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Progressive multifocal leukoencephalopathy (PML) is a deadly demyelinating disease due
to JC virus (JCV) replication in the brain. PML classically occurs in patients with severe
immunodepression, and cases have recently been linked to therapeutic monoclonal
antibodies such as natalizumab and also rituximab, which depletes B cells. B cells appear
to play a complex role in the pathogenesis of PML. They may act as a viral reservoir
and as a vector for viral dissemination in the central nervous system. Anti-JCV antibody
responses appear to have a limited effect on JCV replication in the brain. However,
accumulating evidence suggests that B cells may considerably influence T cell responses
through their cytokine secretion. This immunomodulatory function of B cells may play an
important role in the control of JCV infection and in the pathogenesis of PML, including
rituximab-induced PML.
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Progressivemultifocal leukoencephalopathy (PML) is a devastating demyelinating disease caused by
replication in the brain of the opportunistic polyomavirus JC virus (JCV), which asymptomatically
infects a large proportion of the adult population worldwide. PML occurs almost exclusively in
patients with severe immunodepression due to disorders such as AIDS, hematological malignancies,
and sarcoidosis, but is also a recognized adverse effect of therapeutic monoclonal antibodies such
as natalizumab, efalizumab, and rituximab used to treat autoimmune diseases and hematological
malignancies (1, 2). Specific CD4 andCD8T cell responses appear to play a critical role in the control
of JCV infection: for instance, the beneficial effect of highly active antiretroviral therapy (HAART)
on AIDS-related PML is largely due to restoration of anti-JCV T cell immunity (3–5). The PML-
promoting effect of rituximab, an anti-CD20 monoclonal antibody that specifically depletes B cells,
suggests that B cells also contribute to the control of JCV infection (1). The incidence of PML in
rituximab-treated patients depends on the underlying disease: it is about 2/8,000 in patients with
systemic lupus erythematosus (SLE) and 1/25,000 in those with rheumatoid arthritis (RA) (6, 7). B
cells have a dual role in PML: first, they can serve as a viral reservoir and may help disseminate the
virus in the brain; second, they are an important component of the adaptive immune response and
may play a significant role in JCV control.

B Cells are a Potential JCV Reservoir and a Vector for CNS
Dissemination

JC virus infection usually occurs in childhood and persists throughout life. It generally remains
clinically silent, despite active virus replication in the kidneys and urinary virus excretion in a
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significant proportion of the general population. Severe, pro-
longed immunosuppressionmay lead to JCV dissemination to the
central nervous system (CNS) from sites of persistence (kidney,
bone marrow, lymphoid organs), or to reactivation of dormant
virus already present in the CNS. In both cases, this may lead
to productive infection of oligodendrocytes, followed by demyeli-
nation and development of PML (2, 8). Detection of JCV DNA
in peripheral B lymphocytes and of JCV-infected B cells in brain
tissue of PML patients suggests that B cells are directly involved in
JCV dissemination to the CNS (9–12).

JC virus can infect CD34+ hematopoietic precursor cells and
B cells, but not primary T cells (9, 13). Chapagain et al. showed
that JCV can enter B cells and persist as intact virions (12). B
cells are probably infected by JCV in lymphoid tissues such as the
tonsils, spleen, and bone marrow (14–16). JCV-infected B cells
may also derive from latently infected hematopoietic precursors
in bone marrow (17–19). Nucleotide sequence analysis of JCV in
peripheral blood mononuclear cells (PBMC), urine, and cerebral
spinal fluid (CSF) of PML patients has revealed JCV sequence
variations and rearrangements that influence viral pathogenicity
and tropism (18, 20–25). JCV persists in at least two forms: a
non-pathogenic form (archetypal virus) and a neurotropic form
that contains a rearranged non-coding control region (NCCR)
(20, 24, 26). B cells could serve for the generation, persistence,
and dissemination to the CNS of the neurotropic form (27).
Glial cells (the main targets of JCV in the brain) and B cells,
but not T cells, both express nuclear DNA binding proteins that
interact with the regulatory region of the JCV genome and may
permit JCV replication (10, 28, 29). The NCCR is involved in
transcriptional control of both early and late viral genes (25, 30–
33). Two transcription factors (NF-1X and Spi-B) important for
JCV genome transcription are upregulated in glial cells, B cells,
and hematopoietic progenitor cells (25, 34, 35). Spi-B binding sites
are present in the promoter/enhancer of JCV neurotropic variants
but not in the archetypal virus. These sites are located in the region
adjacent to TATA boxes, which are essential for the transcription
of early and late viral genes (35–37). Rituximab modifies B cell
homeostasis, and the reconstituted B cell pool after treatment
consists mainly of immature (IgD+CD10+CD24hiCD38hi) and
naive B cells (38–42). Rituximab depletes CD20+ mature B cells
in the periphery, probably leading to mobilization of pre-B and B
cells from bone marrow and lymph nodes, along with an increase
in CD34+ progenitors in the periphery (17). Infected B cells
arising from bone marrow and lymph nodes may transmit the
infection to microvascular endothelial cells and, after crossing
the blood–brain barrier, to glial cells (11, 12, 14). Also, natal-
izumab has been reported to inhibit VLA-4-dependent reten-
tion of CD34+ hematopoietic precursor cells, B cell precursors,
and B cells in bone marrow and lymphoid tissues, leading to
increased circulation of pre-B and B cells (17, 43). However, it
remains unclear how much its effects on B cells may contribute
to natalizumab-associated PML.

Thus, the following conditions are required for JCV-induced
PML to occur: changes in the NCCR that enhance viral transcrip-
tion and replication; the presence of transcription factors that bind
to the rearranged NCCR; immunodeficiency; and, likely, other
factors such as an individual genetic predisposition.

The Specific Antibody Response Appears
Insufficient to Control JCV Infection

Humoral immunity, and particularly the production of neutral-
izing antibodies, is an important line of defense against viral
infections (44). Intrathecal antibody synthesis is observed in
infections due to herpes simplex, varicella zoster, Epstein–Barr,
cytomegalovirus, mumps, rubella, measles, dengue, and JCVs
(45–48). Intrathecal synthesis of oligoclonal antibodies against
VP1, the major structural protein of JCV, is found in PML
patients, and a positive correlation has been found between the
intensity of this response and the plasma cell count in PML
brain tissue (45, 49). Between 67 and 78% of PML patients
have an anti-VP1 intrathecal antibody response but its protective
effect is unclear (45). Intrathecal synthesis of anti-VP1 antibodies
with low affinity has occasionally been found in chronic CNS
immune disorders such asmultiple sclerosis (MS) and neurolupus
and infections (mumpsmeningitis and neuroborreliosis) (50–54).
This low-affinity anti-VP1 antibody response may be related to
reactivation of memory B cells already present in the CNS (45).
T cell and IgG responses to JCV are significantly increased in
HIV-infected PML survivors, and the IgG response correlates
positively with the CD4 T cell count but negatively with HIV RNA
load (55). Neither intrathecal nor serum JCV-specific antibodies
prevent the onset or progression of PML in HIV-infected patients
(56). A longitudinal study of an HIV-seronegative PML patient
showed that the anti-VP1 antibody response increased with time,
yet neurological status deteriorated and the patient died (45).

B Cells Modulate the Differentiation and
Functions of CD4 and CD8 T Cells

The use of rituximab to treat autoimmune diseases has provided
important clues to the regulatory effects of B cells on cellular
immunity. In addition to B cell depletion, rituximab modulates
the numbers and functions of peripheral blood lymphocyte sub-
sets such as T, NK, and NKT cells in several autoimmune diseases,
including RA, SLE, Evans’ syndrome, and MS (57–61). Rituximab
treatment leads to substantial depletion of peripheral T cells, a
decrease in the proportion of CD4 cells expressing the early acti-
vation marker CD69 and, conversely, an increase of the frequency
of CD4+CD25hi regulatory T cells (58, 59, 61).

Lykken et al. demonstrated that acute and chronic B cell deple-
tion by an anti-CD20 monoclonal antibody disrupts CD4 and
CD8 T cell homeostasis and expansion in mice during acute
viral infection (62). B cells appear to be required for optimal
CD4 and CD8 T cell responses to acute and chronic viral infec-
tions in mice (62, 63). Immunoglobulin mu chain gene knockout
(IgM−/− mice) have normal cytotoxic T cell responses to vesicular
stomatitis virus (VSV), as well as to vaccinia virus and LCMV
(acute Armstrong variant) (63). However, the initially normal
CTL response to LCMV infection in IgM−/− mice disappears in
the long term, leading to viral persistence (63). Adoptive transfer
experiments show that naive and activated antiviral CD8 T cells
from transgenic mice expressing an LCMV gp33-specific TCR
are rapidly exhausted and disappear after transfusion into mice
persistently infected by the LCMV–WE strain (63). Cotransfusion
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of immune CD4 T cells or primed B cells from infected mice
prevents this exhaustion, contrary to transfusion of hyperimmune
serum (63). This suggests that the positive effect of B cells on CD8
T cell antiviral functions is independent of antibody secretion. In
B-cell-deficient mice, the CD8 T cell response is effective on acute
LCMV and influenza virus infection but not on chronic LCMV
infection (64–68). The absence of B cells results in increased death
of activated CD8 T cells during the contraction phase, leading
to poorer antigen-specific CD8 T cell memory (65, 69). CD4
T cells are required for the generation, long-term maintenance,
and optimal reactivation of memory CD8 T cells (70–75). B cells
are also required for the generation of CD4 T cell memory (68,
76–78). B-cell-deficient IgM−/− mice infected with a persistent
LCMV variant have a profound CD4 help defect and secrete less
interferon-gamma (IFN-γ) and interleukin 2 (IL-2) than normal
mice, a defect mainly affecting CD8 T cells (76). In contrast to B-
cell-deficient mice, transgenic mice that have normal proportions
of B cells in the periphery but do not secrete LCMV-specific
antibodies still have a functional CD4 T cell memory (68). This
confirms that the effect of B cells on CD4 T cell memory is
independent of antibody secretion. In mice depleted of B cells by
anti-CD20 and infected by LCMV (Armstrong strain), primary
virus-specific CD4 T cell effectors are generated but the CD4
memory precursor population is reduced and memory T cells
show impaired cytokine production (79). These experiments sug-
gest that B cells play a significant role in the generation of CD4 and
CD8 T cell memory. As CD4 T cell help is required for CD8mem-
ory T cell generation and maintenance, and as B cells influence
CD8 T cell antiviral responses, an indirect effect via CD4 T cells
appears likely. The effect of B cells on T cell responses may involve
cytokine production (80). Indeed, cytokines secreted by B cells
can modulate the differentiation and functions of several immune
effectors, including CD4 and CD8 T cells, possibly explaining
the antibody-independent immunoregulatory functions of B cells
(80–84). The mechanisms that control cytokine production by B
cells are therefore drawing increasing attention.

Effector B Cells as Amplifiers of Th1-Type
Responses to Viral Infections

B cells produce cytokines in response to a broad array of stimuli,
including microbial products, antigens, and T cell-derived signals
(80, 85). Under appropriate conditions in vitro, B cells differentiate
into effector subgroups 1 and 2 (Be1 and Be2), which produce
cytokines associated with Th1 and Th2 responses, respectively
(86–89). In mouse experiments, differentiation into Be1 cells is
induced by Th1 lymphocytes and mediated by IFN-γ and anti-
genic activation through B cell receptors (86). Like IFN-γ, IL-12
plays a key role in Be1 polarization, but the initial trigger of Be1
commitment is likely type-I interferons (IFN-α/β) (89, 90). These
interferons initiate a cascade ofmolecular events that induce B cell
differentiation into Th1-like cells (89, 90). Similarly, naive B cell
differentiation into Be2 cells is dependent on IL-4 (88). Be1 and
Be2 cells, by producing polarizing cytokines such as IFN-γ and
IL-4, induce the differentiation of naïve CD4 T cells into Th1
and Th2 cells (86). Spatiotemporal interactions between B cells,
CD4 T cells, and dendritic cells (DCs) are critical during early
viral infection and likely determine the orientation and nature of

the immune response. Immediately after VSV infection in mice,
antigen-specific B and CD4 T cells interact at the T cell–B cell
zone border (91). During initiation of the immune response, intact
antigens are presented to B cells by DCs (especially follicular
DCs), and then B cells present them in the form of peptides to T
cells (92–94). Be1 commitment may be initiated by IFN-α/β and
then by IL-12 produced by DCs. After antigen priming, T cells
migrate toward the B cell area of lymph nodes where they interact
with B cells, which, by secreting Th1-like cytokines, may stabilize
Th1 differentiation of CD4 T cells. IFN-γ-secreting Be1 and Th1
cells may positively influence each other, thereby creating a Th1
amplification loop between B and T cells.

As Th1 cells are involved in the control of intracerebral JCV
infection (95), the Th1-type amplification loop created by B–T
cell interactions might be important for the development of
effective anti-JCV immune responses. Withdrawal of natalizumab
therapy in multiple sclerosis patients who develop PML leads
to an immune reconstitution inflammatory syndrome (IRIS)
in the brain, due to massive afflux of autoimmune and JCV-
specific T cells (96, 97). In MS patients with PML–IRIS, brain-
infiltrating anti-JCV CD4 T cells are largely IFN-γ-secreting cells.
Bi-functional Th1-2 cells (secreting both IL-4 and IFN-γ) are also
present, while IL-17-producing cells are barely detectable (98).
Histopathologic analysis of brain tissue from patients with IRIS
has revealed the prominent presence of not only CD4 and CD8 T
cells but also B/plasma cells and monocytes (98). The regulation
of B cell activation by antigen sequestered within the CNS is
unclear. Despite the lack of draining lymphatic vessels in the
CNS, antigen-bearing DCs can migrate from the CNS to cervical
lymph nodes, preferentially reaching B-cell follicles rather than
T cell-rich areas (99). B cells activated by antigen-bearing DCs
may interact with T cells and favor Th1 differentiation. Thus, by
disrupting Th1 responses (100), rituximabmay impair the cellular
immune response to JCV.

B Cells as Regulators of Cellular Immune
Responses to Viral Infections

The regulatory effects of B cells on immune responses are complex
andnot only restricted toTh1- or Th2-like responses: someB cells,
described as B regulatory cells (Bregs), also have T regulatory-
like activities (80, 101, 102). Besides pro-inflammatory cytokines,
many B cell subsets also secrete IL-10, a cytokine that suppresses
both the activities of T cells (CD4 and CD8) and innate cell-
mediated inflammatory responses, while also being involved in
Treg maintenance (81–84, 101–104). Breg function is mainly but
not exclusively dependent on IL-10 (80, 101, 102). Mouse and
human plasma cells, in addition to their Ig production, could
contribute to immune regulation by producing IL-10, like Bregs
(105, 106). Interestingly, B cell depletion with rituximab has an
inducing effect on Tregs (107–111). In SLE, RA, lupus nephritis,
and idiopathic thrombocytopenic purpura patients, and partic-
ularly in good responders, the Treg frequency and response are
restored or enhanced by rituximab (107–111).

B cell homeostasis is modified after rituximab treatment,
and the reconstituted B cell pool consists mainly of immature
(IgD+CD10+CD24hiCD38hi) and naive B cells with increased
CD38 and CD5 expression (112–114). Besides immature and
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naive B cells, plasma cells are also prominent in the reconstituted
B cell population (112, 114). However, CD27+ memory B cells
recover more slowly than naive B cells and remain below baseline
values for about 2 years (112). It has been demonstrated that the
cytokine profile (anti- or pro-inflammatory) depends on the B cell
differentiation stage (naive, memory, etc.) (113). Indeed, IL-10
is produced almost exclusively by naive B cells, while the pro-
inflammatory cytokines lymphotoxin (LT) and tumor necrosis
factor (TNF-α) are mainly produced by memory B cells (113).
Therefore, rituximab-induced changes in the reconstituted B cell
population may also affect the overall B cell cytokine profile

(113). Naive B cells predominate in the post-rituximab B cell
population; in addition, IL-10 production is enhanced and LT and
TNF-α production is downregulated as compared to the pretreat-
ment situation (113). The impact of cytokine changes induced
by B cell depletion is evident in myasthenia gravis patients who
respond well to rituximab: indeed, these patients exhibit rapid
repopulation by IL-10-producing B cells and a sustained increase
in the circulating Treg frequency, contrary to non-responders
(115, 116). The immunosuppressive effect of rituximab could
result from the disappearance of Be1 cells leading to failure of
effector T cell activation, and also from the selective survival and

FIGURE 1 | Regulation of anti-JCV T cell responses by different B cell
subsets and the impact of therapeutic B cell depletion on this
regulation. In this model, naive and memory B cells and plasma cells play
distinct roles in the regulation of antiviral immune responses through the release
of different cytokines. Following therapeutic B cell depletion, there is a shift
towards regulatory-like cytokine secretion by the B cell pool. Before therapeutic
B cell depletion, IFN-γ-secreting Be1 and Th1 cells mutually enhance each
other’s functions and favor a CD8 T cell response, which effectively controls JCV
infection. B cell depletion disrupts the Th1 amplification loop and thereby

impairs T cell responses to JCV. In contrast to anti-CD20, anti-CD19 depletes
also plasma cells. After therapeutic B cell depletion, the B cell pool is mainly
reconstituted by naive B cells and plasma cells (IL-10- and IL-35-producing
cells), which may promote Treg-like responses. CD1dhi CD5+ regulatory B cells
may exhibit some resistance to anti-CD19-mediated depletion. Enhanced Breg
and Treg responses disrupt T cell-mediated control of JCV infection and may
favor the emergence of PML. Abbreviations: Mem B, memory B cell; Be1,
effector B cell subgroup 1 (Th1-like B cells); Breg, B regulatory cells (Treg-like B
cells); Th1, T helper 1 cells, Treg, regulatory T cells.
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repopulation of Breg-like subsets. It has been shown that human
CD19+CD24hiCD38hi B cells have regulatory effects that include
inhibition of the differentiation of naive T cells into Th1/Th17
cells and the conversion of CD4+ CD25− T cells into Tregs by
IL-10 (102, 117). In addition to CD19+ B cells, it has recently
been found that plasmablasts and plasma cells are important IL-
10 producers and that they can inhibit the effects of DCs on
the generation of effector T cells (118, 119). In addition to IL-
10, plasma cells also produce IL-35 (119). IL-35, which induces
Tregs, also regulates the expansion and activity of IL-10-producing
Bregs (119–122). Wang et al. have shown that IL-35 induces B
cell differentiation into a Breg subset that produces IL-35 as well
as IL-10 (122). Mice that lack IL-35 or are defective in IL-35
signaling produce fewer Bregs and develop severe experimental
autoimmune uveitis (122). Together, these results suggest that
naive B cells, memory B cells, and plasma cells have distinct roles
in regulating immune responses by secreting cytokines with pro-
or anti-inflammatory effects, and that rituximab treatment can
induce a shift toward a regulatory-like cytokine profile. Early
during B cell reconstitution after rituximab treatment, the pre-
dominant response seems to be Breg-like, while Be1- and Be2-like
responses only appear once memory B cells emerge.

The effect of rituximab on B and T cell responses in the CNS is
well documented because of the beneficial effects of this drug in
MS (123, 124). In particular, rituximab has been shown to deplete
B cells in CSF (123, 125–127). In addition, necropsy studies of
patients who died of rituximab-induced PML have shown that
rituximab also depletes B cells in cerebral perivascular spaces
(127). Rituximab could promote the onset of PML by successive
effects on B cell homeostasis. First, it eliminates Be1 cells, thereby
inhibiting the activation of effector T cells (Figure 1). Then, as
shown in Figure 1, repopulation by Breg-like cells such as IL-
10-producing B cells and plasma cells, initially in the periphery
and then in the CNS, promotes a Treg-like response and inhibits
inflammatory responses (81, 128, 129). In vitro experiments sug-
gest that Bregs could influence T cell responses in brain via
IL-10, by inhibiting microglia activation following viral antigen
stimulation and promoting Treg proliferation (128). It remains
to be determined whether B cell-depleting antibodies other than

anti-CD20 have the same potential to induce PML. In the EAE
model, a single injection of monoclonal anti-CD19 inhibited
leukocyte infiltration into the spinal cord and disrupted disease
development (130). In contrast to anti-CD20, anti-CD19 depletes
not only mature B cells but also short- and long-lived CD138+
plasma cells (130). However, CD1dhi CD5+ regulatory B cells
showed some resistance to anti-CD19-mediated depletion, which
was not related to decreased CD19 expression (130). Together,
these observations suggest that while anti-CD9 may reduce the
B cell-related immune response, it may also spare some regula-
tory mechanisms (Figure 1). This may have a positive effect on
autoimmune diseases but might favor the onset of opportunistic
infections.

Conclusion

The role of B cells in JCV infection and PML is likely more
complex than initially thought. Indeed, on the one hand, B cells
represent a potential reservoir for JCV and may disseminate the
virus to the CNS while, on the other hand, they likely play a reg-
ulatory role in the immune response that controls JCV infection.
The role of the humoral response in the control of JCV remains to
be clarified but is probably less important than the T cell response.
The association between rituximab and PML suggests that B cells
may help to control JCV infection through functions other than
antibody production. B cells secreting Th1-type cytokines such
as IFN-γ probably enhance the Th1 response and thereby help
to establish effective CD8 T cell activity against JCV. In addi-
tion, Treg responses are enhanced in B cell-depleted human and
mouse models. These Treg responses could be induced by post-
rituximab repopulating B cells, which could be predominantly
IL-10-producing cells. A better understanding of the complex
relations between JCV and B cells may have significant implica-
tions for the prevention and treatment of PML.
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