robustly
demonstrated. B6II-4+ mice (MHC II-deficient mice expressing
an MHC II transgene exclusively on thymic epithelium), which
have functional CD4+ T cells but are unable to mount an indi-
rect response, are resistant to the induction of cardiac allograft
tolerance (44, 45). In humans, Haynes et al. showed that antidonor

Alloreactivity Tolerance

T reg cell therapy 

CD4+ T cell 
Donor APC 

Recipient APC CD4+ T cell 

Direct 
T reg 

Indirect 
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- CD4+ direct cytotoxicity 
- Activation of cytotoxic CD8+ T cells  

B cell help leading to alloantibody production 

ANTIBODY-MEDIATED REJECTION 
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Low efficiency of 
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B-10 cell therapy? 
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FIGURE 1 | Immune mechanisms involved in rejection and tolerance to allograft are represented. Regulatory cells are in green and effector cells in red.
APC, antigen presenting cell; BCR, B cell receptor.
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indirect pathway T regulatory response was much higher in oper-
ationally tolerant patients than in patients experiencing chronic
rejection (46). All together, these data strongly suggest developing
strategies of adoptive transfer of indirect-CD4+ Tregs to promote
long-term allograft tolerance. In line with this hypothesis, several
independent teams (using various methods to generate indirect-
CD4+ Tregs) reported that these cells have a higher ability than
direct-CD4+ Tregs to prolong allograft survival (42, 47, 48). Jiang
et al. showed that this approach was transposable in the clinic
(49). They recurrently stimulated CD4+ CD25+ T cells with irra-
diated autologous monocytes-derived dendritic cells pulsed with
HLA-A2 peptide in presence of IL2 and IL7 to generate indirect-
CD4+ Tregs. Interestingly, these cells not only suppressed antigen-
driven responses of CD4+ CD25-T cells specific for the same
peptide (indirect allorecognition) but also direct alloresponse of
naive CD4+ CD25-T cells stimulated by semi-allogeneic APCs in
the presence of the peptide (i.e., “linked suppression”).

INDIRECT-CD4+ Tregs AND DE NOVO ALLOANTIBODY GENERATION
It is now widely recognized in organ transplantation that long-
term graft loss is mainly caused by the recipient’s humoral response
against donor HLA molecules (50). The binding of donor-specific
antibodies (DSA) to mismatched HLA molecules leads to chronic
microvascular inflammation and progressive tissue destruction
through complement activation and antibody-dependent cell
cytotoxicity (51–56).

Donor-specific antibodies are produced upon activation of
recipient’s alloantigen-specific B cells (57). The binding of cognate
alloantigen to B cell receptor (BCR) provides the first activation
signal to B cell, and leads to the internalization, processing, and
presentation of the alloantigen on surface MHC class II molecules.
Cognate CD4+ T lymphocytes, which recognize the alloantigen
indirectly presented by B cells, provide the second activation signal
through provision of CD40L. Activated B cells then either differ-
entiate into plasmablasts secreting low affinity IgM or undergo
the germinal center reaction driven by cognate interactions with
a particular subset of CD4+ T cells: the follicular helper T cells
(58). After affinity maturation and isotype switching, B cells dif-
ferentiate either into memory B cells or into long-lived plasma
cells, which secrete high affinity switched DSA and localize into
the spleen and the bone marrow (59). CD4+ T cells specific for
indirectly presented alloantigens are therefore necessary for the
generation of DSA. This was first showed experimentally by Steele
et al. (60) and then robustly confirmed by Pettigrew’s team (61–
64). Accordingly, a patient from the ITN507ST trial, who exhibited
a weak indirect pathway response to HLA-A1 and HLA-B57 but
a strong response to HLA-A2, also developed an anti-HLA-A2
IgG response but no detectable Ab response to HLA-A1 and
HLA-B57 (46).

Based on these data, it is reasonable to speculate that the long-
term beneficial effect reported for adoptive transfer of indirect-
CD4+ Tregs is due to their ability to suppress DSA generation
(Figure 1). In accordance with this hypothesis, Callaghan et al.
showed in a rat transplant model that the transfer of indirect
CD4+ Tregs prevented alloantibody production (65).

An important limitation to the transfer in the clinic of proto-
cols of cell therapy with ex vivo-expanded indirect-CD4+ Tregs

is the source of recipient’s APCs. Indeed, dendritic cells are rare
in the circulation and monocytes require several days of matura-
tion in culture to differentiate into mature APCs. In contrast with
their deleterious role in alloantibody production, B cells are also
endowed with regulatory functions (15, 16). As mentioned above,
they are also potent APCs, which establish a privileged crosstalk
with CD4+ T cells. Finally, they are in greater number in the cir-
culation than professional APCs and are also easy to expand and to
keep in vitro upon CD40 stimulation. For all these reasons, B cells
might represent promising generators of indirect-CD4+ Tregs.

HARNESSING B CELL REGULATORY FUNCTIONS TO INDUCE
ALLOGRAFT TOLERANCE
REGULATORY FUNCTION OF B CELLS
One of the first evidence that B cells could regulate immune
responses came from an experimental study published in 1982,
which reported that antigen-activated B cells could suppress
immune responses in vivo (66). Later on, many studies conducted
in various experimental models of immune diseases confirmed the
strong contribution of B cells to immune regulation (67–69). For
instance, Wolf et al. reported that mice lacking B cells developed a
more severe form of experimental autoimmune encephalomyelitis
(EAE) (70). Similar observations were made in murine experi-
mental models of collagen induced arthritis (71), ulcerative colitis
(72), and allergy (73, 74). Interestingly, though the pathogenic T-
cell response involves the same T helper 1 (Th1) cells and Th17
proinflammatory T-cell populations in EAE and collagen-induced
arthritis, the colitis and allergy models differ in that the inflam-
mation appears to be driven by Th2 cells. Thus, the B-cell com-
partment has the capacity to control organ-specific inflammation
that may be driven by Th1, Th2, or Th17 effectors.

Beyond murine experimental models, accumulating evidence
from patients with multiple sclerosis (75), lupus (76), and rheuma-
toid arthritis (77) suggests that B cells play a crucial regulatory role
also in humans.

B CELL REGULATION IN CLINICAL TRANSPLANTATION
The demonstration that B cells play a major regulatory role
in clinical transplantation came from studies performed in the
few spontaneously operationally tolerant patients, i.e., kidney
recipients who have kept a stable graft function for years after
immunosuppression withdrawal (15). Brouard et al. were the first
to report that operationally tolerant kidney recipients could be
identified by a blood transcriptional signature enriched for B cell
related genes (78). This seminal finding has been further validated
by two independent studies from Immune Tolerance Network
(79) and the Indices of Tolerance European Union consortium
(80), which demonstrated that tolerant, but not stable patients
under immunosuppression exhibited enriched B cells and B cell
transcripts in their blood. Cross-validation studies in these two
consortia confirmed a strong association between B cell-related
genes/markers and the tolerant state. Interestingly, while neither
group performed transplant kidney biopsies, RNA from cells in
the urine in the US cohort of tolerant patients contained higher
quantities of CD20 transcripts, suggesting that B cells in the graft
may be relevant (81).
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MECHANISMS OF B CELL-MEDIATED REGULATION
Using antibodies against CD45, a tyrosin–phosphatase involved
in lymphocyte activation, Deng et al. induced tolerance to allo-
geneic heart in mice (82). This therapy was ineffective in recipients
lacking B cells (µMT). Reconstitution of µMT recipients with
B cells incapable of antibody secretion was sufficient to restore
tolerance but this effect was lost if the reconstitution was made
with B cells from CD40 or B7-1/B7-2 knockout mice. In another
study, Ding et al. showed that tolerance to allogeneic islet could be
induced with anti-TIM1 antibodies only if B cells were present in
the recipient (83). In this model, the transfer of B cells from B6-
immunized BALB/c mice abrogated rejection of B6 but not C3H
islets by BALB/c recipients. Combining anti-CD45+ anti-TIM1,
Lee et al. (84) observed a synergistic effect for inducing tolerance to
allogeneic islets. This effect depended on the presence of recipient
B cells and was antigen-specific. Tolerance could not be induced if
Tregs were depleted in recipient. Collectively, these in vivo murine
experimental studies prove that B cells have the capacity to transfer
donor-specific tolerance. They also demonstrate the importance
of the crosstalk between host B and T cells in B cell-mediated
transplantation tolerance.

The identification of the molecular mechanisms by which B
cells exert their regulatory functions on T cells has been the sub-
ject of considerable interest. Although B cells have been shown
to induce T effector apoptosis by up regulation of FAS-Ligand
or production of granzyme B, the main regulatory mechanism
appears to be the secretion of immune-regulatory cytokine: IL35
(85), TGF-β, and primarily IL10 (69, 74) (Figure 1). Fillatreau
et al. indeed showed that chimeric mice in which IL10 deficiency
was restricted to B cells did not recover from EAE and had a
persistent Th1 inflammatory response (86). The IL10-mediated
suppressive function of B cells was also demonstrated in colitis,
arthritis, and allergy models (71, 74, 87). IL10 has pleiotropic
effects on immune responses. While restraining inflammation,
inhibiting dendritic cells or CD8+ T cells functions and suppress-
ing Th1 and Th17 cells responses, IL10 also promotes Tregs (and
Tr1) differentiation (88).

IL10-PRODUCING B CELLS: “B10” CELLS
The molecular signals driving IL10 production in B cells have been
partly identified. TLR signaling is determinant (89). Deficiencies
in TLR2 and TLR4 or in MyD88 (the adapter used by most TLRs to
activate the transcription factor NF-κB) restricted to B cells were
associated with a decrease production of IL10 and the development
of a severe form of EAE (90).

B cell receptor signaling also plays a critical role in IL10 pro-
duction by B cells. Deficiency in B-cell linker protein (BLNK),
an upstream adapter in the BCR pathway, indeed profoundly
decreased IL10 production (91). In line with this finding, impaired
calcium signaling in STIM1 and STIM2 deficient mice also
weakened IL10 production by B cells (92).

CD40 pathway is also involved. Mice with a CD40 deficiency,
which is restricted to B cells, developed a more severe EAE form
with important decrease of IL-10 production (86).

Because these three pathways are intermingled during B cell
activation, it is difficult to determine their specific contribution to
in vivo B cell IL10 production. Tedder’s team suggested that the

generation of IL-10-secreting B cells required IL-21 and CD40-
dependent cognate interactions with T cells (93). Fillatreau’s group
proposed a two-step model in which B cells-mediated regulation
is initiated by TLR ligation and then strengthened by BCR and
CD40 signaling (68, 89).

The involvement of the B-cell receptor, CD40, and TLRs in the
regulatory function of B cells raises a conceptual difficulty. Indeed,
these signals are the very same as the ones involved in the activa-
tion of B cells in most immune responses. One hypothesis would
therefore be the existence of a peculiar“Breg”subset, endowed with
the unique function to regulate immune processes. In the mouse, a
rare population of splenic B cells characterized by a unique pheno-
type (CD5+ CD1d high) has been reported to play a critical role
in the regulation of murine EAE (94). Other groups have since
ascribed this role to a wide range of B cell subsets, including peri-
toneal B-1 cells, marginal zone B cells, transitional type 2 B cells
(76), TIM-1+ (83). More recently, it has been suggested that plas-
mablasts could also exert regulatory function through provision
of IL10 (95).

The diversity of B-cell subsets involved in suppression raises
an alternative hypothesis: instead of being a unique property of a
single B-cell subset, immune-suppressive activity could be exerted
by different subsets of B cells depending on the integration of
available signals in the microenvironment.

EX VIVO-GENERATION OF AUTOLOGOUS B10 FOR CELL THERAPY
Two important features have to be met by B cells for cell therapy
aiming at inducing immune tolerance. First, B cells must display
regulatory functions. This is made possible by providing them
with activation signals inducing the synthesis of IL10 (described
in detail above). The feasibility of this approach was demonstrated
by Lampropoulou et al., who used TLR ligands to generate B10
in vitro able to suppress T cell activation (90). Of note, in contrast
with CD4+ Tregs, the stability of regulatory functions of which
might be compromised following transfer by immunosuppres-
sive drugs or by graft inflammatory environment (89, 96), danger
signals (signaling through TLR) present within the graft could
participate to maintain the regulatory functions of B cells.

A second important feature for in vitro-generated B10 is their
ability to present the relevant antigen in MHC class II molecules in
order to efficiently interact with cognate T cells (89, 97). This point
is far more challenging. Indeed, in contrast with dendritic cells that
present any antigens following phagocytosis, cognate interaction
with the BCR is required for antigen internalization, processing,
and presentation by B cells (98). For this reason, it is difficult
to pulse polyclonal populations of B cells with a given protein
antigen. To overcome this limitation, Scott’s group has developed
an original approach consisting in transducing polyclonal B cells
with a retroviral vector encoding for the antigen (99). Building on
this technology, his group has made pioneer contributions high-
lighting the potential of B lymphocytes for cell therapy to induce
antigen-specific tolerance (100, 101). In Scott’s system, antigen is
retrovirally transduced into LPS-activated B cells. Upon adoptive
transfer, genetically modified B cells were able to inhibit autoim-
mune diseases in many mice models including uveitis (102, 103),
multiple sclerosis (104, 105), type 1 diabetes (106), and rheuma-
toid arthritis (107). The expression of MHC II and co-stimulatory
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molecules (B7.1 and B7.2) by transduced B cells was necessary,
highlighting again the importance of B cell antigen presentation
to T cells for tolerance (108–110). Genetically engineered B cells
were indeed shown to act by promoting the expansion of FOXP3+

CD4+ Tregs in vivo (111). It is not clear in Scott’s system why the
transduced antigen was expressed in the MHC II of genetically
engineered B cells. This could be due to the fact that antigen was
engineered in frame into BCR, which traffic through endosomal
compartment.

Fillatreau’s group recently showed that it was possible to trans-
duce in vitro resting B cells with lentiviral vectors encoding for the
oligodendrocyte glycoprotein (MOG) and the IL10 genes. These
reprogramed quiescent B cells efficiently protected against EAE
upon adoptive transfer in mice (112).

Thus, B cell gene therapy for tolerance induction is associated
with excellent results in murine models of autoimmune diseases.
However, further work is needed to assess whether it is transpos-
able to allograft tolerance and to human B cells that exhibit pheno-
typic differences with their murine counterpart (69). The behavior
of the genetically modified B10 cells in vivo has to be better char-
acterized: are their lifespan, regulatory functions, or proliferative
capacity modified? Do they maintain their immunosuppressive
and proliferative properties under the immunosuppressive drugs
classically used in organ transplantation? The question of their
phenotypic stability overtime is primordial given the risk to pro-
mote allograft rejection instead of tolerance. It shall also be kept
in mind that the use of retroviral and lentiviral vectors raises con-
cerns about safety in humans. Indeed, the possibility of oncogenic
consequences caused by random insertions in the human genome
cannot be totally excluded in such approaches (99). Practical con-
cerns would mainly lie in the requirement for sophisticated skills
and for authorizations to use genetically modified cells and in the
size of the inserts coding for antigenic sequences that are limited
to approximately 10 Kb (112).

CONCLUSION AND PERSPECTIVES
CD4+ Tregs therapy induces tolerance to allogeneic transplant in
various murine models. These experimental data have paved the
way for ongoing clinical studies, which will determine the effect of
adoptive transfer of ex vivo-expanded polyclonal or donor-specific
direct-CD4+ Tregs in kidney recipients.

Experimental studies have nevertheless demonstrated that
direct-CD4+ Tregs are insufficient to promote long-term allo-
graft survival, which requires CD4+ Tregs with indirect specificity
for donor antigens. The transfer in the clinic of protocols for ex
vivo expansion of indirect-CD4+ Tregs faces, however, a difficult
challenge: the source of recipient’s APCs.

Recently, Landwehr-Kenzel et al. (113) described a GMP-
compliant protocol for expansion of direct-CD4+ Tregs using an
allogeneic B cell bank. This strategy could serve as a base for the use
of recipient’s B cells to generate indirect-CD4+ Tregs. B cells are
indeed found in number in the circulation, they don’t need mat-
uration, and are easy to expand and to keep in vitro upon CD40
stimulation. More importantly, they are potent APCs for which the
molecular signals controlling IL10 production (and therefore reg-
ulatory functions) are known. Such donor-specific B10 could be
used to induce tolerance directly (B10 cell therapy) or indirectly

(for ex vivo expansion of indirect-CD4+ Tregs). An important
hurdle remains however: in contrast with dendritic cells, B cells
cannot perform phagocytosis. Only cognate antigen able to bind
to BCR is spontaneously internalized and presented in MHC II.
The use of B cells as tolerogenic APCs therefore requires designing
safe strategies to pulse them with donor antigens.
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