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Regulatory T-cells (Tregs) act at the interface of host and pathogen interactions in human
infectious diseases. Tregs are induced by a wide range of pathogens, but distinct effects
of Tregs have been demonstrated for different pathogens and in different stages of
infection. Moreover, Tregs that are induced by a specific pathogen may non-specifically
suppress immunity against other microbes and parasites. Thus, Treg effects need to be
assessed not only in homologous but also in heterologous infections and vaccinations.
Though Tregs protect the human host against excessive inflammation, they probably also
increase the risk of pathogen persistence and chronic disease, and the possibility of
disease reactivation later in life. Mycobacterium leprae and Mycobacterium tuberculosis,
causing leprosy and tuberculosis, respectively, are among the most ancient microbes
known to mankind, and are master manipulators of the immune system toward tolerance
and pathogen persistence. The majority of mycobacterial infections occur in settings co-
endemic for viral, parasitic, and (other) bacterial coinfections. In this paper, we discuss
recent insights in the activation and activity of Tregs in human infectious diseases,
with emphasis on early, late, and non-specific effects in disease, coinfections, and
vaccination. We highlight mycobacterial infections as important models of modulation
of host responses and vaccine-induced immunity by Tregs.

Keywords: regulatory T-cells, human regulatory T-cells, infection, vaccination, pathogens, tuberculosis,
leprosy, BCG

Introduction

A myriad of innate and adaptive immune regulatory cells is induced upon infection, including cells
of different lineages: regulatory-like macrophages, dendritic cells (DCs), NKT-cells, T-cells, B-cells,
neutrophils, and mesenchymal stem cells. During the last decade, many reports have described
the role of regulatory T-cells (Tregs) in infectious diseases and following vaccination. In infectious
diseases, Tregs play a dual role: they benefit the host by limiting immune-mediated pathology and
also facilitate chronic pathogen persistence by reducing effector immunity and clearance of infection
(1).During acute infection, the beneficial role of Tregs seems to predominate, by regulating leukocyte
in- and efflux into lymph nodes (LN) and infected sites, suppression of proliferation of infected cells,
and favoring memory formation by increasing the time window of antigen availability.

Regulatory T-cells can be induced either in an antigen- and T-cell receptor (TCR)-dependent
or in an antigen- and TCR-independent manner (2, 3). Specificity for self- or pathogen-derived

Frontiers in Immunology | www.frontiersin.org May 2015 | Volume 6 | Article 2171

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://dx.doi.org/10.3389/fimmu.2015.00217
https://creativecommons.org/licenses/by/4.0/
mailto:t.h.m.ottenhoff@lumc.nl
http://dx.doi.org/10.3389/fimmu.2015.00217
http://www.frontiersin.org/Journal/10.3389/fimmu.2015.00217/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2015.00217/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2015.00217/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2015.00217/abstract
http://loop.frontiersin.org/people/215573/overview
http://loop.frontiersin.org/people/147686/overview
http://loop.frontiersin.org/people/89687/overview
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Boer et al. Tregs in infection and vaccination

antigens (or dual-specificity) was originally used to divide Treg
populations into “natural” resp. “adaptive” Tregs, but it was
recently recommended to denote Treg populations by place of
induction: “thymus derived” or “peripherally derived,” or when
the origin is unclear “Foxp3+ Treg cell” (4). Designations of
human Tregs are, however, complicated by the fact that, unlike
murine Tregs, unique markers are lacking. In addition, non-Treg
populations can express “Treg markers” such as Foxp3 and CD25
upon activation; therefore, human Tregs are preferably defined by
multiple regulatory markers and/or by demonstrating suppressive
activity (5). Human CD8+ Tregs have been studied much less
than CD4+ Tregs (5), even though they were among the first
described “suppressor cells,” especially inmycobacterial infections
(6, 7). The relative lack in studies on human CD8+ Tregs is pos-
sibly the result of technical difficulties in isolating and assessing
functions of CD8+ T-cells (8). Notwithstanding, CD8+ Tregs are
re-emerging as important players in general, including in human
infectious disease and following vaccination (5).

Once activated, Tregs can suppress pro-inflammatory cells
through several mechanisms that are adaptable to the local envi-
ronment (9). These mechanisms can mostly be divided into
inhibitory cytokine production (either membrane-bound or by
their release in the pericellular environment), suppression by
cytolysis, metabolic disruption of pro-inflammatory cells, mod-
ulation of antigen-presenting cells (APCs), and the activity of cer-
tain Treg membrane expressed molecules (see below) (10). These
mechanisms indeed support the concept that antigen specifically
induced Tregs can cross-suppress also other cells irrespective of
the presence of their cognate antigen or specificity, e.g., through
the secretion of cytokines (5). This “bystander” or heterolo-
gous suppression can compromise immunity toward unrelated
pathogens, as has been described for coinfection by helminths
in diseases such as malaria and tuberculosis (TB) (11). Helminth
coinfections can also impair the immunogenicity of vaccines such
as (oral) cholera vaccination and (intradermal) BCG (Mycobac-
terium bovis bacillus Calmette–Guérin) and tetanus vaccination
(12). Several Treg-expressed molecular markers have now been
implicated directly in mediating suppression, such as cytotoxic
T-lymphocyte-associated antigen 4 (CTLA-4), which modulates
APCs via its ligands CD80 and CD86. Tregs were shown to use
trans-endocytosis of CD80 and CD86, followed by their intracel-
lular degradation, thereby relatively depleting the APC’s expres-
sion of essential co-stimulatory receptors for T-cell CD28 ligation
(13). In addition, the ecto-enzyme CD39 (E-NTPDase1), which is
a relatively recently discovered Treg marker, exerts its suppressive
effects through breakdown of adenosine triphosphate (ATP) (14).

In this paper, we will discuss the induction of Tregs (both
specific and non-specific) by various pathogens as well as the
functional implications of CD4+ and CD8+ Tregs in acute vs.
chronic infectious diseases. We will discuss the role of Tregs in
coinfections and highlight in particular infections with M. leprae
and M. tuberculosis (Mtb), which are master manipulators of
the human innate and adaptive immune response through the
induction of regulatory circuits. We will discuss how the balance
of pro- vs. anti-inflammatory responses could ultimately regulate
pathogen persistence, and impact on the development of active vs.
latent or reactivation of disease. We will also discuss the impact of

Tregs on diagnosis and treatment of TB, as well as their possible
impact on vaccination against TB.

Mechanisms of Treg Induction by
Pathogens

As a first line of host–defense against infection, the activation
of innate immune cells through pattern recognition receptors
(PRRs), such as Toll-like receptors (TLRs), lectin receptors,
retinoic acid-inducible gene (RIG) receptors, scavenger, and
phagocytic receptors, activates these cells to phagocytose and pro-
cess the pathogen, after which they migrate to the draining lymph
node (DLN) and present antigen to primenaïve T-cells. These cells
then can differentiate into various classes of T-helper cells (Th),
cytotoxic T-cells, or Tregs. Further activation and differentiation
signals are provided to theT-cells uponmigration into the infected
tissue; these signals originate from other T-cells, activated tissue-
resident APCs, or even directly from the pathogen (see below).
Tissue-resident, circulating, and migrating APCs comprised het-
erogeneous populations, and the activation of APCs can lead to
the induction of pro-inflammatory or regulatory, homeostatic T-
cell responses (15): for example, pro-inflammatory human type-
1 macrophages promote Th1-immunity and are characterized
by IL-23 production and secretion of IL-12 after IFNγ stimula-
tion, whereas type-2 macrophages poorly express co-stimulatory
molecules, produce IL-10, and induce Tregs (16, 17).

Modulation of macrophages and DCs toward tolerogenic sub-
sets has been described for various pathogens: after in vitro
treatment of human DCs with Japanese encephalitis virus or
Mtb, DCs upregulated the inhibitory receptor PD-L1, which
induced the expansion of Tregs through PD-1 ligation (18–20).
These effects were mediated by the Mtb-derived protein Acr
(HspX Rv2031c), which is expressed during latency: Acr induced
expression of PD-L1, TIM3, IDO, and IL-10 by murine DCs
and promoted the induction of CD4+CD25+Foxp3+ T-cells
(21). Furthermore, APCs can be modulated through alterations
in (pericellular) purinergic pathways: extracellular ATP, a pro-
inflammatory danger signal, which activates the killing of Mtb
in macrophages, is rapidly hydrolyzed to AMP by CD39, which
is expressed by various regulatory cells (14). The degradation of
ATP to AMP in the microenvironment was accompanied by a
switch in macrophage gene expression from type 1 toward type 2,
and Mtb infection actively upregulated expression of the adeno-
sine A2A receptor on macrophages (22). This receptor has been
described as a major immunosuppressive immune cell adenosine
receptor acting through elevation of cAMP (23), and its expression
on macrophages was central to M2-like polarization after Mtb
infection (22). Other cell types acting as APCs were demonstrated
to contribute to Treg induction: both hepatitis C virus (HCV)-
infected hepatocytes and H. pylori-infected gastric epithelial cells
directly induced Tregs through production of TGF-β (24, 25).

Regulatory T-cells can also be induced directly through
pathogen-derived components. This has been demonstrated in
several murine studies: zwitterionic capsular polysaccharides
from S. pneumoniae induced CD8+CD28− Tregs that were
CD122LOCTLA-4+CD39+, synthesized IL-10 and TGF-β, and
exhibited suppressive activity. This induction was independent
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of APCs and involved direct crosslinking of the TCR (26). In
another murine study, proteins secreted by H. polygyrus induced
Foxp3+ T-cells through ligation of the TGF-β-receptor (27).
The herpes virus entry mediator HVEM, a binding site for viral
glycoprotein HSVgD, is upregulated on murine CD4+Foxp3+
Tregs after HSV-1 infection, and activation of this receptor led
to preferential expansion of Tregs (28). In the human situation,
CD4+CD25+ Tregs exhibited extended survival and increased
suppressive capacity after binding HIVgp120 (29).

The preferential expression of TLRs, such as TLR2, on Tregs
as compared to “conventional” T-cells has been reviewed by
Sutmuller and colleagues (2). A large variety of TLR2 lig-
ands have been described in bacteria, including Mtb (30).
Mtb-induced TLR-signaling in APCs leads to inhibition of the
MHC-II transactivator-gene CIITA, thereby decreasing expres-
sion of MHC-II and antigen presentation (30). During chronic
Mtb infection, prolonged TLR2 signaling (e.g., through the
19kD lipoprotein) can lead to suppressive cytokine produc-
tion (31) and recruitment of CD4+ Tregs to the lung (32). A
role for TLR-mediated Treg induction has also been described
in murine malaria: murine Plasmodium-activated DCs induced
Tregs throughTLR9, andTLR9(−/−) mice had impaired activation
of Tregs, associated with a partial resistance to lethal infection
(33). Other factors in the local environment vital for the expan-
sion and function of Tregs include changes in metabolism (34),
endothelial cytokine (IL-33) production and cytokine balance (IL-
23:IL-33 ratio) (35), and metabolite products from commensal
microbiota (36, 37). Thus, specific pathogen components can
skew toward Treg phenotype or function. The significance of
these Tregs for the disease process, concomitant diseases, and
vaccinations will be discussed further below.

The Impact of Tregs in Infectious Diseases

Viral Infections: Acute vs. Chronic Infectious
Disease
Regulatory T-cells have been found after retrovirus-, RNA virus-,
and DNA virus infection in mice and humans [reviewed in Ref.
(3); Figure 1A]. Various CD4+ and CD8+ Treg subsets have been
identified (38), but mostly in chronic viral infection. Yet, in hep-
atitis A virus infection – an acute inflammatory disease, usually
followed by pathogen clearance – hepatitis A virus bound to its
cellular receptor (HAVCR1), which is expressed on Tregs, which
resulted in inhibited Treg function and inflammation (39). By
contrast, in acute dengue fever, Treg function and the suppression
of vasoactive cytokine release were similar in acutely infected and
recovered patients, such that in this case, the disproportionate
activation of pro-inflammatory cells and cytokines often found in
dengue fever was not explained by acute phase Treg malfunction
(40). Thus, blockade of Tregs in acute viral infection could assist in
pathogen clearance, at the cost of temporary hyper-inflammation,
but not all (pathological) hyper-inflammation is associated with
Treg hypo-functionality. On the other side, Tregs could also bene-
fit the host during acute infection: first, Treg depletion in murine
herpes simplex infection increased LN levels of IFN-α and -γ, but
infection-site-associated IFNγ was decreased, and the arrival of
DCs, NK cells, and T-cells at the infected lesion was delayed (41),

pointing to a role for Tregs in promoting LN in- and efflux of
pro-inflammatory cells (42). Second, Tregs may suppress infected
cell proliferation at the mucosal point-of-entry to a level where
infection cannot be established, which was suggested as a protec-
tive mechanism in early HIV infection (43, 44). Third, Tregs were
vital in allowing memory formation through promoting antigen
persistence, as was recently demonstrated in a murine West Nile
virus infection model (45).

The role of human Tregs in chronic viral infection has been
more extensively delineated. Ameta-analysis of 12 studies demon-
strated increased CD4+ Treg frequencies in chronic hepatitis
B virus (HBV) infection compared to both acute infection and
healthy controls, revealing a strong association of Tregs with
disease progression, viral load, absence of therapy response, and
risk of hepatocellular carcinoma (46). In chronic HCV infection,
the contribution of Tregs to low inflammatory CD4+ and CD8+
T-cell responses has been described (47, 48). Tregs were recruited
to the liver through the Treg-attracting chemokines CCL17 and
CCL22 (49), thereby promoting pathogen persistence. It has been
argued, however, that Tregs may also be functional in limiting
HCV-induced liver damage (48).

In chronicHIV infection, CD4+ Tregs were relatively increased
in themucosa and in the circulation compared to healthy controls,
but the Treg-mediated effects on anti-HIV immune responses
remain a matter of debate (50). CD4+ Tregs decreased HIV repli-
cation in T-cells in vitro through CD39-mediated ectonucleotide
shifts and by transfer of cAMP through gap junctions formed
with conventional T-cells (43). Tregs inhibited spreading of virus
from DCs to T-cells through interfering with the immunological
synapse (51). In another study, blocking of CD39 by monoclonal
antibodies (mAbs) restored cytokine production by HIV-gag-
stimulated CD8+ T-cells (52). Indeed, the relative frequency of
CD4+CD39+ Tregs positively correlated with HIV viral load and
disease progression in infected individuals (53). These different
effects of Tregs could be explained by differentiating between
acute and chronic infection, as argued in Ref. (50): control of
viral replication by CD4+(CD39+) Tregs may be important early
after infection with a limited number of infected cells (relatively
high Treg: T-effector ratio), yet during chronic infection Tregs
may not be able to suppress proliferation of all infected cells, and
potentially becomemore detrimental due to dampening anti-HIV
responses. This points to the need for more detailed analyses of
Treg functions in acute vs. chronic (hyper-) inflammation.

Bacterial Infections: Reservoirs for Treg Induction
Early vs. late effects of Tregs in bacterial infection were elegantly
described in a mouse model of Salmonella (Salmonella enterica
serotype Typhimurium): Tregs suppressed early protective immu-
nity, thereby allowing for establishment of infection, yet clearance
of infection at later time points corresponded with a decrease
in Treg suppressive capacity (54). After acute infection, Treg-
mediated failure to completely eradicate Salmonellamay thus lead
to a carrier state of persistent asymptomatic infection, resulting
in a reservoir for shedding of pathogens into the environment
and further infection [reviewed in Ref. (55)]. A carrier state
of Streptococcus pneumonia in the nasopharynx was associated
with increased TGF-β levels from nasal washes in humans, and
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FIGURE 1 | Main effects of Tregs as described for various pathogens.
(A) Various Treg-mediated effects have been described for the various
classes of pathogens; early vs. late, and heterologous suppression, are
described in several taxonomies. Prominent features are noted, as well as
prominent Treg markers for the various pathogens. Circles “CD4/CD8”
depict the scale in reports of either CD4+ or CD8+ Tregs in literature for the
various classes. (B) Treg effects on TB-vaccine immunogenicity are
displayed in a similar fashion. BCG immunogenicity may be decreased by or

inversely related to BCG-induced Tregs, or may be suppressed by
heterogenic Tregs. Treg induction has also been described in various
TB-vaccine candidate trials. BCG=Mycobacterium bovis bacillus
Calmette–Guérin; CCL4=CC chemokine ligand 4; CTLA-4= cytotoxic
T-lymphocyte-associated antigen 4; LAG-3= lymphocyte activation gene-3;
LN= lymph node; LTBI= latent tuberculosis infection;
MDR-TB=multi-drug-resistant tuberculosis; NTM= non-tuberculous
mycobacteria; TB= tuberculosis; Treg= regulatory T-cell.

TGF-β was shown to lead to Treg expansion in in vitro murine
experiments (56). In Helicobacter pylori infection, a carrier state
can last for life; and several studies have described the ability of
Helicobacter pylori to induce Tregs. These Tregs were found in the
circulation as well as in the gastric mucosa of both infected chil-
dren and adults, and though Tregs initially can limit inflammation
and therefore probably gastric ulceration, pathogen persistence
could, on the other hand, lead to chronic inflammation and tumor
induction (57) [reviewed in Ref. (58)].

Increasing attention has been drawn to the interplay of the
immune system with non-pathogenic commensal microbiota in
the intestine. Tregs can be induced by commensal microbiota, as
has been demonstrated in multiple murine studies: butyrate, a
metabolite from commensals, potently induced Tregs in the intes-
tine (36, 37), possibly through butyrate-mediated enhanced his-
tone H3 acetylation in the FOXP3 promoter (37). Polysaccharide

A (PSA) from B. fragilis induced conversion of T-cells into Tregs,
and cured experimental colitis (59). The CNRZ327-component
from Lactobacillus delbrueckii induced regulatory responses in
colonic tissue, but importantly also in cecal LNs and the spleen,
pointing to systemic distribution of these microbiota-induced
Tregs (60).

Raising mice in germ-free conditions decreased the number of
Tregs in the gut, but the number of cutaneous Tregs was increased,
possibly through loss of inhibition by pro-inflammatory cells (61).
In any case, data on activation of Tregs by skin commensals is
also emerging (61), and these Tregs induced by skin microbiota
may modulate systemic inflammatory responses (61). As recently
reviewed (62), increasing evidence reveals resident microbiota
in the lungs. Though relatively low in bacterial biomass com-
pared to the microbiota of the skin and the intestinal mucosa,
these microorganisms are present in healthy lungs as they are
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at other mucosal surfaces, and probably differ in composition
between healthy individuals and individuals with (pulmonary)
disease (62).

Clearly, mucosal surfaces are the primary sites both for
pathogenic and commensal microbiota; and induction of Tregs –
within themyriad of innate and adaptive cells – has been described
for both. Further research should elucidate local and systemic
effects of Tregs induced at barrier sites in human studies, and
whether systemic effects of Tregs induced by (non-pathogenic)
commensals are to be expected (Figure 1A).

Parasitic Infections: Suppression Across
Boundaries
Murine Leishmaniasis models have been pivotal in demonstrat-
ing Tregs at the site of (parasitic) infection: antigen-specific
CD4+CD25+ Tregs were present at the site of chronic Leish-
mania major infection (63) and retention at the infection site
was dependent on expression of CD103 by CD4+CD25+ Tregs
(64). In this model, the impact of Tregs on establishment of
chronic infection and reactivation of diseasewas elegantly demon-
strated: after pathogen clearance, Leishmania super-infection led
to reactivation of disease and increased Treg numbers at the
primary site. Also, adoptive transfer of Tregs from infected mice
into chronically infected mice caused reactivation of disease (65).
Mechanisms of suppression included IL-10 production by Tregs as
well as other mechanisms (66). In another study, Foxp3-negative
cells were the major producers of IL-10, and anti-IL-10R mAb
treatment decreased parasite burden to a greater extent compared
to anti-CD25-mAb treatment (67). In humans, functionally sup-
pressive CD4+CD25+ Tregs have been isolated from cutaneous
leishmaniasis (skin) lesions (68); and FOXP3mRNA levels in skin
lesions were increased in chronic compared to acute Leishmania
major infection (69). Also in Leishmania guyanensis-induced skin
lesions, FOXP3 mRNA levels were significantly higher in chronic
compared to acute patients, though in both cases Tregs isolated
from these lesions displayed suppressive activity in vitro (70).
Importantly, IL-10 and FOXP3 mRNA expression in Leishmania
guyanensis-infected skin lesions were associated with unrespon-
siveness to treatment (71).

Several studies have reported increased Treg frequencies
in Plasmodium falciparum-infected individuals compared
to asymptomatic or uninfected controls (72); furthermore
in patients with clinically severe malaria, the frequency of
CD4+CD25+Foxp3+CD127LO Treg cells correlated with levels
of parasitemia and total parasite biomass (73). Tregs were
associated with risk of malaria disease: reduced expression of
CTLA-4 and FOXP3 was found in Fulani, an ethnic group in
Burkina Faso relatively resistant to P. falciparum compared to
Mossi (a different ethnic group from the same region) (74).
Proliferative PBMC responses to malaria antigens from Mossi
were increased following CD25+-depletion, but those from
Fulani were not (74). In Kenyan adults with natural immunity
to malaria, CD4+CD25HI T-cell frequency at enrollment was
associated with the risk of developing clinical malaria during
follow-up (75).

Many helminth parasitic infections steer immunity toward Th2
and T-regulatory responses (12); and murine data indicate that

immune suppression is achieved through cross-mucosal induc-
tion of regulatory cytokines, regulatory DCs, macrophages, and
CD4+ and CD8+ Tregs (76). In a recent study of murine Trichuris
muris infection, Th2 cell proliferation was enhanced by early Treg
depletion post-infection and by Treg depletion after establish-
ment of infection (77). However, the ultimate effect of Tregs on
pathogen persistence was clearly time dependent: both early and
late Treg depletion enhanced Th2 responses and reduced Th1
responses, but while early Treg depletion resulted in enhanced
clearance of infection, later, during infection, Treg depletion
resulted in enhanced worm burden (77).

Importantly, in geohelminth-infected children in vitro deple-
tion of CD4+Foxp3+CD25HI T-cells increased not only antigen-
specific proliferative responses but also IFNγ-production in
response to Plasmodium-infected red blood cells (11). The in vivo
effect of helminth coinfection on immunity against Plasmodium
varies between studies, but helminth coinfection may be asso-
ciated with protection against cerebral malaria, a state of severe
hyper-inflammation (12). Latent tuberculosis infection (LTBI)
individuals with hookworm (78) and filarial coinfection (79) had
decreased Th1 and Th17 responses and increased Treg frequen-
cies compared to parasite-uninfected LTBI individuals. Whether
deworming has clinical impact on the course of TB disease is
not clear: in TB patients with helminth coinfection, albenda-
zole treatment decreased IL-10 levels, but there was no clinical
improvement inTB after 2months (80). Since (helminth-induced)
Tregs are capable of exerting non-specific suppressive responses,
research in malaria and TB (diseases where strong Th2 and Th1
responses are vital, respectively) will hopefully clarify the effect of
Tregs across the boundaries of disease (Figure 1A), especially in
settings where coinfection of helminths with malaria and/or TB is
endemic.

Tregs in Leprosy and Tuberculosis

Tregs in Leprosy, an Ancient Disease
Leprosy, caused byM. leprae, is an ancient, chronic, disabling, but
curable disease affecting the skin, the peripheral nerves, the eyes,
and mucosa of the respiratory tract (81). The clinical spectrum of
the disease ranges from tuberculoid (TT) and borderline tubercu-
loid (BT) to borderline lepromatous (BL) and lepromatous leprosy
(LL), where TT/BT is immunologically characterized by a strong
Th1 response accompanied by limited growth of the bacillus (pau-
cibacillary leprosy), whereas BL/LL is classically characterized by
a predominant Treg/Th2 response, high antibody titers, absent
granuloma formation, and thus poor containment of infection and
clinical deterioration (82).

Though the exact mechanisms ruling this spectrum have not
been elucidated, it is clear that Tregs play a part, and demonstra-
tion of the suppressive activity of CD4+ and CD8+ Tregs isolated
from the skin and circulation of LL patients were among the first
reports on “human T-suppressor cells” (6, 7). In the circulation
of leprosy patients, both CD4+Foxp3+ and CD8+Foxp3+ T-
cells were almost twofold increased compared to healthy con-
tacts (83). Within the spectrum of disease, increased percentages
of CD4+Foxp3+CD25+ and CD8+Foxp3+CD25+ T-cells have
been demonstrated in the circulation of LL patients compared
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to BT patients or healthy contacts (82, 84). Also in leproma-
tous lesions, Foxp3+ T-cells were increasingly expressed in LL
compared to TT/BT patients (82, 84). Suppression of the Th1
response by Tregs was demonstrated by enhanced in vitro IFNγ-
production through depletion of CD25+ cells in a subset of LL
patients (82). Both CD4+CD25+ derived IL-10 production and
regulation through TGF-β have been described (85, 86).

A possible mechanism of Treg induction byM. leprae–infected
DCs is the expression of the mycobacterial cell wall compo-
nent PGL-1, that by association with the complement component
C3 can steer toward Treg differentiation (87). Type 2 anti-
inflammatory (CD163+) macrophages are important Treg induc-
ers (17), possibly due to the action of ROS (88); indeed, a
regulatory phenotypewas described inmonocytes stimulatedwith
M. leprae (89). Recently, CD68+CD163+ cells were demonstrated
in LL skin lesions with increased frequencies compared to BT/TT
lesions (82). Intracellular pathways leading to enhanced Foxp3
expression in CD4+ T-cells have been described in association
with progression of disease toward BL/LL, in addition to low
Foxp3 ubiquitination (marked for intracellular degradation) (86).
In T-cells isolated from LL patients, Foxp3 interacted with histone
deacetylases and bound directly to the promotor regions of CD25
and CTLA-4 (90). The importance of this transcriptional regula-
tion by Foxp3 within the immunological spectrum of disease is
further supported by the fact that not only Treg frequencies are
increased in LL compared to BT patients but also the intensity of
expression (mean fluorescence intensity) of Foxp3 as determined
by flow cytometry (83).

Thus, Tregs are clearly involved in the impairment of mycobac-
terial control. However, this does not necessarily equate to
increased suppression of Th1 over Th2 responses toward the LL
pole spectrum: gene expression profiling of PBMCs isolated from
TT, LL, and borderline leprosy patients revealed decreased expres-
sion of both Th1 and Th2 genes in LL patients, but enhanced
expression of CTLA-4 and TGFB1 (91). The authors further
found overexpression of CBL-B, an E3 ubiquitin-ligase that after
encounter with antigen is crucial in modulating T-cells toward
activation vs. anergy, dependent on the presence or absence of co-
stimulatory signals (92). Cbl-b, TGF-β, and CTLA-4 expression
were molecularly related, as demonstrated by the dependency of
Cbl-b expression on TGF-β and the decreased expression of Cbl-
b after treatment with CTLA-4 siRNA (91). Within the paradigm
of a generalized suppressed peripheral T-cell response associated
with LL development, Tregs could thus play an important role
in inducing and maintaining low cellular immune responsiveness
(Figure 1A), although their impact on humoral (mostly but not
exclusively Th2 related) responses remains less clear. Further work
would be needed to clarify causal relationships, e.g., if Tregs are a
cause or consequence of bacterial burden in LL disease (93).

Tuberculosis: Early and Late Effects of Tregs
Pathogen-specific Tregs were induced by Mtb as demonstrated in
a murine Mtb aerosol infection model, and these Tregs delayed
priming of CD4+ and CD8+ T-cells in the pulmonary LNs,
thereby delaying migration of these cells to the lung (94). Tregs
were demonstrated in the lung, including in granulomas (95), and
were shown to prevent pathogen clearance (96). Interestingly, in

contrast to Listeria monocytogenes, pathogen-specific Treg expan-
sion could be found in LNs only after Mtb infection (97). Thus,
Mtb-induced Tregs contribute to the delayed onset of adaptive
immunity that is observed in TB compared to other diseases and
which allows establishment of infection (98, 99). The impact of
Tregs on establishment of infection was further demonstrated in
a murine study, where depletion of CD25+ cells early after Mtb
infection – but not during chronic infection – decreased bacterial
load and granuloma formation (100). However, it might also be
that (pre-existing) Tregs have a beneficial role very early in infec-
tion, but also these data are only derived fromanimal experiments.
Inmacaques, Tregs and IFNγ-producing effector T-cells expanded
early after pulmonary TB infection, yet in vivo depletion of both
IFNγ-producing and Tregs led to decreased resistance against
granulomaprogression (101). Analogous to the possibly beneficial
role for Tregs in regulating LN in- and efflux during early murine
HSV-infection (41, 42), it is conceivable that the presence of a very
low level of (possibly pre-existing) Tregs before or in a very early
state after Mtb infection might thus accommodate priming and
subsequent emergence of a pro-inflammatory immune response.
Clearly, further research will be needed to specify the impact of
Tregs in various organs (102), early in (human) Mtb infection,
and to differentiate their impact in early vs. chronic infection
(Figure 1A).

Regulatory T-cells are also present in human Mtb infection
as has been demonstrated extensively: Tregs could be isolated
both from the circulation and from the site of infection in
TB patients. In the circulation of TB patients, an increase in
FOXP3 mRNA expression was found compared with healthy
controls (103), and also an increase in CD4+ T-cell frequen-
cies with regulatory phenotypes was demonstrated [defined as
CD4+CD25+/HI (103, 104), CD4+Foxp3+CD25HI (105, 106), or
CD4+CD25HICD39+ (105)]. Tregs could be isolated from var-
ious Mtb-infected sites, including bronco-alveolar lavage (BAL)
fluid, ascites, pericardial fluid, and pleural fluid; and FOXP3
mRNA expression levels and CD4+CD25HI T-cell frequencies
were increased stronger locally than systemically (in the circula-
tion) (103, 107). In a study comparing TB cases with infected and
uninfected TB contacts (defined by positive tuberculin-skin test
(TST) and ELISPOT results), PBMCs from uninfected contacts
had lower FOXP3 mRNA expression levels compared to TB cases,
but higher FOXP3 expression levels compared to infected TB
contacts; which according to the authors could signify migration
of Tregs to the lungs during early infection, with a reappearance
in the circulation during latent (established) infection (108). Also
CD8+Foxp3+CD25+ Tregs were demonstrated in the circulation
and BAL fluid of TB patients (107); and CD8+LAG-3+CCL4+
Tregs [lymphocyte activation gene-3 (LAG-3); CC chemokine
ligand 4 (CCL4)] were shown by histological staining of infected
LNs from TB patients (109). Furthermore, after stimulation with
HLA-E restricted Mtb-derived peptides CD8+ Tregs could be
isolated from PBMCs of in vitro mycobacterial purified protein
derivative (PPD)-reactive donors (110, 111).

Elevated frequencies of circulating Tregs in TB patients
declined during successful chemotherapy (106), in contrast, in
patients with emerging MDR-TB circulating Treg frequencies
remained persistently high (106). Other data on Tregs in MDR vs.

Frontiers in Immunology | www.frontiersin.org May 2015 | Volume 6 | Article 2176

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Boer et al. Tregs in infection and vaccination

normally resistant (NR)-TB are scarce and conflicting: similar fre-
quencies of circulating CD4+Foxp3+ Tregs were found in MDR-
TB patients compared to (NR-)TB patients (112); however, in
another study comparingMDR-TB, NR-TB, and non-tuberculous
mycobacteria (NTM) infections, increased ex vivo frequencies of
Tregs were found in MDR-TB but also in NTM infections com-
pared to NR-TB. This may reflect chronicity of infection in MDR-
TB and NTM infection, which is often treated sub-optimally;
however, the contrast reported by the authors between elevated
serum IL-10 levels in MDR-TB patients vs. elevated serum TGF-
β levels in NTM-infected patients could also suggest different
subsets of Tregs or different suppressive effector pathways to be
involved in MDR-TB vs. NTM (113).

Tuberculosis: Tregs Differentiate Active from
Latent Disease
CD4+Foxp3+CD25+ Tregs are increased in frequency in active
TB compared to LTBI (107, 114), both in the circulation and in
BAL fluid (107) (Figure 1A). A report on CD4+CD25+CD134+
T-cells in TB demonstrated differentiation between active and
latent TB solely through the presence or absence of the CD39-
molecule on this subset (115). Stasis of mycobacterial growth
in macrophages, both monocyte-derived and alveolar, was sup-
pressed by CD4+ Tregs (107). Depletion of CD4+Foxp3+CD25HI

T-cells increased IFNγ responses to the mycobacterial antigen
heparin-binding hemagglutinin (HBHA) of patients with active
TB in vitro, to the level observed in LTBI individuals (116).
Treg frequency in the circulation of smear-positive TB patients
was increased compared to smear-negative patients; however,
this did not correlate with radiologic determination of extent of
disease (112).

Pro-inflammatory signatures of CD8+ T-cells differentiated
between latent infection and active TB disease (117), and also
in vitro an association was found between burden of infection of
cells and lysis by cytotoxic CD8+ T-cells (118). The frequency of
CD8+ T-cells producing IL-10 or TGF-β was increased in active
TB patients compared to latently infected or control subjects
(119). In this study, CD8+, CD8+IFN-γ+, and CD8+IL-17+ T-
cell numbers were similar between groups, and were – interest-
ingly – not dependent on sputum bacillary load, while sputum
bacillary load was positively associated with specific regulatory
cytokine expression in CD8+ T-cells, and negatively associated
with CD8+ granzyme B expression (119). However, in another
study, the frequency of CD8+Foxp3+CD25+ Tregs did not differ
between active vs. latent TB, or between cells isolated from the
circulation vs. cells isolated from BAL fluid (107). The differences
between these reports may be explicated by differences in regula-
tory markers that were studied, or by methods that were used: in
the former study, cells were stimulated with Mtb specific antigen
for 96 h, while in the latter study, cells were PPD-stimulated for
12 h. CD8+ Tregs are relatively understudied compared to CD4+
Tregs in mycobacterial infection (5), and this clearly points to the
need for more (uniform) research into these possibly important
regulators and/or markers of activity of disease. Of note, CD8+
Tregs were found at the disease site in mice, and progression of
disease correlated with accumulation of IL-10-secreting CD8+
T-cells in granulomas (120).

Instead of being a steady state of infection, latent TB com-
prises a dynamic spectrum with supposedly increasing rates of
subclinical Mtb replication and inflammation extending even-
tually to active TB. Serial IGRA testing has been proposed as
an indicator of human host resistance in latent TB. Using serial
testing, a consistently negative test in TB-exposed individuals
would likely indicate strong resistance to infection, a consistently
positive test (recent) active infection, and (repeated) test conver-
sions (positive to negative, possibly followed by conversion, etc.)
changing dynamics of infection and control of bacterial load. In
a comparison of T-cell subsets between IGRA-consistently pos-
itive and consistently negative TB-case contacts, CD4+Foxp3+
and CD4+CTLA-4+ Tregs were increased in TB-case contacts
with consistently positive IGRA-tests, possibly indicating Treg
interference with host resistance in the development of active
infection (121).

Tuberculosis: Tregs in Extra-Pulmonary Disease
A minority of TB cases present with extra-pulmonary disease
or extra-pulmonary involvement following pulmonary infection,
and it is assumed that this represents failure of the immune system
to contain infection (122). Multiple studies indicate involvement
of Tregs in dissemination of disease (Figure 1A). An increase in
FOXP3 mRNA expression has been described in PBMCs from
patients with extra-pulmonary TB (disseminated and lymphatic
TB) compared to pulmonary TB (103). In a comparison of TB
pleural effusion and miliary TB, representing in this case con-
tainment vs. dissemination of disease, elevated FOXP3 mRNA
expression levels and frequencies of CD4+Foxp3+CD25+ T-cells
were found in cells isolated from miliary disease sites (123).
Another study confirmed an increase inCD4+ Treg frequencies in
patients previously treated for extra-pulmonary TB compared to
pulmonary TB, but reported an analogous increase in CD4+ acti-
vation markers (124). In TB pleurisy, CD4+Foxp3+CD25HI Treg
frequencies were increased in pleural fluid compared to the circu-
lation (125, 126), and Tregs suppressed IFNγ-expression in CD4+
and CD8+ T-cells (126). Pleural CD39+ Tregs inhibited genera-
tion of Th17 cells, which could be reversed in vitro by antagonizing
TGF-β through the addition of latency-associated peptide (LAP)
(127). Mtb infection of the pleurae favored Treg migration into
the pleural exudate when compared to other causes of pleurisy:
tuberculous pleural fluid, but not effusions from other bacterial
origin, or transudates, had high concentrations of the chemoat-
tractant CCL22, which is chemotactic for Treg migration in vitro,
and an increase in CD4+CD25HI T-cell frequency compared to
the circulation (125). Intercellular adhesion molecule-1 (ICAM-
1) and vascular cell adhesion molecule-1 (VCAM-1) on pleural
mesothelial cells regulatedmigration of leukocytes from the circu-
lation into the pleural fluid; however, these molecules also seemed
to favor (non-antigen-specific) expansion of Tregs (128).

In TB lymphadenitis in children, CD4+Foxp3+ T-cells were
demonstrated in the LNs, and quantitative mRNA analysis
demonstrated induction of TGFβ and IL13, but not of IFNγ,
TNFα, or IL-17 (129). Data on frequency and function of Tregs
in other forms of TB disease, such as bone TB, urogenital TB,
or TB of the central nervous system (CNS) are scarce. It is,
however, conceivable that the interplay of Tregs and Mtb may
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differ in infections at immune-privileged sites, such as the CNS
or the eye. The assessment of anti-inflammatory mechanisms
could be highly relevant in regard to CNS-immune reconsti-
tution syndromes, given their often disastrous outcomes (130).
Several studies have associated plasma biomarkers and CD4+ T-
cell activation with the development of HIV-associated immune
reconstitution inflammatory syndromes (IRIS), but did not find
an associationwith (CD4+) Treg frequencies, both in the develop-
ment of cryptococcal-IRIS disease (131) andTB-IRIS disease (131,
132). TB-IRIS may either be “unmasking” (of an occult infec-
tion) or “paradoxical” (worsening of a known infection during
retroviral treatment) hyper-inflammation: decreased serum IL-10
levels were found in paradoxical compared to unmasking syn-
dromes (133). Interestingly, this might represent Treg function,
not Treg phenotype: a study in patients developing symptoms of
Mycobacterium avium and intracellulare complex-infection, fol-
lowing commencement of retroviral treatment, reported a sig-
nificant expansion of CD4+Foxp3+CD25+CD127LO Tregs, but
reduced functional capacity and diminished IL-10 secretion of
these cells in in vitro suppression assays (134).

Tuberculosis: Tregs in the Clinic
Tregs may interfere with clinical diagnosis of TB (Figure 1A).
Classically, diagnosing TB has relied for decades on the TST, test-
ing cell-mediated immunity against intradermally injected Mtb-
derived tuberculin PPD. Skin anergy is defined as the absence of
dermal reactivity in otherwise confirmed Mtb infection. In vitro
PPD stimulation of cells isolated from PPD-reactive TB patients
induced both IL-10 and IFNγ-production; however, cells from
anergic TB patients produced only IL-10 but not IFNγ (135).
Reduced levels of IFNγ and IL-2, and increased levels of IL-10
in anergic compared to PPD-reactive TB patients were confirmed
in another study. This anergy was found only after in vitro stim-
ulation with PPD – but not unrelated antigens, indicating an
antigen-specific anergic reaction (136). Suppression of IL-2- and
TNFα-production was accompanied by CD8+ T-cell expansion
and high levels of IL-10 in anergic TB patients, and CD8+ T-cell
depletion and blocking of IL-10 reversed this suppression (137).

A direct effect of Treg-mediated suppression on interferon-γ
release assays (IGRAs), such as the in-tube QuantiFERON Test,
has so far not been established. Nevertheless, several studies have
described “rescue” of mycobacterial-specific IFNγ production
by Treg depletion in Mtb-infected individuals (104, 105, 114,
138). Interestingly, depletion of CD25+ T-cells increased IFNγ
production by PBMCs in Mtb-infected individuals, but did not
increase the production of IL-17A (114). Yet, pleural CD39+
Tregs (CD4+CD25+CD39+CD127−) inhibited Th17 differen-
tiation (127), and an inverse correlation between production of
IL-17A and CD39-expressing Tregs has been described after vac-
cination (139, 140). CD39 expression on Tregs may thus be more
closely linked to suppression of IL-17 production compared to
cells expressing CD25, but this needs further clarification. Also
the extent of TB infection as determined by chest X-ray (CXR)
scoring was associated with T-cell modulation: in a study dividing
patients by severity of disease by CXR, double-negative (DN,
CD4−CD8−) TCRγδ T-cells from patients with severe disease
displayed a modulatory profile with high IL-10 production, in

contrast to patients with less severe disease, where TCRγδ DN
T-cells displayed a pro-inflammatory cytokine profile with high
IFNγ (141).

During TB therapy, circulating CD4+ Treg frequencies
declined as mentioned; however, this was only noted following
chemotherapy for pulmonary TB (Figure 1A) (106, 142, 143).
In contrast, an increase was noted during extra-pulmonary TB
treatment (143, 144). Differences between forms of disease pos-
sibly represent differences in compartmentalization of Tregs, or
heterogeneous kinetics of Treg contraction following decrease of
bacterial burden. TB patients in which MDR-TB emerged during
therapy had persistent circulating Treg frequencies (106), which
could be analogous to a phenomenon observed during IFNα
therapy for chronic HBV infection: therapy non-responders were
characterized by an increase in CD4+CD25+ T-cells and IL-10-
producing cells (145). Thus, circulating Treg frequencies might
be used as parameter of therapy response in specific states of TB
disease.

Tregs in Vaccination Against Tuberculosis

Even in early life, immunoregulatory mechanisms, including
Tregs,may dampen vaccine-induced immunity (146).Wedescribe
here how immunogenicity of TB vaccines may be influenced
by Tregs, induced by the vaccination itself, by closely related
pathogens, or induced by unrelated pathogens (Figure 1B). M.
bovis BCG, the only available vaccine against TB, is a live bacterial
vaccine aimed at inducing effective T-cell responses, yet BCG itself
also induces Tregs (5). This ability to induce Tregs could limit its
ability to induce optimal protective immunity against TB; it is,
however, conceivable that future medicine may be able to tailor
BCG-induced Tregs to regulate hyperinflammation.

Tregs Induced by Vaccination: M. bovis Bacillus
Calmette–Guérin
Bacillus Calmette–Guérin, the only licensed vaccine against TB
since 1921, was derived from virulent M. bovis by years of con-
tinuous in vitro passage. Estimates are that BCG has been given
>3 billion times since its introduction, and it is part of the WHO
Expanded Program for Immunization (EPI). BCGwas used in one
of the first experiments establishing the idea of “suppressor cells”
interfering with control of infection: transfer of thymocytes from
BCG-immunized rats suppressed immune responses in naïve
recipient rats against new BCG infection (147). Though BCG-
vaccination induces CD4+ and CD8+ effector T-cell responses
in newborns (148, 149) and protects them from disseminated
forms of disease, it does not induce consistent protection against
pulmonary TB, especially in adults (150). We have previously
hypothesized that one explanation for this lack of protection is the
induction of Tregs by the vaccine among various other hypotheses
(5). In a large cohort of 5675 South-African infants who had been
vaccinated at birth, stimulation ofwhole bloodwithmycobacterial
antigens at 10weeks of age resulted in production of IFNγ or IL-10,
but not both (151). CD4+CD25+ Treg cells were demonstrated in
another study in BCG-vaccinated infants, and depletion of these
Treg cells resulted in lower IL-10 levels in PPD-stimulated cell
cultures (152). IL-10-producing CD4+ T-cells have been demon-
strated in previously BCG-vaccinated adult donors, and in vitro
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suppression of target cell proliferation could be reversed by a
blocking αIL-10-antibody (153).

CD8+ Tregs are generally less studied compared to CD4+
Tregs, especially in infectious diseases (5). We have previously
studied the presence, phenotype, and suppressive activity of
CD8+ Treg cells among live BCG-stimulated PBMCs of in vitro
PPD-responsive donors. Surprisingly, we found a significantly
higher expression of regulatory markers on live (but not killed)
BCG-activated CD8+ T-cells compared to CD4+ T-cells, and
there was significant enrichment of CD8+ Treg cells within the
BCG-activated CD25+ T-cell compartment (154). Also, suppres-
sive activity was dominantly present in live BCG-activated CD8+,
but not in live BCG-activated CD4+ T-cells (154). CD8+ Treg
cells isolated from live BCG-stimulated PBMCs were enriched for
expression of LAG-3 and CCL4, co-expressed CD25 and Foxp3,
and inhibited Th1 cell proliferation (109). Inhibition was partly
mediated by secretion of CCL4, which reduced Ca2+-influx early
after TCR triggering (109).Wehave additionally described expres-
sion of CD39 on live BCG-activated CD8+ Treg cells, and a direct
involvement of CD39 in mediating suppression by CD8+ Tregs,
as both the chemical CD39 antagonist ARL 67156 and a block-
ing αCD39-antibody were able to partly inhibit the suppressive
activity of CD8+CD39+ Tregs (155). Of note, CD8+ Tregs could
only be demonstrated in donors primed in vivowithmycobacteria,
indicating a memory recall response following in vitro BCG stim-
ulation. Taken together, our work identified at least two different
mechanisms by which BCG-activated CD8+ Tregs could inhibit
Th1 responses, viaCCL4 and viaCD39.Despite the above findings
and despite the fact that CD8 was originally identified as a marker
of Treg cells, then coined T-suppressor cells, pathogen-activated
CD8+ Tregs still remain significantly understudied compared to
CD4+ Tregs. It is important to note here that in vitro stimulation
with live BCG preferentially activated CD8+ Tregs (154), while
stimulation with killed BCG (or PPD) seems to activate different
populations.

Tregs Induced by New TB-Candidate Vaccines
Regulatory T-cell induction has been demonstrated in several
TB-vaccine candidate trials. After M72/AS01-vaccination of
South-African healthy adults, Tregs expanded concurrently
with cytokine-producing pro-inflammatory CD4+ T-cells (156).
Circulating CD4+CD25+Foxp3+ T-cells were demonstrated
after vaccination with another TB-vaccine candidate,
modified vaccinia Ankara-85A (MVA85A). Interestingly,
CD4+CD25+Foxp3+ T-cells were increased in recipients with
low antigen 85A-specific IFNγ-responses compared to high IFNγ-
responders (157). Also, the frequency of CD4+CD25+CD39+
T-cells was inversely related to IL-17A production in vitro (139).
IL2RA mRNA expression on the day of vaccination and CTLA-4
expression 2 days after vaccination inversely correlated with the
magnitude of the IFNγ ELISPOT response induced by MVA85A
vaccination in healthy British adults, pointing to a possible
role for Tregs very early or even before vaccination (157). In
African infants vaccinated with MVA85A, an early and strong
innate response was associated with enhanced IFNγ ELISPOT
responses; thus, the authors concluded that Treg modulation of
vaccine responses could differ between populations, and that

more research is needed to explain these differences and the
impact on vaccine efficacy (158). Assessment should, however,
include possible dissimilarities between long-term effects of Tregs
and early after vaccination.

Other Tregs can Modulate TB-Vaccine-Induced
Responses
Regulatory T-cells induced by other microbes can likely alter
immunogenicity of TB vaccines. Exposure to environmental
mycobacteria may decrease TB-vaccine efficacy through cross-
reaction of antigens (94). Pre-existing immune responses can
either “block” or “mask” the BCG-induced immune response,
possibly explaining the decreased vaccine efficacy of BCG in
developing countries, where there is a higher prevalence of envi-
ronmental mycobacteria (159). Another potential explanation
for decreased vaccine efficacy is induction of Tregs by envi-
ronmental mycobacteria (160). Priming mice with M. chelonae
before BCG-vaccination increased Foxp3 expression on BCG-
specific CD4+CD25+ T-cells compared to non-sensitized mice,
and CD4+CD25+ T-cells of sensitized mice decreased immune
responses in vitro (161). Adoptive transfer of CD4+CD25+ T-
cells into naïve mice suppressed IL-2-production in the lungs, and
enhanced IL-10 after BCG-vaccination (161). Suppression after
murine sensitization was reversed by a blocking αCD25-mAb
during challenge, indicating active involvement of cross-reactive
Tregs during vaccination (162).

Modulation of DC TLRs by helminth molecules lead to
increased Th2 and Treg responses, which possibly decreases
vaccine efficacy in developing countries, where also the major-
ity of the one billion helminth-infected people live (12).
Tregs induced by helminths in mucosa-associated lymphoid
tissue (MALT) may migrate to other sites, exerting non-
specific suppressive effects and preventing clearance of Mtb
at distant sites as well (163). Although the frequency of
CD4+Foxp3+CD25HI T-cells was similar in helminth-infected
and non-infected Indonesian children, BCG-specific (and as
mentioned, also Plasmodium falciparum-specific) proliferative
responses were increased after depletion of CD4+CD25HI T-
cells in helminth-infected children only, pointing to differences
in suppressive capacity induced by helminth infection (11).
Deworming increased BCG immunogenicity in vivo and was
accompanied by changes in TGF-β, but notably not by changes
in Th2 cytokines (164).

Modulating the Modulators: Future Prospects for
Tregs in TB-Vaccination
The ability of BCG to induce Tregs may in the future be exploited
to benefit the human host in the contexts of auto-immune
and/or hyper-inflammation-related diseases. This has been noted
in a murine model of Parkinson’s disease, where protection
against nerve damage was induced by BCG-vaccination through
Tregs (165). Also in experimental auto-immune encephalomyeli-
tis,myelin oligodendrocyte glycoprotein-specific IFNγ-producing
CD4+ T-cells, and both specific and non-specific CD4+IL-17+ T-
cells in the CNS, were suppressed by cerebral BCG infection (166).
Other murine studies have demonstrated BCG-induced suppres-
sion of asthma responses and dampening of colitis (167, 168).
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Further research will hopefully elucidate if and how these findings
can be translated to the human situation.

Interestingly, mucosal vaccination of macaques with a vaccine
consisting of inactivated simian immunodeficiency virus (SIV)
and a live bacterial adjuvant (BCG or Lactobacillus) generated
HLA-E restricted, non-cytolytic CD8+ Tregs (169). After chal-
lenge with SIV infection, these CD8+ Tregs suppressed pro-
liferation of infected CD4+ T-cells, thereby protecting almost
all vaccinated macaques for up to 4 years after vaccination
(169). As mentioned, in acute viral infection, Tregs could have
a beneficial role to play, such as in acute SIV/HIV infection
where Tregs decrease proliferation of infected cells at mucosal
surfaces (44).

In a TB-vaccination context, however, it may be crucial to
avoid excessive Treg induction by the vaccine. Analogous to
the reduced burden of TB observed in mice following treat-
ment with chemical compounds inhibiting Treg and Th2 induc-
tion prior to infection (170), a similar approach was tested in
murine BCG-vaccination: chemical inhibition of Treg induction
increased BCG-mediated protection against pulmonary TB in
mice and favored central-memory T-cell induction (long-lived
vaccine responses) (171). Blocking the IL-10-receptor with an
αIL-10-receptor antibody increased BCG-induced Th1, Th17,
innate lymphoid IFNγ, and IL-17 responses in mice, leading to
enhanced protection against TB (172). An additional, important
role for IL-22 producing NK cells through lysing of CD4+ Tregs
was described, and addition of IL-22 also increased Th1 vaccine-
induced responses (173). In contrast, only moderate efficacy
of treatment with a blocking αCD25-antibody on BCG-vaccine
efficacy was described (174). It is possible that blocking CD25
results in partial Treg depletion while other Treg subsets could
survive during such treatment. However, CD25 is expressed also
by activated T-helper cells such that CD25-depletion may addi-
tionally also deplete essential effector cells of protective immunity.
Regardless, even after selective deletion of all Foxp3+ cells, home-
ostatic expansion may occur from a small subset of remaining
Tregs (175). Since various Treg marker-expressing subsets exist,
this points to the importance of assessing the dynamics and flu-
idity of various subsets within the Treg compartment, in order to
improve vaccine design by effective modulation of Treg activity
and function. Compounds inhibiting Treg induction or blocking
“upstream” signaling through the IL-10-receptor could improve
vaccine efficacy. Other options would include the addition of
adjuvant antagonists of chemokine receptors expressed by Tregs,
as described for a CCR4 antagonist that blocked CD4+ Tregs
and increased in vitro responses to MVA85A and recombinant
HBV surface antigen vaccination (176), or the inclusion of TLR-
agonists combined with agents selectively blocking TLR-induced

anti-inflammatory signaling pathways in DCs (177). Future stud-
ies may integrate these findings to increase TB-vaccine-induced
protective immunity through manipulation of the manipulators,
and hopefully translate these findings ultimately to the human
situation.

Concluding Remarks and Future Directions

For many pathogens, induction, expansion, recruitment, or inhi-
bition of Tregs has been demonstrated.Mycobacterium leprae and
Mycobacterium tuberculosis are master manipulators of human
immunity and are able to establish chronic infection among others
by activating immune regulation. The effects of Tregs impact on
clinical symptoms and performance of immunodiagnostic assays,
differ in acute vs. chronic diseases and can suppress protective
immunity and vaccine immunogenicity. Importantly, this can
partly be the result of cross-suppression from Tregs induced by
unrelated pathogens, possibly even by non-pathogenic microbes.
This is particularly important in endemic settings, e.g., settings
endemic for both helminths, TB, malaria, and HIV.

Through precisely (and timely) targeted Treg manipulation,
vaccine-induced protective immunity may be enhanced. Most
data are necessarily derived from murine studies, and need to be
translated to the human situation. This should also offer oppor-
tunities for new immunotherapeutic vaccines for the treatment of
inflammatory disorders, e.g., auto-immune diseases, and for the
design of vaccines aimed at interfering with acute (viral) infection.
Through manipulating the manipulators, increased immunity
against infectious diseases may be achieved.
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