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Intravenous immunoglobulin (IVIg) is a therapeutic preparation of polyspecific human
IgGs purified from plasma pooled from thousands of individuals. When administered
at a high dose, IVIg inhibits inflammation and has proven efficacy in the treatment of
various autoimmune and systemic inflammatory diseases. Importantly, IVIg therapy can
ameliorate both auto-antibody-mediated and T-cell mediated immune pathologies. In
the last few decades, extensive research in murine disease models has resulted in
the elucidation of two novel anti-inflammatory mechanisms-of-action of IVIg: induction
of FcγRIIB expression by sialylated Fc, and stimulation of regulatory T cells. Whereas
controversial findings in mice studies have recently inspired intense scientific debate
regarding the validity of the sialylated Fc-FcγRIIB model, the most fundamental question
is whether these anti-inflammatory mechanisms of IVIg are operational in humans treated
with IVIg. In this review, we examine the evidence for the involvement of these anti-
inflammatory mechanisms in the therapeutic effects of IVIg in humans. We demonstrate
that although several elements of both immune-modulatory pathways of IVIg are activated
in humans, incorrect extrapolations from mice to men have been made on the molecular
and cellular components involved in these cascades that warrant for critical re-evaluation
of these anti-inflammatory mechanisms of IVIg in humans.
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Introduction

Intravenous immunoglobulin (IVIg) was initially administered to restore humoral immunity in
patients with primary or secondary immunodeficiency, as it contains a wide spectrum of antibody
specificities, representative for the natural antibody repertoire of the adult human population. After
it had been shown that high-dose IVIg treatment (fourfold higher than supplementation dose) (1)
could ameliorate idiopathic thrombocytopenic purpura (ITP) (2), its anti-inflammatory properties
have increasingly been exploited to treat various autoimmune and systemic inflammatory diseases.

Several non-exclusive mechanisms by which IVIg exerts its anti-inflammatory effects have been
elucidated over the past few decades. These include neutralization of autoantibodies by anti-idiotype
interactions, increased clearance of pathogenic antibodies by saturation of the neonatal FcR (FcRn),
prevention of binding of pathogenic immune complexes (ICs) to activating Fcγ-receptors (FcγR),
modulation of FcγR expression, inhibition of the complement cascade, reduced pro-inflammatory
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cytokine production, inhibition of dendritic cells (DCs) and B
cells, inhibition of T-helper (Th)1 and Th17 differentiation, and
expansion and enhanced suppressive function of CD4+FOXP3+
regulatory T cells (Tregs) (1, 3–7).

It is important to realize that most of the anti-inflammatory
mechanisms of IVIg have been elucidated in murine studies.
Of course, studies using animal models are ideal to determine
causal relationships between the elements of anti-inflammatory
cascades. However, it is actually surprising that validation of
these mechanistic findings in human patients treated with IVIg
is severely lacking. Extrapolation of the anti-inflammatory mech-
anisms from murine studies to humans treated with IVIg is by no
means trivial as fundamental differences between the murine and
human immune system, as well as the xenobiotic nature of human
IgGswhen administered to a different organism, are likely to affect
the mode-of-action of IVIg within these species.

In this review, we investigate the similarities and differences
between the anti-inflammatory mechanisms activated by IVIg in
mice and humans. We will focus on the two most advertised anti-
inflammatory mechanisms in recent years: induction of FcγRIIB
expression by sialylated Fc and stimulation of Tregs. We examine
the evidence for the involvement of their proposed cellular and
molecular components in immunomodulation by IVIg therapy
in humans and, when validation in humans is still lacking or
incomplete, discuss their translatability from murine to human
studies by taking the biology of both species into account.

Sialylated IVIg and FcγRIIB Upregulation

In the last decade, landmark studies have revealed that IgGs with
α2,6-sialic acid-containing N-linked glycans attached to the IgG
Fc (sFc) display potent anti-inflammatory activity in antibody-
mediated inflammation in experimental animal models. Identi-
fication of the anti-inflammatory properties of this IgG fraction
started with a study in a murine ITP-model in which the pro-
tective effects of IVIg appeared dependent on (1) upregulation
of FcγRIIB expression on effector macrophages, thereby limiting
IC-mediated activation, and (2) the IgG Fc (8). In subsequent
studies, the protective effect of IVIg in a mouse model of IC-
mediated (K/BxN) arthritis was shown to be mediated by colony
stimulating factor-1 (CSF-1)-dependent macrophages that act as
sensors for IVIg and are involved in the induction of inhibitory
FcγRIIB expression on CSF-1-independent effector macrophages,
thereby raising the threshold for activation of these cells by
auto-antibody-IC (9). These CSF-1-dependent IVIg-sensoring
macrophages were identified as splenic SIGN-R1+ marginal zone
macrophages (MZM) which were able to bind sFc (10).

Parallel studies demonstrated that sFc was essential for the anti-
inflammatory activity of IVIg in the K/BxN arthritis model in
a FcγRIIB-dependent manner (11–13). Infusion of sFc protected
wild type, but not SIGN-R1−/− mice from arthritis, suggesting
that binding of sFc to SIGN-R1 on MZM was required for the
anti-inflammatory effect (10). A human ortholog of SIGN-R1,
DC-SIGN, was also able to bind sFc ex vivo (10), and the pro-
tective activity of sFc and sialylated IVIg (sIVIg) was retained
upon induction of arthritis in SIGN-R1−/− mice that transgeni-
cally expressed human DC-SIGN (13). These data suggested that

DC-SIGNmight be able tomediate the anti-inflammatory proper-
ties of sIVIg in humans in vivo. In addition, it was shown that sIVIg
induced the production of IL-33 in the spleen of wild type but not
SIGN-R1−/− mice. IL-33 subsequently promoted expansion of
basophils in the circulation and stimulated their production of IL-
4 and IL-13, which enhanced the expression of FcγRIIB expression
onmacrophages andmonocytes, thereby providing a link between
IVIg-sensormacrophages and induction of FcγRIIB expression on
myeloid effector cells (Figure 1) (13).

The elucidation of this mechanistic model, that is founded on
the absolute requirement of sFc and FcγRIIB expression, seemed
to profoundly improve our understanding of the protective effects
of IVIg in antibody-mediated inflammation in mice. However,
due to findings in other murine studies on IVIg, intense scientific
debate regarding the validity of this anti-inflammatory model has
commenced. Upregulation of inhibitory FcγRIIB expression by
IVIg has been demonstrated in various animal models as an effec-
tor mechanism by which antibody-mediated immune diseases are
prevented (8, 9, 14). In contrast, in murine studies on ITP (15, 16)
and experimental autoimmune encephalomyelitis (EAE) (17), the
beneficial effect of IVIg was also observed in FcγRIIB−/− mice,
challenging the absolute requirement for FcγRIIB in IVIg-treated
mice. In addition, various recent reports question whether Fc-
sialylation is absolutely required for the anti-inflammatory effects
of IVIg in mice (18). In several studies on murine models of
ITP (19, 20) [in contrast to other studies on ITP reporting an
indispensable role for sialylation (11, 14, 21)], EAE (22), arthri-
tis (23), and herpes simplex virus (HSV)-induced encephalitis
(24), the anti-inflammatory properties of IVIg were sialylation-
independent. In addition, the contribution of the IgG Fc-part to
the anti-inflammatory effects of IVIg has been questioned in a
study showing that the protective effects of IVIg in a mouse EAE
model were F(ab′)2-dependent (17).

Amatter thatmay complicate this debate is that inmostmurine
studies IVIg was administered prophylactically, while in humans
IVIg is given after a disease has established. This difference com-
plicates translation of insights from murine studies to humans.
A recent comparison between prophylactic and therapeutic IVIg
treatments in several murine disease models (ITP, arthritis and
skin-blistering disease) has shown that the anti-inflammatory
effects of IVIg were similar, and were dependent on FcγRIIB
expression and sialylation, although SIGN-R1 was not essential
in all disease models when IVIg was administered therapeutically
(14). These data suggest that there is considerable overlap between
the anti-inflammatory activities of IVIg inmice upon prophylactic
or therapeutic administration, but it would be helpful if future
murine studies concentrated on the anti-inflammatory activities
of therapeutic IVIg administration only.

A recent study by Washburn et al. reported that some of the
discrepancies between studies on sIVIg or sialylated Fc may be
caused by differences in the protocols used to generate and/or
purify sialylated or desialylated IVIg/Fc. Commonly used sialyl-
transferase enzyme preparations were found be contaminated
with other glycolytic enzymes that catalyzed undesired modifica-
tions in the enzymatically produced sialylated IgG/Fc products. By
establishing industrial-scale protocols and quality control steps,
Washburn et al. enzymatically generated tetra Fc-sialylated IVIg
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FIGURE 1 | Models of modulation of FcγR expression by IVIg in
mice and humans. In mice, sialylated IVIg is hypothesized to bind to
SIGN-R1 expressed on splenic marginal zone macrophages and induce
IL-33 production. IL-33 subsequently promotes the production of IL-4 by
basophils, which enhances the expression of FcγRIIB expression on
effector macrophages at the site of inflammation. In humans, IVIg may

bind to an, as of yet, unidentified cell type which probably resides in lymph
nodes. This is hypothesized to induce IL-33 production, which in turn
enhances IL-4 and IL-13 production by basophils resulting in decreased
expression of FcγRIIa and IFNγR2 on myeloid dendritic cells. MZM,
marginal zone macrophages; SA, sialic acid; MØ, macrophage; mDC,
myeloid dendritic cell.

(s4-IVIg; the glycans on each of the two heavy chains terminate
in two sialic acid residues) that was devoid of undesired modifica-
tions in the glycan structures.When administered in four different
murine disease models, s4-IVIg was as effective as conventional
IVIg, but at a 10-fold lower dose. This was apparent when s4-IVIg
was given prophylactically as well as therapeutically. It has to be
noted though that therapeutic and prophylactic IVIg treatments
were not compared in the same disease model (25). In addition,
this study does not refute the data from other published studies
in which treatment with desialylated IVIg was still as effective as
treatment with conventional IVIg (22, 23).

Regardless of these contradictory findings, themost fundamen-
tal question now is whether there is any evidence that a similar
mechanism mediates the anti-inflammatory effects of high-dose
IVIg-therapy in humans. In the following sections, we will show
in a balanced account that there is indeed evidence, although lim-
ited and circumstantial, for activation of this anti-inflammatory
pathway by IVIg in humans. However, due to biological differ-
ences between mice and men, a number of issues regarding the
anti-inflammatory actions of IVIg in humans, such as involve-
ment of FcγRIIb modulation, splenic MZM, DC-SIGN, and the
dependence on sFc, need to be critically reconsidered.

IVIg and FcγIIb Expression in Humans
Is there any evidence for the increase of FcγRIIb expression in
humans treated with IVIg? Recently, we found no increase of
FcγRIIb expression on circulating monocytes and DCs in patients

treated with high-dose IVIg for diverse autoimmune pathologies
(26). These data corroborate findings in IVIg-treated patients
with common variable immunodeficiency (CVID) which showed
that FcγRIIb mRNA expression of circulating monocytes did not
change upon low-dose IVIg treatment (27). Two other studies on
patients with ITP and Kawasaki disease also showed no upregu-
lation of FcγRIIb expression on monocytes after IVIg infusion,
however, the validity of these results can be questioned as the
antibody used to detect FcγRIIb in these studies binds to an intra-
cellular epitope of the protein while no permeabilization protocol
was applied (28, 29). In in vitro studies, IVIg did not induce upreg-
ulation of FcγRIIb expression on human myeloid DCs (26, 30).
These findings seemed to be corroborated in a recent study that
showed no modulation of FcγRIIb expression by IVIg on human
macrophages in vitro. However, in this study IVIg was added to
the cultures at a concentration at least 100-fold lower than the con-
centration required to reflect the increment in IgG levels observed
upon high-dose IVIg treatment in vivo (10mg/ml) (31). In con-
trast to these studies, a majority of patients with chronic inflam-
matory demyelinating polyneuropathy (CIDP) showed increased
expression of FcγRIIb on monocytes and B cells after IVIg treat-
ment (32). It has to be noted that the untreated CIDP patients in
this study showed reduced FcγRIIb expression and the observed
increasemay have reflected a normalization of FcγRIIb expression
levels upon reduction of overall inflammation by IVIg therapy. So
strikingly, whereas IVIg treatment in several murine studies has
shown to stimulate expression of inhibitory FcγRIIB on myeloid
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cells (8, 9, 24), most evidence in humans shows that FcγRIIb
expression is not affected by IVIg, although these findings need
to be extended in independent studies without technical issues.

Do these observations therefore imply that modulation of FcγR
expression is not involved in the anti-inflammatory effects of
IVIg treatment in humans? Although we did not find increase
of FcγRIIb expression after high-dose IVIg treatment in patients
with autoimmune diseases, we did find downregulation of another
FcγR, the activating FcγRIIa, on circulating myeloid DCs (26).
Given the differences in expression of FcγRs between mice
and men, it is not surprising that the effects of IVIg treat-
ment on FcγR modulation in mice are distinct from those
in humans. Humans have six different FcγRs, namely FcγRIa,
FcγRIIa, FcγRIIb, FcγRIIc, FcγRIIIa, and FcγRIIIb, while mice
have four: FcγRI, FcγRIIB, FcγRIII, and FcγRIV (33–35). Thus,
FcγRIIa, whichwe showed to be downregulated by IVIg treatment,
is not present in mice.

In addition to downregulation of FcγRIIa expression on circu-
lating myeloid DCs, we observed an increase in plasma levels of
IL-33 and the Th2 cytokines IL-4 and IL-13 upon high-dose IVIg
treatment, showing homology between the anti-inflammatory
activity of IVIg in mice and men (26). Enhanced IL-33 plasma
levels were also observed in another study in a cohort of autoim-
mune disease patients treated with IVIg, although IL-4 in plasma
of these patients was hardly detectable and no expansion of
basophils in peripheral blood of these patients was observed
(36). In vitro experiments on human myeloid DCs suggested that
FcγRIIa downregulation after IVIg treatment is not directly caused
by IVIg, but rather indirectly by the elevated levels of IL-4 and
IL-13, and resulted in suppressed responses of myeloid DCs to
IC-stimulation (26).

Thus, IVIg therapy downregulates expression of the activating
FcγRIIa in humans, instead of upregulation of the inhibitory
FcγRIIB as was observed in mice (Figure 1). Interestingly, we
found that activation of the cytokine cascade involving IL-33 and
the Th2 cytokines IL-4 and IL-13 by IVIg is shared by mice and
men. In addition, we found that these cytokines also downregulate
expression of the IFN-γ receptor 2 subunit on myeloid DCs in
humans (26), which may contribute to suppression of cellular
immunity by IVIg (Figure 1) (37).

In a study by Siragam et al., it was shown that IVIg could also
confer its anti-inflammatory effects by affecting signaling through
activating FcγRs. In a mouse model of ITP, IVIg ameliorated the
disease by directly interacting with activating FcγRs, but not the
inhibitory FcγRIIB, on DCs. Strikingly, adoptive transfer of ex
vivo IVIg-treated DCs was able to ameliorate ITP. These data
suggest that IVIg forms soluble ICs in vivo that prime dendritic-
cell regulatory activity (38). This may be not entirely surprising
as it is likely that the infused IgGs are able to bind to xenogeneic
polymorphic murine proteins, resulting in the formation of sol-
uble ICs. Although intriguing, there is to date no evidence that a
similar mechanism of action of IVIg occurs in humans.

IVIg-Sensing Cell Types in Human Lymphoid
Organs
Since high-dose IVIg induces the production of IL-33 and Th2
cytokines IL-4 and IL-13 in humans, the question emerges by

which cell types these cytokines are produced. It is likely that,
as in mice, basophils are the cellular source of IL-4 and IL-13
production after IVIg treatment in humans. Several in vitro studies
have shown that human basophils produce IL-4 and IL-13 upon
stimulationwith IL-33 (39–41). The cellular source responsible for
IL-33 production upon IVIg treatment however differs between
mice and men. In murine studies, it has been demonstrated that
splenic MZM are important in initiating the IL-33-Th2 cytokine
cascade upon IVIg administration, as the protective effect of
IVIg was lost after splenectomy or specific depletion of MZM.
Therefore,MZMwere suggested to be responsible for binding and
initiating the protection mediated by sIVIg or sFc via SIGN-R1 (9,
10). It is important to note though, that it has not yet been formally
proven that MZM are the source of IL-33 production upon IVIg
treatment in mice. Importantly, the human and murine spleen
differ to a major extent, both in morphology and the presence of
specific cell types. MZM are diffusely spread within the marginal
zone of the murine spleen (42), but they are not present in the
human spleen (43). In comparison to the murine spleen, the
human spleen contains an additional zone, called the perifollicular
zone, which is located between the marginal zone and the red
pulp (44). It contains a special subset of macrophages, of which
some express DC-SIGN (45). Although their anatomical location
in the human spleen is different, it can be speculated that these
perifollicular macrophages are the human counterparts of murine
MZM and can produce IL-33 upon IVIg treatment.

However, arguing against an indispensable role for the spleen
in mediating the anti-inflammatory effects of IVIg in humans is
the observation that IVIg is still an effective anti-inflammatory
treatment for splenectomized ITP patients (46). This observation
suggests that in humans either IL-33 production is dispensible for
the anti-inflammatory effect of IVIg therapy or cell type(s) outside
the spleen can produce IL-33 upon IVIg treatment. Indeed, IVIg
induces IL-33 mRNA expression in primary human lymph node
cells in vitro (26) but not in human splenocytes (26, 36). In human
lymph nodes, medullary sinus macrophages (MSM) as well as
subcapsular sinus macrophages (SSM) are likely candidates for
IVIg-induced IL-33 production in vivo as they express DC-SIGN
(47, 48). Although we were not yet able to determine whether
MSMan SSMare the cellular sources of IL-33, we did establish that
human macrophages produce IL-33 upon IVIg exposure in vitro
(26). Epithelial cells and fibroblasts can also produce IL-33 and
may be alternative cellular sources (49, 50).

Recent studies using two different murine models of ITP
showed that splenectomy in mice did not impair the protective
effect of IVIg (15, 21). In one of these models, the protective
effect of IVIg was even independent of IL-33 and IL-4 signaling,
although still dependent on SIGN-R1 and sFc (21). This suggests
that, as in humans, cells at anatomical locations outside the spleen
may alternatively mediate the anti-inflammatory properties of
sIVIg in mice.

Collectively, these data indicate the need to study which human
tissues and cells are involved in stimulation of IL-33 production by
IVIg. Obviously, availability of tissues from IVIg-treated patients
is limited, but in vitro studies using human tissues and cells can
help to clarify which human cell types are able to bind IVIg and
produce IL-33.
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Involvement of DC-SIGN in the Anti-Inflammatory
Activity of IVIg in Humans
The evidence that DC-SIGN might be involved in the anti-
inflammatory response to IVIg in humans is derived from the
observation that DC-SIGN can replace its murine ortholog SIGN-
R1 in IL-33-mediated protection from serum-induced arthritis in
mice upon sFc treatment (13). However, in vitro studies using
human DC-SIGN expressing cells did not provide a clear indi-
cation for involvement of DC-SIGN in the protective effects of
IVIg. We found that induction of IL-33 production in human
macrophages by IVIg was not inhibited by blocking DC-SIGN
(26). Moreover, human splenocytes and monocyte-derived DCs
(moDCs), that both abundantly express DC-SIGN, did not pro-
duce IL-33 upon exposure to IVIg (26, 36). Currently, the only
study showing a role for DC-SIGN in mediating an immune-
modulatory effect of IVIg on human cells comes from an in vitro
study in which it was shown that DC-SIGNwas partially responsi-
ble for the IVIg-mediated induction of Tregs by prostaglandin E2
(PGE2)-producing moDCs. However, this effect was not Fc- but
F(ab′)2-dependent and therefore not mediated by sFc binding to
DC-SIGN (51).

Whether DC-SIGN is the proper human homolog of SIGN-
R1 may be argued. L-SIGN, another human C-type lectin, also
shares homology to SIGN-R1 with regard to cellular expression
pattern. SIGN-R1 and L-SIGN are both expressed by liver sinu-
soidal and lymph node endothelial cells (52–54). Scattered cells
expressing L-SIGN were also observed in the human splenic per-
ifollicular zone which, as suggested above, might represent the
human counterparts to splenic SIGN-R1+ MZM in mice (13).
Shared human DC-SIGN and murine SIGN-R1 expression has
been observed forMSM in lymphnodes (42, 48) and, likely similar
to L-SIGN, on some macrophages in the perifollicular zone of
the human spleen (45). However, DC-SIGN is also expressed on
subsets of human monocytes (13), myeloid DCs (53), and SSM
in human lymph nodes (47, 48), which are cell types in mice
that do not express SIGN-R1. L-SIGN is able to bind to sFc
in vitro, although with reduced affinity compared to DC-SIGN,
which suggests a possible role of L-SIGN in sensing sIVIg in
humans. In our opinion, the published results of selective blockade
of DC-SIGN in SIGN-R1−/− mice that express a human trans-
gene containing both DC-SIGN and L-SIGN, do not completely
exclude involvement of L-SIGN in the anti-inflammatory effects
of sFc (13). Additional studies using human cells are required to
demonstrate whether L-SIGN and/or DC-SIGN are involved in
mediating anti-inflammatory effects of IVIg in humans.

Whether DC-SIGN can bind sIVIg or sFc with sufficient affin-
ity is still a matter of debate. It does not bind sialylated glycans
or glycoconjugates (55–57), suggesting that binding of sFc by this
lectin must involve non-canonical interactions. A recent study
suggested that sialylation of the N-linked Fc glycan structurally
affects the IgG Cγ2 domain, causing a so-called “closed” state of
sFc which would enable interaction with DC-SIGN, while asia-
lylated Fc has an “open” state, resulting in preferential binding
to FcγRs (58). However, this model of sFc-DC-SIGN interaction
is controversial and has initiated an ongoing scientific debate as
contradictory evidence shows that Fc sialylation does not induce
alterations in the Fc conformation (59, 60). Moreover, binding

affinity of engineered IgG glycoforms that were either hyper-
α2,6-sialylated, asialylated or deglycosylated to tetramerized DC-
SIGN was shown not to differ and, strikingly, was Fab- but not
Fc-dependent (61).

Taken together, the evidence for a prominent role of DC-SIGN
in mediating the anti-inflammatory activity of IVIg in humans is
very limited. Moreover, when considering recent murine studies
on IVIg, it was shown that SIGN-R1 was dispensable for thera-
peutic amelioration of ITP as well as prevention of antigen-driven
airway disease in mice upon treatment with IVIg (14, 62), thereby
questioning whether SIGN-R1 is absolutely required to confer the
anti-inflammatory properties of IVIg in mice. As we will discuss
in the following section, the requirement for sFc which was found
to confer the anti-inflammatory activity of IVIg via DC-SIGN, is
even more heavily debated.

Contribution of Fc Sialylation to the
Anti-Inflammatory Activity of IVIg in Humans
The only data available on the contribution of sIVIg to the anti-
inflammatory effects of IVIg on human immune cells are from
a study showing that sIVIg, but not asialyated IVIg, stimulated
apoptosis in human B cells in vitro via CD22 (see also Alternative
IVIg-Sensing Molecules) (63). However, it seems unlikely that
these immunomodulatory effects were mediated by sFc, as in this
study sIVIg was enriched by Sambucus nigra agglutinin (SNA)
lectin fractionation which mainly enriches F(ab′)2-sialylated IgG
(20, 64). Interestingly, infusion of Fc fragments for treatment of
childhood ITPwas effective, suggesting that the IgG Fc is involved
in the anti-inflammatory effects of IVIg in humans (65, 66).
However, inhibition of human monocyte function by IVIg was
F(ab′)2-dependent (64). In addition, F(ab′)2 fragments, but not
Fc fragments, were shown to mediate Treg expansion via human
moDC (51).

As previously mentioned, these often paradoxical results have
led to an ongoing scientific debate on the importance of Fc-
sialylation and IgG Fc in the anti-inflammatory activity of IVIg
(3). Currently, there is no data showing that specific IgG glyco-
forms are required for the beneficial effects of IVIg in humans.
Studies in which the effects of sIVIg and sFc on human immune
cells are compared to those of non-sialylated IVIg and non-
sialylated Fc are therefore highly required.

Alternative IVIg-Sensing Molecules
Despite the contradictory findings on the requirement of Fc sia-
lylation, there are reports that do show a role for sIVIg in relation
to two other sialic acid-binding proteins, namely the C-type lectin
dendritic cell immunoreceptor (DCIR) and the sialic acid-binding
Ig-like lectin (Siglec) CD22. Murine DCIR was shown to specifi-
cally bind sIVIg in vitro, and DCIR-expressing tolerogenic DCs-
induced expansion of Tregs which attenuated ovalbumin-induced
airway hyperresponsiveness in mice in a FcγR- and SIGN-R1-
independent manner. Moreover, IVIg-induced DCIR expression
on DCs, thereby propagating its anti-inflammatory activity (62).
Due to its recent discovery, it has not been explored yet whether
DCIR is involved in the anti-inflammatory effects of IVIg in
humans.

Frontiers in Immunology | www.frontiersin.org April 2015 | Volume 6 | Article 1975

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Tjon et al. IVIg in mice and men

FIGURE 2 | Sialic acids and binding to CD22. (A) A schematic view of N-acetylated and N-glycolylated sialic acid structures. The carbon at position 5 is either
N-acetylated (left) or N-glycolylated (right). (B) Biosynthesis of sialic acids in humans and mice and binding properties of sialic acids to human or murine CD22.

CD22 (Siglec-2) is expressed on murine and human B cells and
murine DCs (67), and binds α2,6-sialic acid-containing glycans
with high specificity (68). sIVIg, but not asialyated IVIg, was
shown to bind to CD22 on human B cells in vitro, resulting in
reduced BCR signaling and enhanced apoptosis upon stimulation
with anti-IgM (63).

Arguing against a role for CD22 in mediating the anti-
inflammatory effects of IVIg is the observation that CD22−/−

mice were still protected from ITP and serum-induced arthritis
by IVIg (69). However, it should be noted that murine studies
on the involvement of CD22 in the effects of sIVIg are not valid
due to differences between sialic acids in humans and mice. Sialic
acids are nine-carbon sugarswhich contain a carbon ring (C2–C6)
and an exocyclic side chain (C7–C9). One group of sialic acids,
called neuraminic acids, are N-acetylated at C5 in the carbon
ring, yielding N-acetyl neuraminic acid (Neu5Ac) (Figure 2A).
In many vertebrates, including mice, this N-acetyl group can be
converted by the enzyme CMP-N-acetyl hydroxylase (CMAH)
to a N-glycolyl group resulting in N-glycolyl neuraminic acid
(Neu5Gc). Importantly, CMAH is non-functional in humans (70).
Therefore, terminal sialic acids attached to N-linked glycans like
those in human IgG molecules are Neu5Ac and not Neu5Gc.
While human CD22 binds both Neu5Ac and Neu5Gc, murine
CD22 can only bind Neu5Gc ligands (Figure 2B) (71). Therefore,
it can be expected that sIVIg cannot bind to murine CD22, and
on basis of murine experiments it can therefore not be ruled out
that sIVIgmodulates immune responses in humans via binding to
CD22.

In summary, while a role for DC-SIGN seems unlikely, other
sialic acid-binding proteins have been identified that may alter-
natively mediate the anti-inflammatory properties of sIVIg, but
currently there is only some functional evidence for involvement
of CD22 in immunomodulation by sIVIg in humans. The fact
that IL-33 and Th2 cytokines are elevated in plasma from IVIg-
treated patients suggests that there is substantial overlap between

the anti-inflammatory activity of IVIg in mice and men, but the
molecular mechanism and the cellular source of stimulation of
IL-33 production by IVIg needs further investigation.

Stimulation of Regulatory T Cells by IVIg

Evidence has been accumulating that IVIg exerts its anti-
inflammatory effects in experimental mice models also by stimu-
lating expansion and suppressive function of CD4+Foxp3+ Tregs.
Studies in disease models of ITP (72), EAE (17, 22, 73), antigen-
driven allergic airway disease (62, 74, 75), Parkinson’s Disease
(76), HSV-1-induced encephalitis (24), and allogeneic skin trans-
plantation (77) have shown an indispensable role for Tregs in
mediating the protective effects of IVIg treatment. Expansion of
Tregs upon IVIg treatment was not an epiphenomenon associated
with the dampening of an inflammatory reaction, as IVIg did not
confer protection in studies in which Tregs were depleted prior
to treatment (73, 77). A similar expansion of Tregs was observed
in humans who were treated with IVIg for various diseases, such
as Kawasaki disease (78, 79), Guillain Barré Syndrome (80, 81),
rheumatoid arthritis (82) and eosinophilic granulomatosis with
polyangiitis (83). In contrast, no expansion of Tregs was observed
in a study on CVID patients that were treated with low-dose
IVIg and had reduced Treg levels prior to treatment (84). Similar
reduced Treg levels were found in another study onCVID patients
after IVIg treatment, although levels of Tregs were not determined
prior to treatment in these patients (85). We demonstrated that
circulating Tregs in patients with various autoimmune diseases or
immunodeficiencies are selectively activated upon high- but not
low-dose IVIg therapy, as these cells showed increased FOXP3
and HLA-DR expression and enhanced suppressive capacity ex
vivo, while T-helper cells were not affected (86). This finding
was confirmed in a recent study showing enhanced ex vivo sup-
pressive capacity of Tregs following IVIg treatment in Guillain-
Barré Syndrome patients (81). Interestingly, our study did not
show an increase of circulating Tregs upon IVIg treatment (86).
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Comparison of the various human studies reveals that expansion
of Treg upon IVIg therapy was only observed in patients with
inflammatory diseases in which the levels of Tregs were reduced
prior to IVIg infusion, while Treg did not expand in patients
without Treg deficit.

Besides an increase in Treg numbers, a concomitant decrease
in Th17 cells has been observed upon IVIg administration. In
murine models of EAE and collagen-induced arthritis, IVIg-
induced expansion of Tregs while Th17 cell levels dropped (17,
87). In humans, there is similar evidence for reduction of Th17
cells after IVIg administration in Kawasaki disease (88) and Guil-
lain Barré Syndrome patients (81). In vitro experiments suggest
that IVIg inhibits cytokine-induced differentiation, amplification
and function of Th17 cells from naive CD4+ T cells (89).

Collectively, expansion and enhanced suppressive activity of
Tregs as well as reduction of pro-inflammatory Th17 cells seem
to be common features of IVIg treatment in mice and humans.
In humans high-dose IVIg therapy likely stimulates expansion of
Treg only in conditions with deficit numbers of circulating Tregs
before treatment. The latter observation differs from the find-
ings in murine studies, which may be explained by the different
compartments in which Treg are measured, i.e., Treg numbers
in humans were determined in peripheral blood, and in mice in
spleen, lymph nodes, and inflamed tissues.

Interestingly, Treg expansion and enhanced suppressive capac-
ity may be related to induction of IL-33 production upon IVIg

treatment. Three recent murine studies have shown that IL-33
directly stimulates CD4+Foxp3+ Treg expansion (90–92). In allo-
geneic heart transplant models IL-33 administration resulted in
expansion of recipient Tregs in cardiac grafts and spleen and
in prolonged allograft survival, while depletion of Tregs from
recipients eliminated any therapeutic benefit from IL-33 ther-
apy (90, 91). In a chronic colitis model, administration of IL-33
induced Treg proliferation in vivo, promoted Treg accumulation
in the spleen and in inflamed tissues, and prevented loss of Foxp3
expression in the inflammatory environment (92). Stimulation of
Tregs by IL-33 was dependent on expression of ST2, the IL-33
receptor, on Tregs (90, 92). In vitro experiments showed that IL-
33 can serve as a cofactor in TGF-β-mediated Treg differentiation
(92). However, there are no data yet to support a role of IL-33 in
stimulation of Tregs by IVIg in humans.

Several other mechanisms by which IVIg may modulate Treg
function and expansion have been postulated, and these have been
extensively reviewed elsewhere (Figure 3) (6, 93, 94). The con-
tribution of IgG sialylation on Treg expansion has been recently
addressed in several studies. As mentioned, in a murine model
of antigen-driven allergic airway disease induction of antigen-
specific Treg differentiation was dependent on binding of sIVIg
to DCIR on DCs (62). In contrast, in HSE and EAE mouse
models IgG sialylation was not required for functional activa-
tion of Tregs (22, 24). IVIg-induced expansion of human Tregs
by moDCs in vitro was partially mediated by DC-SIGN in a

FIGURE 3 | Proposed mechanisms of action by which IVIg modulates
regulatory T cells. (A) IVIg-mediated IL-33 production induces Treg
proliferation and activation. (B) IVIg induces antigen-specific Tregs by
tolerogenic DCs from non-Treg CD4+ T cells by binding of sialylated IVIg to
DCIR expressed on DCs. (C) IVIg induces prostaglandin E2 secretion by
DCs, partly via DC-SIGN in a F(ab′)2-dependent manner. This leads to

expansion of Tregs. The other “IVIg-receptor” involved in the secretion of
PGE2 has yet to be identified. (D) Presentation of Treg-activating peptides
derived from conserved epitopes of IgG (Tregitopes) by antigen-presenting
cells activates and expands Tregs. APC, antigen-presenting cell; DCIR,
dendritic cell immunoreceptor; PGE2, prostaglandin E2; Treg, regulatory
T cell.
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TABLE 1 | Summary of studies on the anti-inflammatory activities of IVIg in mice and humans.

Mice Humans

Anti-inflammatory activity
of IVIG related to

Confirming evidence Opposing evidence Confirming evidence Opposing evidence

FcγRIIB/FcγRIIb
Functional role ITP (8, 38) ITP (15, 16) None None

K/BxN arthritis (9, 10, 13, 14) EAE (17)
EBA (14)
HSE (24)

Enhanced expression ITP (8) None HD: CIDP (32) HD: autoimmune diseases (26)
K/BxN arthritis (9) LD: IgG deficiency (26)
HSE (24) LD: CVID (27)

IVS: dendritic cells (26, 29)
aHD: ITP (28)
aHD: Kawasaki disease (29)
b IVS: macrophages (31)

IL-33
Functional role K/BxN arthritis (13) ITP (21) None None
Enhanced expression K/BxN arthritis (13) None HD: autoimmune diseases (26) None

LD: IgG deficiency (26)
HD: rheumatic arthritis (36)
IVS: macrophages (26)

IL-4 and IL-13
Functional role K/BxN arthritis (13) ITP (21) None None
Enhanced expression K/BxN arthritis (13) None HD: autoimmune diseases (26) HD: rheumatoid arthritis (36)

LD: IgG deficiency (26)

Basophils
Functional role K/BxN arthritis (13) K/BxN arthritis (23) None None

CAI arthritis (23)
ITP (21)

Expansion K/BxN arthritis (13) None None HD: rheumatoid arthritis (36)

IgG Fc ITP (8) EAE (17) ITP (65, 66) IVS: dendritic cells (51)
K/BxN arthritis (9–13, 23) IVS: monocytes (64)
CAI arthritis (23)

Sialylation ITP (14, 21, 25) ITP (19, 20) IVS: B cells (63) None
K/BxN arthritis (10–14, 25) K/BxN arthritis (23)
CAI arthritis (25) CAI arthritis (23)
EBA (14, 25) EAE (22)
Allergic airway disease (62) HSE (24)

IVIg-binding proteins
SIGN-R1/DC-SIGN ITP (21) ITP (14) IVS: dendritic cells (51) IVS: macrophages (26)

K/BxN arthritis (10, 13, 14) IVS: dendritic cells (36)
EBA (14) IVS: splenocytes (26, 36)

CD22 None c ITP (69) IVS: B cells (63) None
cK/BxN arthritis (69)

DCIR Allergic airway disease (62) None None None

Regulatory T cells
Expansion ITP (72) None HD: Kawasaki disease (78, 79) HD: autoimmune diseases (86)

EAE (17, 22, 73) HD: Guillain Barré (80, 81) LD: IgG deficiency (86)
Allergic airway disease (62, 74, 75) HD: rheumatoid arthritis (82) LD: CVID (84)
Parkinson’s disease (76) HD: eosinophilic granulomatosis (83)
HSE (24) IVS (51, 89)
CAI arthritis (87)

Enhanced suppressive capacity EAE (73) None HD: autoimmune diseases (86) None
Allergic airway disease (75) HD: Guillain Barré (81)
Skin-allograft (77)

HD, high dose IVIg; LD, low-dose IVIg; IVS, in vitro studies on human immune cells; ITP, immune thrombocytopenic purpura model; EBA, autoimmune skin-blistering epidermolysis
bullosa acquisita pemphigus model; K/BxN arthritis, K/BxN serum-induced arthritis model; CAI arthritis, collagen-antibody-induced arthritis model; EAE, experimental autoimmune
encephalomyelitis model; HSE, HSV-1-induced encephalitis model; CIDP, chronic inflammatory demyelinating polyneuropathy; CVID, common variable immune deficiency.
aThe antibody used in these studies is not suitable to detect the surface expression of FcγRIIb.
b IVIg concentration used in this study was at least 100-fold lower than the anti-inflammatory IVIg concentration of 10mg/ml.
cCD22−/− mice are not suitable to determine whether the anti-inflammatory activity of IVIg is mediated via human CD22 (see Alternative IVIg-Sensing Molecules).
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F(ab′)2-dependent manner, but it is unknown whether IgG sia-
lylation was involved (51). In addition, expansion and activa-
tion of Tregs upon recognition of specific IgG-derived peptides,
called Tregitopes, that are presented by antigen-presenting cells, is
sialylation-independent (95, 96). Collectively, sialylation is prob-
ably not required for the anti-inflammatory activity of IVIg via
Tregs, but further study, especially in human settings, is warranted
to unequivocally determine the contribution of IgG sialylation and
the IL-33-Th2 cytokine cascade on IVIg-driven Treg expansion
and function, both in antibody-mediated inflammatory diseases
as well as in T-cell-mediated autoimmune pathologies.

Toward Studying the Cellular and
Molecular Pathways Required for
IVIg-Mediated Immunosuppression in
Humans

In Table 1, we have summarized the studies which we discussed
above on the anti-inflammatory activity of IVIg in mice and
humans. Despite the vast knowledge that has been gained on the
anti-inflammatory activity of IVIg in mice, it is surprising how
little we know of its immunosuppressive mechanisms-of-action
in humans. The IL-33-Th2 cytokine cascade identified in mice is
also activated in humans treated with IVIg, and results in reduced
sensitivity of DCs to activation by ICs and IFN-γ, but there are
significant differences in the cellular and molecular components
of this pathway between mice and men. Most evidence shows no
upregulation of inhibitory FcγRIIb, but instead downregulation of
FcγRIIa expression onmyeloid cells after IVIg-therapy in humans.
Moreover, the hypothesis that Fc-sialylation is absolutely required
for the anti-inflammatory effects of IVIg in mice has become
controversial, and virtually no data supporting translation of this
hypothesis to humans are available. In contrast, induction of Treg
expansion and suppressive capacity by IVIg seems a common
anti-inflammatory pathway exploited by IVIg in mice and men.
However, the molecular mechanisms used by IVIg to initiate this
anti-inflammatory cascades in humans are unresolved. Priority
should therefore be given to investigate whether IgG glycoforms
are critical components of anti-inflammatory activity of IVIg

in humans. In addition, efforts to identify human IVIg-sensing
molecules on human cells are warranted.

Although we value the mechanistic insights that have been
gained on the working mechanisms of IVIg in mice, we recom-
mend, in light of the biological differences betweenmice andmen,
studying the immunomodulatory pathways of IVIg in humans
using ex vivo measurements, as well as in vitro studies on human
cells. We advocate for the initiation of large, multicenter trials on
patients with various indications to most effectively answer how
IVIgmodulates the immune system in humans in vivo at a cellular
and molecular level, ideally with system biology approaches. Only
then can we truly dissect which anti-inflammatory mechanisms
are activated by IVIg and which components within IVIg are
essential to gain potent anti-inflammatory responses that are
disease- or risk group-specific. Alternatively, to address causality,
studies should be initiated using immunodeficient mice recon-
stituted with a human immune system, although it is unclear
whether current humanized mice disease models are adequate
enough to mimic what occurs upon IVIg treatment in humans
(97). In the light of the growing demand for IVIg, concomitant
with the predicted shortage of human plasma in the future and the
high costs of IVIg therapy, it is of utmost importance to unravel
the molecular interactions between IVIg and the human immune
system, as such knowledge may enable the design of biologicals
or small molecule drugs that mimic the anti-inflammatory effects
of IVIg.
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