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Elevation of intracellular calcium ion (Ca2+) levels is a vital event that regulates T lymphocyte 
homeostasis, activation, proliferation, differentiation, and apoptosis. The mechanisms that 
regulate intracellular Ca2+ signaling in lymphocytes involve tightly controlled concinnity 
of multiple ion channels, membrane receptors, and signaling molecules. T cell recep-
tor (TCR) engagement results in depletion of endoplasmic reticulum (ER) Ca2+ stores 
and subsequent sustained influx of extracellular Ca2+ through Ca2+ release-activated  
Ca2+ (CRAC) channels in the plasma membrane. This process termed store-operated 
Ca2+ entry (SOCE) involves the ER Ca2+ sensing molecule, STIM1, and a pore-forming 
plasma membrane protein, ORAI1. However, several other important Ca2+ channels that 
are instrumental in T cell function also exist. In this review, we discuss the role of additional 
Ca2+ channel families expressed on the plasma membrane of T cells that likely contribute 
to Ca2+ influx following TCR engagement, which include the TRP channels, the NMDA 
receptors, the P2X receptors, and the IP  receptors, with a focus on the voltage-dependent 3

Ca2+ (CaV) channels.

Keywords: calcium, T cell, calcium channels, L-type calcium channels, T cell signaling

Immune cells, including T lymphocytes that express a diverse T cell receptor (TCR) repertoire, 
are key mediators of immune responses against pathogens. T cell activation occurs when its TCR 
recognizes cognate antigen presented on major histocompatibility complex (MHC) molecules by 
an antigen presenting cell, which in turn triggers a series of signaling events including calcium 
(Ca2+) signaling. In T cells, elevation of intracellular Ca2+ levels is a vital event that mediates  
T cell activation, proliferation, development, differentiation, homeostasis, effector function, and 
cell death (1, 2). TCR engagement elicits the activation of tyrosine kinases and subsequently of 
phospholipase Cγ1 (PLCγ1), which cleaves phosphatidylinositol 4,5-bisphosphate (PIP2) from 
plasma membrane phospholipids to generate diacylglycerol (DAG) and inositol 1,4,5-trisphosphate 
(IP3). DAG, along with Ca2+, activates protein kinase C (PKC). IP3 binds to IP3 receptors (IP3R) 
in the endoplasmic reticulum (ER), leading to the release of Ca2+ from the ER intracellular stores 
into the cytoplasm. It is proposed that as the Ca2+ concentration in the ER stores decreases, 
the process termed store-operated Ca2+ entry (SOCE) is triggered, which results in a sustained 
influx of extracellular Ca2+ through Ca2+ release-activated Ca2+ (CRAC) channels in the plasma 
membrane (3).
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In T cells, several signaling molecules can be activated by 
Ca2+, including the serine/threonine phosphatase calcineurin 
and its transcription factor target nuclear factor of activated 
T cells (NFAT), Ca2+-calmodulin-dependent kinase (CaMK) 
and its target cyclic AMP-responsive element-binding protein 
(CREB), and myocyte enhancer factor 2 (MEF2) targeted by both 
calcineurin and CaMK, NFκB, and Ras/MAPK pathways (4, 5). In 
the well-studied calcineurin-NFAT pathway, increased Ca2+ levels 
promote the binding of Ca2+ to calmodulin, allowing calmodulin 
to bind to the serine/threonine phosphatase calcineurin. The 
activated calcineurin dephosphorylates NFAT resulting in the 
transport of the dephosphorylated NFAT into the nucleus. NFAT 
then acting in concert with other transcription factors promotes 
the integration of signaling pathways and induces differential 
gene expression patterns dependent on the context of the TCR 
signaling (2, 6, 7).

Several families of channels expressed on the plasma membrane 
of T cells contribute to Ca2+ influx following TCR engagement (8, 9). 
ORAI1, the pore-forming plasma membrane subunit of the CRAC 
channel (10–12), and stromal interaction molecule 1 (STIM1), 
the ER Ca2+ sensing molecule (13, 14), have been proposed to 
be the major players in the SOCE pathway leading to Ca2+ influx 
from the extracellular space. However, despite the well-established 
roles of ORAI1 and STIM1 in lymphocyte function, several other 
important Ca2+ channels have been shown to be instrumental in T 
cell biology (9). The entry of Ca2+ in activated T cells can be regu-
lated by transient receptor potential (TRP) channels. Ionotropic 
glutamate receptors, such as the N-methyl-d-aspartate (NMDA) 
receptors, function as Ca2+ channels at the plasma membrane of 
T cells. Ca2+ can also enter the T cell through purinergic P2X 
receptors, which are channels that become activated once they are 
bound by their ligand adenosine triphosphate (ATP). IP3 recep-
tors (IP3R) represent another type of Ca2+ channel located at the 
plasma membrane of T cells. Furthermore, increasing evidence 
demonstrates the requirement for voltage-dependent Ca2+ (CaV) 
channels, the focus of this review, in T cell Ca2+ signaling and 
function (9, 15–17).

ORAi and STiM

A well-characterized model of the coordinated action between the 
pore-forming plasma membrane protein ORAI1 and the ER Ca2+ 
sensor STIM1 has been established (3, 18, 19). Depletion of the ER 
Ca2+ stores following TCR engagement results in oligomerization 
of STIM1 molecules (20, 21). STIM1 oligomers then accumulate in 
puncta in regions of the ER beneath the plasma membrane (13, 22, 
23), where they directly interact with ORAI1 at the plasma mem-
brane resulting in Ca2+ influx from the extracellular space (24, 25).

Evaluation of ORAI1 and STIM1 deficiency in human patients 
and in mouse models confirmed their physiological role in T 
cell activation. Loss of functional ORAI1 or STIM1 in humans 
leads to severe combined immunodeficiency (SCID) (10, 26–30). 
These patients have normal lymphocyte numbers; however, their 
T cells show impaired proliferation and cytokine production upon 
activation as a result of defective SOCE. Similarly to the phenotype 
observed in humans, ORAI1-/- and STIM1-/- mice appear to have 
normal thymic development of conventional TCRαβ+ T cells. 

However, STIM1- and STIM2-deficient mice have hindered selec-
tion of agonist-selected T cells (31). Furthermore, STIM1-deficient 
T cells have impaired CRAC channel function and subsequent 
NFAT activation, leading to defective cytokine secretion and T 
cell responses (32, 33). ORAI1 deficiency in T cells also results 
in partial reduction in SOCE and cytokine secretion (34, 35). 
Interestingly, in SCID patients, STIM1 deficiency is also associ-
ated with lymphoproliferative and autoimmune diseases (30). This 
autoimmunity is proposed to be a result of the decreased Treg cell 
numbers (30, 36). Analogous phenotypes are observed in STIM1- 
and STIM2-deficient mice (32). It has been suggested that reduced 
Ca2+/NFAT-dependent induction of Foxp3 expression leads to the 
Treg deficiency (32, 37, 38). Taken together, these findings emphasize 
the relevance of ORAI1 and STIM1 in T cell function.

The ORAI1 homologs, ORAI2 and ORAI3, which differ in their 
pharmacology, ion selectivity, activation kinetics, and inactivation 
properties in comparison to ORAI1, have also been shown to be 
expressed in T cells (39). Interestingly, while naïve T cells show 
high levels of ORAI2, its expression is downregulated upon activa-
tion, suggesting that ORAI2 may be critical for development or 
peripheral homeostasis (34, 35). ORAI3 has been shown to form 
pentamers with ORAI1 to make up the arachidonate-regulated 
Ca2+-selective (ARC) channels (40). However, the role of these 
arachidonic acid-activated channels in T cells is still poorly 
understood.

Additionally, naïve T cells express low levels of STIM2, which 
is upregulated upon TCR activation (41, 42). STIM2 was shown to 
function as an ER Ca2+ sensor and mediate SOCE in lymphocytes, 
similarly to STIM1. However, studies demonstrate that STIM2 
remains active at higher intracellular Ca2+ levels than STIM1 (5), 
and its overexpression only partially rescues Ca2+ influx deficiency 
in STIM1-/- T cells, indicating that STIM2 plays a non-redundant 
role in these cells (32, 43).

Although the CRAC channel has been the subject of many 
Ca2+ studies concerning T cells, this model does not account for 
the participation of additional plasma membrane Ca2+ channels 
that have been shown to be expressed and function in T cells. It 
also does not incorporate the notion that different Ca2+ chan-
nels may be expressed in specific T cell subsets contributing to 
differential patterns in Ca2+ response (44–46), and ultimately 
to distinct functional outcomes following TCR engagement. 
Therefore, it is essential to integrate multiple Ca2+ channels into 
a comprehensive model that takes into consideration the tightly 
controlled orchestration of these Ca2+ channels during Ca2+ 
signaling in T cells.

TRP Channels

Twenty-eight TRP channel proteins have been identified in 
mammals, and they are classified based on similarities in amino 
acid sequence: the classical TRPs (TRPCs), the vanilloid receptor 
TRPs (TRPVs), the melastatin TRPs (TRPMs), the mucolipins 
(TRPMLs), the polycystins (TRPPs), and the ankyrin transmem-
brane protein 1 (TRPA1) (47, 48). The TRP channels form pores 
that allow cations including Ca2+ to pass through (49). Several TRP 
channel family members can be found in T cell lines or primary 
T cells (5, 50–52).
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Interestingly, TRP channels were evaluated as potential can-
didates for the CRAC channel prior to the discovery of ORAI1 
and STIM1. The TRPV6 channel, which is highly permeable to 
Ca2+, was shown to be induced by store depletion (53). When a 
dominant-negative pore-region mutant of TRPV6 was expressed 
in Jurkat T cells, it was found that the CRAC current was reduced 
(53). However, the role of TRPV6 as a CRAC channel could not be 
established (54, 55), since BTP2, a CRAC channel inhibitor, did 
not show an effect on the activity of the TRPV6 channel (56–58).

The TRPC3 channels were also another possible candidate for 
the CRAC channel due to the evidence that Jurkat T cell lines with 
mutated TRPC3 channels showed decreased Ca2+ influx after TCR 
stimulation. This could be overcome by wild type TRPC3 overex-
pression (59, 60). In addition, knockdown of TRPC3 expression 
in human T cells by siRNA led to diminished proliferation after 
TCR activation (51). It is important to note that while it has 
been demonstrated that TRPC3 is activated in response to store 
depletion (61), DAG seems to be the main stimulus gating TRPC3 
(62). Interestingly, in a model of inflammation, a recent study 
demonstrated that TRPC3 and TRPC6 expression is upregulated 
in T cells from rats with sepsis (63).

The TRPM2 channel in T cells has also been investigated for 
its contribution in T cell function. TRPM2, a non-selective cation 
channel, is induced by the intracellular secondary messengers 
nicotinamide adenine dinucleotide (NAD+), hydrogen peroxide 
(H2O2), ADP-ribose (ADPR), and cyclic ADPR (64–66). Studies 
have suggested that T cell activation can upregulate endogenous 
ADPR levels in T cells, which results in Ca2+ entry via TRPM2 
and induction of cell death, indicating that TRPM2 is capable 
of contributing to Ca2+ signaling in T cells (67). The TRPM2 
channels have also been associated with T cell effector function. 
CD4+ T cells from TRPM2-deficient mice exhibit impaired ability 
to proliferate and secrete cytokines after TCR activation. TRPM2-
deficient mice also show less inflammation and demyelinating 
spinal cord lesions in an experimental autoimmune encephalo-
myelitis model (68).

TRPV1 is an ion channel most well-known for its role as a 
pain receptor in sensory neurons. It is also known as the vanilloid 
receptor 1 or the capsaicin receptor, capsaicin being the active 
ingredient in chili peppers. TRPV1 also has a role in the detection 
and regulation of body temperature. Recently, Bertin et al. have 
provided clear evidence that TRPV1 is functionally expressed in 
CD4+ T cells. TRPV1, acting as a non-store-operated Ca2+ chan-
nel in CD4+ T cells, was shown to be critical for TCR-induced 
Ca2+ mobilization, downstream TCR signaling, and cytokine 
production. By using in  vivo models of inflammatory bowel 
disease, a cell-intrinsic role of TRPV1 in promoting the activa-
tion and inflammatory responses of T cells was demonstrated 
(52). Furthermore, a recent study suggested a role for TRPV2, 
a mechanosensitive channel, during T cell Ca2+ signaling (69). 
Although important to T cell function, the specific functions of 
TRP channels in Ca2+ signaling have yet to be fully explored.

NMDA Receptors

Glutamate receptors are typically categorized as being metabo-
tropic or ionotropic. The latter category includes the AMPA, 

kainate, and NMDA receptors (70). The NMDA receptors are 
a class of ligand-gated glutamate ionotropic receptors typically 
found in the central nervous system that play a crucial role in 
neuronal function. The subunits of the NMDA receptor are 
called NR1, NR2, and NR3 (71). The NMDA receptor acts as 
an ion channel that is highly permeable to K+, Na+, and Ca2+ 
(72). The NMDA receptor is activated by glycine and glutamate, 
consequently resulting in Ca2+ influx (72). Various studies have 
confirmed that NMDA receptor subunits are expressed in human, 
rat, mouse, and rabbit lymphocytes (73–75). NMDA receptors 
have been shown to contribute to the increase in intracellular 
Ca2+ levels following T cell activation (73, 74, 76–79). In addition, 
it has been proposed that NMDA receptor-mediated increase in 
intracellular Ca2+ results in activation of Ca2+-dependent PKC, 
increase in reactive oxygen species (ROS) levels, and subsequent 
induction of either necrotic or apoptotic cell death in lymphocytes 
(80). Studies suggest that NMDA receptors participate, at least 
to some degree, in SOCE, as an NMDA receptor antagonist 
did not affect the thapsigargin-induced Ca2+ release from the 
ER intracellular stores in T cells, but reduced the influx of Ca2+ 
from the extracellular space (81). Interestingly, NMDA receptors 
were shown to localize to the immunological synapse following 
TCR engagement in thymocytes (82). In this scenario, NMDA 
receptors on the T cells are activated by glutamate released by 
dendritic cells (DCs), triggering a sustained Ca2+ response. It is 
proposed that this pathway may contribute to negative selection 
in the thymus by inducing apoptosis in thymocytes, while it may 
influence proliferation in peripheral T cells (82). The NMDA 
receptor has additionally been linked to T cell cytokine produc-
tion and T cell proliferation (83). It has been shown that CD4+ 
T cells treated with anti-CD3 and ifenprodil, an antagonist that 
targets the NMDA receptor subunit GluN2B (NR2B), exhibit 
diminished proliferation (83). Additional research will greatly 
elevate our current knowledge of the role of the NMDA receptors 
in shaping the Ca2+ signal in T cells.

P2X Receptors

The P2X receptors are ion channels that facilitate the influx of 
Ca2+ and Na+ ions and the efflux of K+ ions in response to ATP 
binding (84). Several subunits of the P2X receptor have been 
shown to be expressed in human T cells, including P2X1, P2X4, 
P2X5, and P2X7 (85, 86). Upon TCR engagement, ATP is released 
through Pannexin 1 hemichannels that localize to the immuno-
logical synapse. When liberated, ATP acts on the P2X channels to 
promote Ca2+ influx and enhance signaling (85, 87, 88). Woehrle 
et al. demonstrated that human T cells exhibit impaired Ca2+ sign-
aling after anti-CD3 treatment, when P2X1, P2X4, and P2X7 are 
inhibited (86). In addition, there is evidence indicating that P2X1, 
P2X4, and P2X7 contribute to the increase in intracellular Ca2+, 
NFAT activation, proliferation, and IL-2 production in murine 
and human T cells following stimulation (85, 86, 88, 89). A recent 
study by Abramowski et  al. showed that activation of T cells 
leads to greater expression of P2X5. Furthermore, P2X5 has been 
tied to T cell cytokine production, particularly IL-10 (90), while 
the P2X7 receptor is involved in the secretion of IL-1β, IL-10, 
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and IL-18 by immune cells (84). Additionally, in two models of 
T cell-dependent inflammation, treatment with a P2X receptor 
antagonist impeded the development of colitogenic T cells in 
inflammatory bowel disease, and induced unresponsiveness in 
anti-islet TCR transgenic T cells in diabetes (88). It is also known 
that C57BL/6 mice carry a P2X7 P451L mutation, whereas this 
mutation is not found in Balb/c mice (91). Interestingly, levels 
of IL-2 production by activated Balb/c lymphocytes are higher 
compared to those of activated C57BL/6 lymphocytes, further 
delineating a role for P2X receptors in T cell function (85). P2X7 
mutations also exist in humans in the form of single nucleotide 
polymorphisms (SNPs), which have been linked to conditions 
such as major depressive disorder, bipolar disorder, and chronic 
lymphocytic leukemia (84). Human T cells have been shown to 
undergo shedding of CD62L in response to ATP stimulation 
(92). However, this process is hindered in human T cells that 
are homozygous for the P2X7 SNP Glu496Ala, indicating an 
important role for P2X7 in this context (92). Although many 
studies have demonstrated the importance of the P2X receptors 
in T cells, more integrative analysis is required in order to fully 
appreciate their connections with other Ca2+ channel families.

iP3 Receptors

Although IP3 receptors (IP3Rs) have been well-characterized in the 
ER, some evidence demonstrates that they may also exist at the 
plasma membrane of T lymphocytes (8, 93). It is thought that Ca2+ 
channels at the cell surface induced by IP3 might only play a role 
in short-term Ca2+ signaling, since IP3 dissipates swiftly following 
TCR engagement (8). It was also proposed that ER IP3Rs, which 
bind IP3 to release Ca2+ from ER stores, undergo a conformational 
change upon depletion of ER stores, and signal to surface IP3Rs 
to open (94). Cultured T cells have been shown to have IP3Rs on 
their cell surface (93, 95); yet, Ca2+ currents across the plasma 
membrane induced by IP3 failed to be observed (96). It has also 
been suggested that IP3Rs function at the plasma membrane as 
scaffolds, based on the multiple protein binding sites found in 
the modulatory domain of the channel (97). Additional research 
is needed in order to shed more light on the role of the plasma 
membrane IP3Rs in T cell Ca2+ signaling.

Cav Channels

As their name suggests, the voltage-dependent Ca2+ channels, or 
CaV channels, enable the influx of Ca2+ ions following changes 
in membrane potential, specifically depolarization (98). For this 
reason, CaV channels have traditionally been associated with 
excitable cells (99). For example, in muscle, some CaV channels 
are known to play a role in excitation–contraction coupling (98). 
The CaV channels can be designated as high voltage-activated 
(HVA) or low voltage-activated (LVA) (100). They can also be 
split into the following types: L (long-lasting and large)-type, P/Q 
(Purkinje)-type, N (neuronal)-type, R (toxin-resistant)-type, and 
T (transient and tiny)-type (100).

The CaV channels structurally consist of the α1, β, γ, and α2δ 
subunits, the latter being the result of connective disulfide bonds 
between the α2 and δ subunits (99). The α1 subunit of the CaV 

channel forms the pore and it is responsible for the channel’s 
unique properties, whereas the other subunits regulate the struc-
ture and activity of α1 (99). Four homologous repeated motifs 
(I–IV), each with six transmembrane segments (S1–S6) and a 
re-entrant pore-forming loop (P-loop) between S5 and S6, make 
up the α1 subunit. The P-loop contains four highly conserved 
negatively charged amino acids responsible for selecting and 
conducting Ca2+, while the S6 segments form the inner pore 
(99). The S4 segments are positively charged and constitute the 
voltage sensor. The opening and closing of the pore occur via 
voltage-mediated movement of this sensor (100).

There exist ten α1 subunits in mammals, and these can be 
grouped according to similarities in amino acid sequence. The 
CaV1 family (CaV1.1–CaV1.4) contains L-type channels; the CaV2 
family consists of P/Q-type (CaV2.1), N-type (CaV2.2), and R-type 
(CaV2.3) channels; and the CaV3 family (CaV3.1–CaV3.3) is also 
referred to as the T-type channels (99). Many pharmacological and 
genetic studies have provided evidence for the presence of CaV1 
or L-type channels in T cells (9). In excitable cells, CaV1 chan-
nels require high voltage activation and have slow current decay 
kinetics. They are sensitive to 1,4-dihydropyridines (DHPs), drugs 
that include examples such as the L-type Ca2+ channel activator 
Bay K 8644 and the inhibitor nifedipine (8, 100).

Various pharmaceutical studies have assessed the relation-
ship between CaV1 channels and T cell Ca2+ signaling (15, 101, 
102). The DHP antagonist nifedipine was shown to inhibit the 
proliferation of human T cells or peripheral blood monocuclear 
cells, or block the increase in intracellular Ca2+ following stimu-
lation with mitogens (103–105). Kotturi et  al. demonstrated 
that treatment of Jurkat T cells and human peripheral blood 
T cells with the DHP agonist Bay K 8644 led to an increase in 
intracellular Ca2+ levels and induced ERK 1/2 phosphorylation, 
while treatment with the DHP antagonist nifedipine blocked 
Ca2+ influx, ERK 1/2 phosphorylation, NFAT activation, IL-2 
production, and T cell proliferation (15). It is interesting to note 
that DHPs can also have an effect on the function of K+ channels 
at micromolar concentrations; thus, conclusions drawn from 
these pharmaceutical studies (8, 15, 101, 102) regarding the 
contribution of CaV1 channels to T cell function have undergone 
critique (106, 107). However, inhibitory effects were observed 
when DHP antagonists were used at concentrations well below 
those known to influence K+ channels (15, 108) as well as with 
calciseptine, a more specific blocker against CaV1 channels that 
was also shown to hinder T cell Ca2+ influx (109, 110).

Many studies have established that CaV1 channels are found in 
T cells (9). The first CaV1 channel identified in T cells was CaV1.4 
(15–17), which is encoded by the CACNA1F gene initially cloned 
from the human retina (111) where CaV1.4 facilitates Ca2+ entry 
into the photoreceptors and plays a role in tonic neurotransmitter 
release (112). Kotturi et al. demonstrated that CaV1.4 mRNA and 
protein are found in Jurkat T cells and human peripheral blood T 
cells (15, 16). It was shown through sequence analysis that CaV1.4 
is expressed in human T cells as CaV1.4a and CaV1.4b, two novel 
alternative splice variants that are distinct from retina CaV1.4 (16). 
Exons 31, 32, 33, 34, and 37 are missing in splice variant CaV1.4a, 
leading to deletions of motif IV transmembrane segments S3, 
S4, S5, and half of S6. Consequences of these deletions include 
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the removal of the voltage sensor domain and part of the DHP 
binding site and EF-hand Ca2+ binding motif. The absence of the 
voltage sensor may affect the channel’s voltage-gated activation, 
and partial deletion of the DHP binding site may diminish the 
sensitivity of T cell-specific CaV1.4 channels, hence the need for 
large doses of DHP antagonists in order to fully impede Ca2+ 
influx through CaV channels in T cells (105). The splicing led to 
a frameshift that turned the C-terminus into a sequence that had 
40% similarity to the CaV1.1 channel found in skeletal muscle 
(16). In contrast, exons 32 and 36 are not found in splice variant 
CaV1.4b, which results in a deletion of the extracellular loop 
between S3 and S4 as well as a partial deletion of transmembrane 
segment S6 in motif IV. In addition, the presence of an early stop 
codon in CaV1.4b results in a prematurely truncated channel. 
The voltage sensing motif is still present, although it has been 
suggested that loss of the extracellular loop may influence the 
voltage sensing function of this channel (16). The S4 voltage sen-
sor domain moves in response to membrane depolarization, and 
this splicing event may leave the domain in a conformation that 
prevents S4 movement (113, 114). These changes may provide a 
reason for the insensitivity of T cell CaV1 channels to be activated 
by cell depolarization and alternatively, gating of this channel 
may be mediated via other mechanisms including TCR signaling 
or depletion of ER stores. Interestingly, Jha et al. showed that 
CaV1.4 was localized to lipid rafts in the murine T cell plasma 
membrane. It was determined that CaV1.4 was associated with T 
cell signaling complex components (115). These results suggest 
that the activity of CaV1 channels could be directed in T cells by 
downstream TCR signaling events.

The role of CaV channels in T cell function has been exam-
ined in various in vivo studies. Mice with targeted deletions in 
the regulatory β subunits that regulate CaV channel assembly, 
plasma membrane targeting, and activation have been charac-
terized (99, 116). Naïve CD4+ T cells express β3 and β4 family 
members, and their expression levels are increased in activated 
T cells. Following TCR cross-linking, CD4+ T cells from β3 or 
β4-deficient mice exhibit disrupted Ca2+ influx, cytokine secre-
tion, and NFAT nuclear translocation (116). β4-deficient T cells 
have lower expression of Cav1.1, indicating a potential role for 
CaV1 in lymphocyte function (116). CD8+ T cell populations 
in a β3-deficient mouse model have also been evaluated (115). 
Lower numbers of CD8+ T cells have been observed in β3-/- mice, 
likely attributed to increased spontaneous apoptosis provoked 
by greater Fas expression. During activation, these CD8+ T cells 
show decreased Ca2+ entry, NFAT nuclear translocation, and 
proliferation. It was established that β3 associates with CaV1.4 and 
various TCR signaling proteins, implying its role in TCR-gated 
Ca2+ signaling (115). When the AHNAK1 protein, a scaffold 
protein needed for surface expression of CaV1.1, was disrupted, 
T cells demonstrated a reduction in NFAT activation and Ca2+ 
influx that translated to impaired effector function (117, 118). 
Studies have also started to approach the topic of differential Ca2+ 
signaling in T cell subsets (119, 120), providing evidence that 
CaV1.2 and CaV1.3 are expressed in Th2 but not Th1 differenti-
ated effector T cells. When CaV1.2 and/or CaV1.3 expression was 
knocked down in Th2 cells with antisense oligodeoxynucleotides, 
this led to hindered Ca2+ influx following TCR stimulation and 

cytokine secretion, as well as impaired ability to induce asthma 
in an adoptive transfer model (119). In order to increase our 
understanding of differences in Ca2+ responses, further analysis 
is required with respect to differential expression of CaV1 channel 
subtypes and of their splice variants.

A CaV1.4-deficient mouse model (121) was used by Omilusik 
et al. to clearly demonstrate a T cell-intrinsic role for CaV1 channels 
in the maintenance, survival, and activation of naïve CD4+ and 
CD8+ T cells in vivo. It was demonstrated that CaV1.4 is required 
for TCR-induced regulation of free Ca2+ in the cytosol and 
downstream TCR signaling, affecting induction of the Ras/ERK 
and NFAT pathways, IL-7 receptor expression, and IL-7 response. 
CaV1.4 deficiency resulted in defective immune responses when 
exposed to the model bacteria Listeria monocytogenes (17). It 
seems as though CaV1.4 may operate to create intracellular Ca2+ 
stores in the ER. Low-level TCR signaling through interactions 
with self-antigens (i.e., self-peptides/self-MHC molecules) may 
result in CaV1.4-mediated Ca2+ influx from outside the cell, 
allowing the filling of intracellular stores and the initiation of 
a pro-survival program. This recent data supports the concept 
that in the absence of CaV1.4, there is a reduction in the influx 
of extracellular Ca2+ coupled to self/MHC-TCR interaction, 
resulting in low cytoplasmic Ca2+ levels and depleted Ca2+ ER 
stores (17). In the proposed model, following TCR stimulation of 
CaV1.4-deficient T cells, there is an impaired Ca2+ release from the 
ER due to reduced levels of stored Ca2+, diminished subsequent 
SOCE, and decreased Ca2+ influx through CRAC channels result-
ing in dampened Ca2+-dependent signaling. The lack of CaV1.4 
results in an inability of naïve T cells to thrive and maintains a 
state of immunological activation and exhaustion (17), which may 
provide an explanation for many of the observations regarding 
the role CaV channels play in T cells. In general, knock-outs of 
CaV1 channel components in T cells have more severe phenotypes 
compared to those of other Ca2+ channel families in T cells. This 
clearly supports the concept that CaV1 channels are important in 
the regulation of T cell biology.

There is increasing evidence in support of relationships 
between different types of Ca2+ channels, and one such rela-
tionship is the one between CaV1.2 and ORAI1 (122, 123). 
Following Ca2+ store depletion in the ER, STIM1 oligomers 
form at ER-plasma membrane junctions, thereby allowing the 
STIM1 CRAC-activating domain (CAD) to interact with the 
C-terminus of ORAI1 and CaV1.2 channels. STIM1 activates 
ORAI1 channels, which then open resulting in sustained Ca2+ 
entry from the extracellular space. On the other hand, STIM1 
blocks Ca2+ influx through CaV1.2 and promotes its internaliza-
tion (122, 123). It may be possible that strong TCR signaling 
via engagement by a foreign peptide-MHC may lead to this 
activation of ORAI1 and inhibition of CaV1 channels (Figure 1). 
In contrast, weaker TCR signaling through engagement with 
self-antigens might not elicit STIM1 to localize to the plasma 
membrane, hence activating CaV and blocking ORAI1. Further 
investigation regarding the interplay between different Ca2+ 
channel families will greatly advance the field of Ca2+ channel 
research.

In conclusion, while the specific functions of the various Ca2+ 
channels discussed in this review have yet to be fully explored, 
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FiGURe 1 | The calcium channels in T cells. T cell receptor (TCR) 
engagement by a peptide-MHC on an antigen presenting cell (APC) induces 
protein tyrosine kinases (PTKs) to activate phospholipase Cγ1 (PLCγ1), which 
cleaves phosphatidylinositol 4,5-bisphosphate (PIP2) from plasma membrane 
phospholipids to generate diacylglycerol (DAG) and inositol-1,4,5-
trisphosphate (IP3). Elevated levels of IP3 in the cytosol lead to the release of 
Ca2+ from IP3Rs located in the endoplasmic reticulum (ER). Ca2+ depletion 
from the ER induces Ca2+ influx from the extracellular space through the 
plasma membrane channel, ORAI1. Several additional channels also operate 
during TCR-mediated Ca2+ signaling. These include plasma membrane IP3R 
activated by the ligand IP3, transient receptor potential (TRP) channels that 
can be operated by DAG and SOCE, adenosine triphosphate (ATP)-
responsive purinergic P2 (P2X) receptors, glutamate-mediated N-methyl-d-
aspartate activated (NMDA) receptors, and voltage-dependent Ca2+ channels 
(CaV) that may be regulated through TCR signaling events. The mitochondria 
(MT) also control cytoplasmic Ca2+ levels. Increase in intracellular Ca2+ results 

in activation of calmodulin–calcineurin pathway that induces NFAT nuclear 
translocation and transcription of target genes to direct T cell homeostasis, 
activation, proliferation, differentiation, apoptosis and survival. Within this 
complex network of Ca2+ signaling, a model of the reciprocal regulation of 
CaV1 and ORAI1 in T cells has been proposed. (A) Low-level TCR signaling 
through interactions with self-antigens (i.e., self-peptides/self-MHC 
molecules) may result in CaV1 (particularly CaV1.4) activation and Ca2+ influx 
from outside the cell. This allows for filling of intracellular Ca2+ stores and 
initiation of a signaling cascade to activate a pro-survival program within the 
naïve T cell. STIM1 is not activated in this scenario and, consequently, ORAI1 
remains closed. (B) Strong TCR signaling through engagement by a foreign 
peptide-MHC induces the downstream signaling events that result in ER Ca2+ 
store depletion and STIM1 accumulation in puncta in regions of the ER near 
the plasma membrane allowing interactions with Ca2+ channels. ORAI1 
enhances STIM1 recruitment to the vicinity of CaV1 channels. Here, STIM1 
can activate ORAI1 while inhibiting CaV1.
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these channels clearly play important roles in T cell biology and 
may serve as useful targets for therapeutic drugs. Many drugs 
already exist for modifying CaV1 channels, for example, isradipine 
and propofol. Moving forward, drugs that target specific Ca2+ 
channel splice variants found in lymphocytes may act as superior 
immunomodulatory agents compared to what are currently 
available. Pertinent applications would likely include treatment 
of autoimmune diseases, reduction of transplant rejection risk, 

and treatment of a wide range of other conditions requiring 
modulation of the immune system.
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